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Abstract. A benchmarking suite describing over 1000 optimization problems and

constraint satisfaction problems covering problems from different traditions is de-

scribed, annotated with best known solutions, and accompanied by recommended

benchmarking protocols for comparing test results.

1 Introduction

Global optimization problems and constraint satisfaction problems are NP-hard,
and a widely held conjecture states that no polynomial, i.e., universally fast,
algorithms solving such problems exist.

It is thus necessary to assemble a sufficient set of relevant and well-categorized
problems in order to be able to evaluate experimentally different approaches,
techniques, and/or solution strategies, and to compare them according to various
performance measures.

The objective of the current work is to provide a benchmark consisting of a
comprehensive suite of representative problems, covering as far as possible all
the categories of problems that are relevant either from a scientific, technical, or
industrial point of view.

A good benchmark must be one that can be interfaced with our framework and
with other, existing systems, in a way that a sufficient number of comparative
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results can be obtained. There are various smaller-scale benchmark projects for
partial domains, in particular the benchmarks for local optimization by Mit-
telmann [11]. A very recent web site by GAMS World [6] started collecting
real life global optimization problems with industrial relevance, but currently
most problems on this site are without computational results. Our benchmark
includes a large part of the problems from these two projects.

All problems in our benchmark are represented in a common format suitable for
automatic execution on global optimization and constraint satisfaction software.
To ensure that benchmarking results are comparable across different solvers and
environments, a benchmarking protocol is defined, whose execution on the
benchmark will provide a number of objective performance measures for any
implementation of global optimization and constraint satisfaction techniques.

With the present benchmarking suite, it is the first time that a large benchmark

• is made publicly available

• in a uniform, widely accessible format,

• covering problems from different traditions – nonlinear programming, global
optimization, and constraint satisfaction,

• including most problems from the more restricted traditional collections
of benchmarking problems as particular cases,

• checked for consistence,

• annotated with type and complexity information,

• (almost) complete with best known solutions, and

• accompanied by benchmarking protocols for comparing test results.

2 Description of the benchmarking suite

The delivered benchmarking suite is a comprehensive collection of 329 constraint
satisfaction and 993 optimization problems from academic, industrial and real-
life environments. Executable versions of these test problems, as well as infor-
mation on their sources, are publicly available at
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http://www.mat.univie.ac.at/~neum/glopt/coconut/benchmark.html

The problems range in difficulty from easy to very challenging, their sizes from a
few number of variables to over 1000 variables. These test problems come from
both the research literature and a wide spectrum of applications, including:

• Chemical engineering (pooling and blending, separation, heat exchanger
network design, phase and chemical equilibrium, reactor network synthesis,
etc.)

• Computational chemistry (including molecular design)

• Civil engineering problems

• Robotics problems

• Operations research problems

• Economics problems (including Nash equilibrium, Walrasian equilibrium,
and traffic assignment problems)

• Multicommodity network flow problems

• Process design problems

• Stability analysis problems

• VLSI chip design problems

• Portfolio optimization problems

Older collections covered. The problem suite incorporates as integral part
most problems from the CUTE test collection [8] (covering among others the
Argonne test set, the Hock and Schittkowski collection, the Dembo network
problems, the Gould quadratic programs, etc.), from the handbook of test prob-
lems in local and global optimization [2], from the GLOBAL Library [6], and
from the Numerica [15] test problem collection; in addition many other con-
straint satisfaction problems from the literature.

Some problems (e.g. linear or convex quadratic programs) are known to be
solvable to global optimality by local optimization alone. They were retained in
the benchmark to be able to measure the overhead which global solvers have
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in order to prove optimality, compared with local solvers which are usually
significantly faster and find of course for convex problems a global minimum.

