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Abstract

This work addresses the development of an efficient solution strategy
for obtaining global optima of continuous, integer, and mixed-integer non-
linear programs. Towards this end, we develop novel relaxation schemes,
range reduction tests, and branching strategies which we incorporate into
the prototypical branch-and-bound algorithm.

In the theoretical/algorithmic part of the paper, we begin by devel-
oping novel strategies for constructing linear relaxations of mixed-integer
nonlinear programs and prove that these relaxations enjoy quadratic con-
vergence properties. We then use Lagrangian/linear programming duality
to develop a unifying theory of domain reduction strategies as a conse-
quence of which we derive many range reduction strategies currently used
in nonlinear programming and integer linear programming. This theory
leads to new range reduction schemes, including a learning heuristic that
improves initial branching decisions by relaying data across siblings in
a branch-and-bound tree. Finally, we incorporate these relaxation and
reduction strategies in a branch-and-bound algorithm that incorporates
branching strategies that guarantee finiteness for certain classes of con-
tinuous global optimization problems.

In the computational part of the paper, we describe our implementa-
tion discussing, wherever appropriate, the use of suitable data structures
and associated algorithms. We present computational experience with
benchmark separable concave quadratic programs, fractional 0 − 1 pro-
grams, and mixed-integer nonlinear programs from applications in synthe-
sis of chemical processes, engineering design, just-in-time manufacturing,
and molecular design.
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1 Introduction

Research in optimization attracted attention when significant advances were
made in linear programming in the late 1940’s. Motivated by applications,
developments in nonlinear programming followed quickly and concerned them-
selves mostly with local optimization guaranteeing globality only under cer-
tain convexity assumptions. However, problems in engineering design, logistics,
manufacturing, and the chemical and biological sciences often demand modeling
via nonconvex formulations that exhibit multiple local optima. The potential
gains to be obtained through global optimization of these problems motivated a
stream of recent efforts, including the development of deterministic and stochas-
tic global optimization algorithms.

Solution strategies explicitly addressing mixed-integer nonlinear programs
(MINLPs) have appeared rather sporadically in the literature and initially dealt
mostly with problems that are convex when integrality restrictions are dropped
and/or contain nonlinearities that are quadratic [24, 22, 16, 23, 10, 6, 7, 5]. A
few recent works have indicated that the application of deterministic branch-
and-bound algorithms to the global optimization of general classes of MINLPs is
promising [30, 37, 12, 36]. In this paper, we demonstrate that branch-and-bound
is a viable tool for global optimization of purely continuous, purely integer,
as well as mixed-integer nonlinear programs if supplemented with appropriate
range reduction tools, relaxation schemes, and branching strategies.

The application of the prototypical branch-and-bound algorithm to contin-
uous spaces is outlined in Section 2 and contrasted to application in discrete
spaces. The remainder of the paper is devoted to developing theory and method-
ology for various steps of the branch-and-bound algorithm as applied to MINLP
problems. In Section 3, we synthesize a novel linear programming lower bound-
ing scheme by combining factorable programming techniques [26] with the sand-
wich algorithm [13, 29]. In the context of the latter algorithm, we propose a
new variant that is based on a projective error rule and prove that this variant
exhibits quadratic convergence.

In Section 4, we develop a new framework for range reduction and show that
many existing range reduction schemes in integer and nonlinear programming
[41, 18, 17, 20, 34, 30, 31, 35, 43] are special cases of our approach. Addi-
tionally, our reduction framework naturally leads to a novel learning reduction
heuristic that eliminates search space in the vicinity of fathomed nodes, thereby
improving older branching decisions and expediting convergence.

In Section 5, we present a new rectangular partitioning procedure for non-
linear programs. In Section 6, we describe how the branch-and-bound tree
can be efficiently navigated and expanded. Finally, in Section 7, we describe
computational experience with the Branch-And-Reduce Optimization Naviga-
tor (BARON), which is the implementation of the proposed branch-and-bound
global optimization algorithm. Computations are presented for continuous, in-
teger, and mixed-integer nonlinear programs demonstrating that a large class
of difficult nonconvex optimization problems can be solved in an entirely auto-
mated fashion with the proposed techniques.
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2 Branch-and-Bound in Continuous Spaces

Consider the following mixed-integer nonlinear program:

(P) min f(x, y)

s.t. g(x, y) ≤ 0

x ∈ X ⊆ R
n

y ∈ Y ⊆ Z
p

where f : (X,Y ) �→ R and g : (X,Y ) �→ R
m. We restrict attention to fac-

torable functions f and g, i.e., functions that are recursive sums and products
of univariate functions. This class of functions suffices to describe most applica-
tion areas of interest [26]. Examples of factorable functions include f(x1, x2) =
x1x2, f(x1, x2) = x1/x2, f(x1, x2, x3, x4) =

