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Preface

Interest in constrained optimization originated with the simple linear pro-
gramming model since it was practical and perhaps the only computationally
tractable model at the time. Constrained linear optimization models were
soon adopted in numerous application areas and are perhaps the most widely
used mathematical models in operations research and management science
at the time of this writing. Modelers have, however, found the assumption
of linearity to be overly restrictive in expressing the real-world phenomena
and problems in economics, finance, business, communication, engineering
design, computational biology, and other areas that frequently demand the
use of nonlinear expressions and discrete variables in optimization models.
Both of these extensions of the linear programming model are NP-hard,
thus representing very challenging problems. On the brighter side, recent
advances in algorithmic and computing technology make it possible to re-
visit these problems with the hope of solving practically relevant problems
in reasonable amounts of computational time.

Initial attempts at solving nonlinear programs concentrated on the de-
velopment of local optimization methods guaranteeing globality under the
assumption of convexity. On the other hand, the integer programming liter-
ature has concentrated on the development of methods that ensure global
optima. The aim of this book is to marry the advancements in solving
nonlinear and integer programming models and to develop new results in
the more general framework of mixed-integer nonlinear programs (MINLPs)
with the goal of devising practically efficient global optimization algorithms
for MINLPs.

We embarked on the journey of developing an efficient global optimization
algorithm for MINLPs in the early 1990s when we realized that there was no
software that could even solve small-sized MINLPs to global optimality de-
spite indications in the literature that such an algorithm could be easily con-

xlil
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structed. Our initial attempts, however, found us struggling with many gaps
in the literature in the specifications of such a global optimization algorithm.
Therefore, about ten years ago, we decided to concentrate on special classes of
mixed-integer nonlinear programs, including separable concave minimization
problems and applications in capacity expansion of chemical processes. In
the process, we developed the first branch-and-bound framework for MINLPs,
the Branch-And-Reduce Optimization Navigator (BARON). Its initial pur-
pose was to facilitate design and experimentation with global optimization
algorithms. Drawing from this initial experience, in the last six years, we
have concentrated on the automatic solution of a general class of MINLPs.
This book documents many of the theoretical advancements that have en-
abled us to develop BARON to the extent that it now makes it possible for the
first time to solve many practically relevant problems in reasonable amounts
of computational time in a completely automated manner. Theoretical and
algorithmic developments that brought about this situation included:

e A constructive technique for characterizing convex envelopes of nonlin-
ear functions (Chapter 2).

e Many strategies for reformulating mixed-integer nonlinear programs
that enable efficient solution. For example, in Chapter 3, we show that
“product disaggregation” (distributing the product over the sum) leads
to tighter linear programming relaxations, much like variable disaggre-
gation does in mixed-integer linear programming.

e Novel relaxations of nonlinear and mixed-integer nonlinear programs
(Chapter 4) that are entirely linear and enable the use of robust and
established linear programming techniques in solving MINLPs.

e A new theoretical framework for range reduction (Chapter 5) that
helped us identify connections with Lagrangian outer-approximation
and develop a unified treatment of existing and several new domain re-
duction techniques from the integer programming and constraint pro-
gramming literatures.

e Techniques to traverse more efficiently the branch-and-bound tree, in-
cluding:

— the algorithm of Section 7.6.1 that finds all feasible solutions of
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systems of nonlinear equations as well as combinatorial optimiza-
tion problems through enumeration of a single search tree;

— the postponement strategy of Section 7.6.3;

— the branching scheme of Section 7.6.4 that guarantees finite termi-
nation for classes of problems for which previous algorithms were
either convergent only in limit (i.e., infinite) or resorted to explicit
enumeration.

We demonstrate through computational experience that our implemen-
tation of these techniques in BARON can now routinely solve problems pre-
viously not amenable to standard optimization techniques. In particular:

e In Section 3.6.2, we present a small but difficult instance of a nuclear
reactor pattern design problem that was solved for the first time to
global optimality using our algorithms.

e In Chapter 8, we completely characterize the feasible space of a refriger-
ant design problem proposed 15 years ago revealing all the 29 candidate
refrigerants that meet the design specifications.

e In Chapters 3, 9, 10, and 11, we provide new solutions and/or im-
proved computational results compared to earlier approaches on var-
ious benchmark problems in stochastic decision making, pooling and
blending problems in the petrochemical industry, a restaurant location
problem, engineering design problems, and a large set of benchmark
nonlinear and mixed-integer nonlinear programs.

In writing this book we had three aims. First, to provide a very compre-
hensive account of material previously available only in journals. Second, to
offer a unified and cohesive treatment of a wealth of ideas at the operations
research and computer science interface. Third, to present (in over half of
the book) new material, including new algorithms, a detailed description of
the implementation, extensive computational results, and many geometric
interpretations and illustrations of the concepts throughout the book.

We expect that the readership of this book will vary significantly due to
the rich mathematical structure and significant potential for applications of
mixed-integer nonlinear programming. Students and researchers who wish to
focus on convex analysis and its applications in MINLP should find Chapters
2 through 5 and Chapter 9 of interest. Chapters 3, 6, 7, 10, and 11 will
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appeal to readers interested in implementation and computational issues.
Finally, the material in Sections 3.6.2, 3.6.3, and 3.11.3 as well as Chapters
8,9, 10, and 11 cover modeling and applications of mixed-integer nonlinear
programming.

We hope that this book will be used in graduate level courses in nonlin-
ear optimization, integer programming, global optimization, convex analysis,
applied mathematics, and engineering design. We also hope that the book
will kindle the interest of graduate students, researchers, and practitioners
in global optimization algorithms for mixed-integer nonlinear programming
and that in the coming years we will witness works that bring forth im-
provements and applications of the algorithms proposed herein. To facilitate
developments in these directions, we plan to maintain detailed descriptions
of many of the models used in this book as well as other related information
at: http://web.ics.purdue.edu/~mtawarma/minlpbook/.

Mohit Tawarmalani Nikolaos V. Sahinidis
West Lafayette Champaign
Indiana Mlinois