Common Format. All test problems are coded in the AMPL modeling lan-
guage. AMPL [3] is a flexible and convenient algebraic modeling language en-
abling rapid prototyping and model development. It is of widespread use in the
optimization community, as attested by the large number of existing interfaces
with state-of-the-art optimization solvers http://www.ampl.com/solvers.html.
Unfortunately, no current modeling system allows the input of interval data
reflecting uncertainties in the parameters specified. Such a facility would be
important for fully rigorous search.

The CUTE problems existed already in AMPL format, coded by Hande Y.
Benson, and made available in the collection of AMPL files by Vanderbei
[14]. All other problems were either newly coded in AMPL, or automatically
translated from existing GAMS models using GMS2XX [7] and GAMS/Convert
[4].

As far as reasonable, all problems were checked for correctness; inconsistencies
with information available from other sources were removed if possible. Informa-
tion about (approximate) solutions and putative global minimizers and minima
were provided in all but a few cases (where runtime constraints became active).

A few problems from the collections mentioned are missing in the present bench-
mark because of our inability to get a valid authentic version (e.g., the ’hand-
book’ [2] contains numerous inconsistencies), or because of the presence of con-
structs or functions not supported by our current system (such as if, erf).

The AMPL code for all problems in the benchmark is available online at the web
site mentioned, through links from tables with one line summaries of problem
characteristics.

Typology of problems. The main criteria for categorizing the test problems
are mathematical properties reflecting their degree of formal complexity. This
is not equivalent with computational complexity, but typically more complex
objectives and constraints require more complex algorithms to handle them.

A second criterion is the problems closeness to applicability in real-life applica-
tions.

Each problem is classified as in the CUTE collection of test problems, except
that problems with a V code for the number of variables or constraints have
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the default value for that number after the V. In addition, a few more types of
constraints are distinguished, and an optional type characterizing the solution
set is provided.

The classification is a string of the form OCSD-KIT-n-m in which the letters are
replaced by appropriate codes, as follows:

O = objective code:

C = Constant

L = Linear

N = No objective

Q = Quadratic

S = Sum of squares

O = Other (none of the above)

C = constraint type:

B = Bounds on variables

L = Linear

N = linear Network

Q = Quadratic

U = Unconstrained

X = only fiXed variables

P = Polynomial

T = Trigonometric

O = Other (none of the above)

S = smoothness:

R = Twice continuously differentiable

I = Other

D = degree of differentiability: 0, 1, or 2

K = kind of the problem:

A = Academic

M = Modeling

R = Real application

I = internal variables:

Y = yes, problems has useful internal variables

N = no useful internal variables

T = Type of solution set:

I = Isolated

N = Non-isolated
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U = Unknown

n = number of variables, or: V = varies, followed by default

m = number of constraints, or: V = varies, followed by default

In most cases, we also report the number of nonzeros and nonlinear nonzeros in
an internal representation used in the GAMS system [5]. These give additional
complexity information.

Solutions. For all problems with nonconstant objective function we provide on
the WWW site the function value of the best point found, in many cases the
global optimum.

Many test problems in the current benchmarking suite contain floating-point
constants. Unfortunately, the AMPL software currently does not allow to control
the rounding errors in the conversion to an internal representations. For this
reason, the solutions reported in the current benchmarking suite are approximate
only. Usually the solutions should be affected only in insignificant decimal places
but there may be a nontrivial effect in case of degeneracies. This must be kept in
mind when comparing our solution information to the literature, or to rigorous
solvers which have a mathematically rigorous input/output interface.

The information about the solutions, their status (feasible/local minimum/global
minimum) and accuracy (approximate/verified) will be updated as we run the
benchmark with verifying global solvers.

3 Benchmarking protocol

The benchmarking suite is designed to allow researchers convenient testing of
their own algorithms, and to post the results for comparison with other algo-
rithms.

The benchmarking protocol defines the experimentation procedure and the cri-
teria used to measure efficiency of the algorithm. It can be carried out within a
limited amount of work, and hence be checked in regular intervals. We decided
to create a benchmarking protocol that works on the full set of problems, while
allowing code developers to assess progress without endless testing.