√
exp(x1x2 + x3 ln x4)x3

3, f(x1, x2,
x3, x4) =

(
x2

1x
0.3
2 x3

)
/x2

4 + exp
(
x2

1x4/x2

) − x1x2, f(x) =
∑n

i=1 lni(xi), and
f(x) =

∑T
i=1

∏pi

j=1

(
c0
ij + cijx

)
with x ∈ R

n, cij ∈ R
n and c0

ij ∈ R (i =
1, . . . , T ; j = 1, . . . , pi).

Initially conceived as an algorithm to solve combinatorial optimization prob-
lems [21, 9], branch-and-bound has evolved to a method for solving more general
multi-extremal problems like P [11, 19]. To solve P, branch-and-bound computes
lower and upper bounds on the optimal objective function value over succes-
sively refined partitions of the search space. Partition elements are generated
and placed on a list of open partition elements. Elements from this list are se-
lected for further processing and further partitioning, and are deleted when their
lower bounds are no lower than the best known upper bound for the problem.

A bounding scheme is called consistent if any unfathomed partition element
can be further refined and, for any sequence of infinitely decreasing partition
elements, the upper and lower bounds converge in the limit. Most algorithms
ensure consistency through an exhaustive partitioning strategy, i.e., one that
guarantees that partition elements converge to points or other sets over which
P is easily solvable. A selection scheme is called bound-improving if a partition
with the current lowest bound is chosen after a finite number of steps for fur-
ther bounding and partitioning. If the bounding scheme is consistent and the
selection scheme is bound-improving, branch-and-bound is convergent [19].

Remark 2.1. In 0−1 programming, branching on a binary variable creates two
subproblems in both of which that variable is fixed. On the contrary, branch-
ing on a continuous variable in nonlinear programming may require infinitely
many subdivisions. As a result, branch-and-bound for 0−1 programs is finite but
merely convergent for continuous nonlinear programs. Results pertaining to fi-
nite rectangular branching schemes for continuous global optimization problems
have been rather sparse in the literature [35, 3, 1]. Finiteness for these problems
was obtained based on branching schemes that are exhaustive and branch on the
incumbent, and/or explicitly took advantage of special problem structure.
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Remark 2.2. While dropping the integrality conditions leads to a linear relax-
ation of an MILP, dropping integrality conditions may not suffice to obtain a
useful relaxation of an MINLP. Indeed, the resulting NLP may involve noncon-
vexities that make solution difficult. It is even possible that the resulting NLP
may be harder to solve to global optimality than the original MINLP.

Remark 2.3. Linear programming technology has reached a level of maturity
that provides robust and reliable software for solving linear relaxations of MILP
problems. Nonlinear programming solvers, however, often fail even in solving
convex problems. At the theoretical level, duality theory provides necessary and
sufficient conditions for optimality in linear programming, whereas the KKT
optimality conditions, that are typically exploited by nonlinear programming al-
gorithms, are not even necessary unless certain constraint qualifications hold.

In the sequel, we address the development of branch-and-bound algorithms
for MINLPs. Branch-and-bound is more of a prototype of a global optimization
algorithm than a formal algorithmic specification since it employs a number of
schemes that may be tailored to the application at hand. In order to derive
an efficient algorithm, it is necessary to study the various techniques for relax-
ation construction, domain reduction, upper bounding, partitioning, and node
selection. Also, a careful choice of data structures and associated algorithms is
necessary for developing an efficient implementation. We develop theory and
methodology behind these algorithmic components in the next four sections.

3 Lower Bounding

In this section, we address the question of constructing a lower bounding pro-
cedure for the factorable programming problem P stated in Section 2. The pro-
posed methodology starts by using the following recursive algorithm to decom-
pose factorable functions in terms of sums and products of univariate functions
that are subsequently bounded to yield a relaxation of the original problem:

Algorithm Relax f(x)

If f(x) is a function of single variable x ∈ [xl, xu], then
Construct under- and over-estimators for f(x) over [xl, xu],

else if f(x) = g(x)/h(x), then
Fractional Relax (f, g, h)

end of if
else if f(x) =

∏t
i=1 fi(x), then

for i := 1 to t do
Introduce variable yfi

, such that yfi
= Relax fi(x)

end of for
Introduce variable yf , such that yf = Multilinear Relax

∏t
i=1 yfi
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else if f(x) =
∑t

i=1 fi(x), then
for i := 1 to t do

Introduce variable yfi
, such that yfi

= Relax fi(x)
end of for
Introduce variable yf , such that yf =

∑t
i=1 yfi

else if f(x) = g(h(x)), then
Introduce variable yh = Relax h(x)
Introduce variable yf = Relax g(yh)

end of if

Note that while decomposing f(x) as a product/sum of functions, a variable is
introduced if and only if another variable corresponding to the same function
has not been introduced at an earlier step.