A well-designed benchmarking protocol must be able to assess work in progress
as well as the final results obtained. Since it may be impractical to frequently

6



repeat testing on problems of realistic size, the benchmarking protocol for
assessing work in progress is designed to be executable in a limited amount
of time (approximately 24h clock time on a fast computer), and gives infor-
mation about successes and weaknesses to guide the further development. The
benchmarking protocol for assessing a release of a code has all the time
limits specified below multiplied by a factor of 10.

In order to compare benchmark results across different platforms, we specify
that each benchmark involves the computation of a standard unit time, as
suggested in the first global optimization benchmark by Dixon & Szegö [1]
in 1974. To make it unambiguous and large enough for today’s computers, we
define it as the CPU time needed to carry out the C++ program defined in the
appendix, compiled without optimization or debugging option. It evaluates the
4-dimensional Shekel5 test function at 108 specified points.

Timeout limits and runtimes are given in multiples of standard unit times. We
are aware of the fact that items not accounted for in our standard unit time affect
the performance of global optimization methods. The above choice was made on
the assumption that people who want to switch from local to global optimization
are most likely to compare against performance in terms of equivalent function
values.

For branch and bound codes, time spent on memory management is relevant
also. Since people solving optimization problems locally only or using heuristics
like simulated annealing, use floating points only, and use little memory, total
runtime (and not number of function values or number of iterations) seems to
be the most relevant unit to compare with – it tells how much slower or faster
the complete solver is compared with heuristics.

In the following,we describe the information used and produced by the protocol
(parameters, parameter settings, stopping rules and output).

Parameters and rules The parameters and rules used by the benchmarking
protocols are defined as follows:

• The two main query options defined are: running incomplete and com-
plete search; each search option may be executed in either approximate or
rigorous verification mode, on any of four complexity classes. This gives
2 ∗ 2 ∗ 4 = 16 cases to consider.

– A successful incomplete search shall mean:
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∗ (for problems with objective function) running the search until
the best known function value was found for the first time to
within a relative accuracy of 10−6 or an absolute accuracy of
10−9, whichever is more generous;

∗ (for problems without objective function) running the search un-
til the first feasible point is found to within a relative accuracy of
10−3 or an absolute accuracy of 10−6, whichever is more generous.

– A successful complete search shall mean:

∗ (for problems with objective function) locating all global opti-
mizers, or asserting correctly that the objective function is un-
bounded below on the search space.

∗ (for problems without objective function and a discrete solution
set) finding all feasible points, or asserting correctly that none
exists.

∗ (for problems without objective function and nonisolated solu-
tions) finding an explicit description of the feasible point set
within a relative accuracy of at most 5 percent of the maximal
side of the interval hull of the feasible point set.

– in approximate verification mode,

∗ the solution(s) must satisfy all constraints to within a relative
accuracy of approximately 10−3 or an absolute accuracy of ap-
proximately 10−6, whichever is more generous.

– in rigorous verification mode,

∗ the solution(s) must be enclosed in boxes of a relative accuracy
of approximately 10−3 or an absolute accuracy of approximately
10−6, whichever is more generous, and any such box is guaranteed
with certainty to contain a feasible point, in spite of rounding
errors made (but there may be additional boxes neither excluded
nor guaranteed to contain a solution),

∗ (for problems with objective function) the global minimum value
is to be enclosed with an approximate relative accuracy of 10−6

or an absolute accuracy of 10−9, whichever is more generous.

– All problems are assigned to one of four complexity classes according
to the number of variables defining the problem:

∗ size 1, with 0− 9 variables,

8



∗ size 2, with 10− 99 variables,

∗ size 3, with 100− 999 variables,

∗ size 4, with ≥ 1000 variables.

– The problems are sorted into three libraries, two with optimization
problems, one with constraint satisfaction problems.

For testing, the problems of each library are arranged in a fixed order
of increasing dimension within each complexity class. This order will
probably change with time, to reflect the currently unknown real
difficulty of the test problems. Thus the file defining the ordering
contains a version letter which should be quoted when publishing
results using the benchmark. Version A of the required ordering is
specified in

http://www.mat.univie.ac.at/∼neum/glopt/coconut/probclasses.txt
This gives a total of 3 ∗ 4 = 12 lists of problems, to be executed with
up to four possible pairs of query options.

In some cases it is unreasonable that the full goal is achieved (for ill-
conditioned solutions, or for non-isolated solution sets); in these cases,
suitably relaxed goals may be specified in comments to the solution statis-
tic provided.

• Each problem of a given complexity class gets its own timeout limits for
both complete and incomplete search; and each complexity class within
each of the three libraries gets total timeout limits for both complete and
incomplete search.

• Part of the documentation of running the benchmark should contain:

– the program name and version,

– if applicable, the compiler used for creating the executable,

– the standard unit time (and optionally other timing information),

– the tuning parameter settings in the algorithm used,

– starting points used (if there is a choice in the algorithm), and

– the stopping rule used.

In particular, for each particular benchmark run, all problems should be
handled by the same set of tuning parameters and stopping rules. If only
part of the benchmark is tested, the reasons should be given.
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• For each query option and each tested problem, the following information
(if available) should be reported:

– success or failure with respect to

∗ timeout limit reached,

∗ incorrect solution(s) found, or

∗ best known function value not reached;

– function value reached (for problems with objective function).
If a better function value than the best known one is found, this
should be mentioned and the value and the coordinates of the best
point found recorded; the improved values will be used in later ver-
sions of the benchmark.

– solution(s) found

– time needed for search

– accuracy reached at timeout (for first solution)

– number of nodes generated in the search

– size of remaining search space at timeout. This size is given by the
residual dimension d, the residual size s, the interval hull, and the
10-logarithm of the d-volume of the interval hull of the remaining
search space. (d is defined as the residual dimension of the hull of the
remaining search space, and s is defined as the 10-logarithm of the
sum of d-volumes of the boxes remaining.)

(The residual dimension of a box is the number d of component intervals
of positive width. The d-volume is the product of these widths.)

The following global statistics should be reported for each query option
and each complexity class:

– number of problems correctly solved (best known function value reached
or improved/correct solution(s) identified)

– number of timeout failures (incomplete search space/first solution not
found/best known function not reached at timeout)

– number of problems incorrectly solved (for problems without objec-
tive functions)

– mean of all residual dimensions
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– mean of all residual sizes.

• For problems without objective functions and with non-isolated solutions,
it makes no sense to individually enumerate all (uncountably many) solu-
tions; instead the following alternative output should be computed:

– inner and outer approximations of the solution sets as lists of boxes.

In this case, the quality of the approximations will be reported by the
volumes of the inner and the outer approximations, their quotient (if an
inner approximation has nonzero volume), and by the space requirements
needed for storing all the boxes. (The volume quotient will often be zero,
namely if the solution set has measure zero.)

For solvers which do not provide all the output requested, the available subset of
the requested output should be provided, and the limitations should be explicitly
mentioned.

The benchmarking protocols are fully defined by the preceding, including the
reported criteria, except for the timeout limits.

The benchmarking protocol for assessing work in progress is designed
to be executable on the total benchmarking suite in a limited amount of time.
It is implemented by setting the timeout limits to the values given in the table
below, in standard time units (stu = between about 1 and 7 minutes on our
machines). The timeout limit for each set is set to one tenth of the sum of the
individual timeout limits.

Number of variables 1− 9 10− 99 100− 999 ≥ 1000 total
timeout(stu)/problem 2 10 20 40 –

Library 1 # problems 84 90 44 48 266
timeout(stu)/set 16.8 90 88 192 386.8

Library 2 # problems 347 100 93 187 727
timeout(stu)/set 69.4 100 186 748 1103.4

Library 3 # problems 225 76 22 6 329
timeout(stu)/set 45.0 76 44 24 189.0

total # problems 656 266 159 241 1322
timeout(stu)/set 131.2 266 318 964 1679.2

This gives – for each choice of options – a total running time of about a week
on our slowest (1stu=431s), and of about 23 hours on our fastest (1stu=53s)
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computer. Clearly, one can expect to solve only a limited number of problems
within these tight time limits, especially at larger dimensions.

The benchmarking protocol for assessing a release of a code is imple-
mented by running the benchmarking suite twice, setting the timeout limits first
to the values in the table, and then to these values multiplied by a factor of 10.

Note: This is Version A of the benchmarking protocol. Later versions of the
protocol may contain minor or major changes to the above setting, reflecting
experience gained with using the protocol on various solvers and platforms.

4 Testing the performance of current solvers

The solvers we started to test are MINOS [10] (a local solver, for comparison
only), LGO [12], BARON [13], Numerica [15], and GlobSol [9]. Further solvers
we hope to test if time permits are four recent new developments Premium
Interval, LINDO global, αBB, GloptiPoly, and OptQuest.

The tables below summarize some of the main properties of these solvers, as
far as known to us. Missing information is indicated by a question mark, and
partial applicability by a + or − in parentheses; the dominant technique (if any)
exploited by the solver is denoted by ++.

Solver Minos LGO BARON Numerica GlobSol

Access language GAMS C GAMS Numerica Fortran90
Integer constraints − + + − −
search bounds − required recommended − required
black box eval. + + − − −
complete − (−) + + +
rigorous − − − + +
local ++ + + (+) (+)
CP − − + ++ +
other interval − − − + ++
convex − − ++ − −
dual + − + − −
available + + + + +
free − − − (−) +

The first two rows give the name of the solvers and the access language used
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to pass the problem description. The next two rows indicate whether it is
possible to specify integer constraints (although the benchmark does not test
this feature), and whether it is necessary to specify a finite search box within
which all functions can be evaluated without floating point exceptions.

The next three rows indicate whether black box function evaluation is supported,
whether the search is complete (i.e., is claimed to cover the whole search region
if the arithmetic is exact and sufficiently fast) or even rigorous (i.e., the results
are claimed to be valid with mathematical certainty even in the presence of
rounding errors). Note that general theorems forbid a complete finite search if
black box functions are part of the problem formulation, and that a rigorous
search is necessarily complete.

Solver Premium LINDO αBB GloptiPoly OptQuest
Interval Global

Access language Visual Basic LINGO MINOPT Matlab Visual Basic
Integer constraints + + + + +
search bounds + ? ? − +
black box eval. − − − − +
complete + + + + −
rigorous (+) − − − −
local + + + − +
CP + + − − −
interval ++ + + − −
convex + ++ ++ + −
dual − + − ++ −
available + + − + +
free − − − + −

Five further rows indicate the mathematical techniques used to do the global
search. We report whether local optimization techniques, constraint propaga-
tion, other interval techniques, convex analysis, or dual (multiplier) techniques
are part of the toolkit of the solver.

The final two rows indicate whether the code is available, and whether it is free
(in the public domain).
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Appendix. The standard unit time

The standard unit time is defined as the cpu time needed to carry out the
C++ program shekel5.cpp available from

http://www.mat.univie.ac.at/~neum/glopt/coconut/

compiled without any optimization or debugging option; in particular with

g++ -o shekel5.x ./shekel5.cpp

on UNIX/LINUX systems and with

cl -o shekel5.exe ./shekel5.cpp

on MS/DOS systems. The program evaluates the 4-dimensional Shekel5 test
function at 108 specified points. (Reflecting the increased speed of modern com-
puters, this is a factor of 105 larger than the standard unit time used in the first
global optimization benchmark by Dixon & Szegö [1] in 1974.)
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