Theorem 3.1 ([26]). Consider a function f(x) = g(h(x)) where h : R
n �→ R

and g : R �→ R. Let S ⊆ R
n be a convex domain of h and let a ≤ h(x) ≤ b

over S. Assume c(x) and C(x) are, respectively, a convex underestimator and
a concave overestimator of h(x) over S. Also, let e(·) and E(·) be the convex
and concave envelopes of g(h) for h ∈ [a, b]. Let hmin and hmax be such that
g(hmin) = infh∈[a,b](g(h)) and g(hmax) = suph∈[a,b](g(h)). Then,

e
(
mid

[
c(x), C(x), hmin

])
is a convex underestimating function and

E
(
mid

[
c(x), C(x), hmax

])
is a concave overestimating function for f(x).

Theorem 3.2. The underestimator and overestimator in Theorem 3.1 are im-
plied in the relaxation derived through the application of Algorithm Relax as long
as e(·) and E(·) are used as the under- and over-estimators for g(yh).

Proof. Consider the (n + 2)-dimensional space of points of the form (x, h, f).
Construct the surface M = {(x, h, f) | f = g(h)}, the set F = {(x, h, f) |
e(h) ≤ f ≤ E(h)}, and the set H = {(x, h, f) | c(x) ≤ h ≤ C(x), x ∈ S}.
Then, the feasible region as constructed by Algorithm Relax is the projection of
F ∩H on the space of x and f variables assuming h(x) does not occur elsewhere
in the factorable program. The resulting set is convex since intersection and
projection operations preserve convexity. For a given x, let us characterize the
set of feasible points, (x, f). Note that (x, f) ∈ F ∩ H as long as f ≥ fmin =
min{e(h) | h ∈ [c(x), C(x)]}. If hmin ≤ c(x), the minimum value of e(h) is
attained at c(x), by quasiconvexity of e. Similarly, if c(x) ≤ hmin ≤ C(x), then
the minimum is attained at hmin and, if C(x) ≤ hmin, then the minimum is
attained at C(x). The resulting function is exactly the same as described in
Theorem 3.1. The overestimating function follows by a similar argument.
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We chose to relax the composition of functions in the way described in
Algorithm Relax instead of constructing underestimators based on Theorem
3.1 because our procedure is simpler to implement, and may lead to tighter
relaxations if h(x) occurs more than once in P. On the other hand, the scheme
implied in Theorem 3.1 introduces one variable lesser than that in Algorithm
Relax for every univariate function relaxed by the algorithm.

We now address the relaxation of special functions, beginning with the sim-
ple monomial y =

∏t
i=1 yfi

. Various relaxation strategies are possible for simple
monomials as well as more general multilinear functions. For example, in [40],
a complete characterization of the generating set of the convex polyhedral en-
closer of a multilinear function over any hypercube is provided in terms of its
extreme points. While this implies trivially the polyhedral description of the
convex encloser of the product of t variables (cf. Theorem 4.8, p. 96 [27]), this
description is exponential in t. To keep the implementation simple, we instead
employ a recursive arithmetic interval scheme for bounding the product.

Algorithm Multilinear Relax
∏t

i=1 yri (Recursive Arithmetic)

for i := 2 to t do
Introduce variable yr1,...,ri

= Bilinear Relax yr1,...,ri−1yri
.

end of for

The fractional term is relaxed using the algorithm developed in [39].

Algorithm Fractional Relax (f ,g,h) (Product Disaggregation)

Introduce variable yf

Introduce variable yg = Relax g(x)
if h(x) =

∑t
i=1 hi(x), then

for i := 1 to t do
Introduce variable yf,hi

= Relax
(
yfhi(x)

)
end of for
Introduce relation yg =

∑
i=1,...,t

yf,hi

else
Introduce variable yh = Relax h(x)
Introduce relation yg = Bilinear Relax yfyh

end of if

The bilinear term is relaxed using its convex and concave envelopes [26, 2].

Algorithm Bilinear Relax yiyj (Convex/Concave Envelope)
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Bilinear Relax yiyj ≥ yu
i yj + yu

j yi − yu
i yu

j

Bilinear Relax yiyj ≥ yl
iyj + yl

jyi − yl
iy

l
j

Bilinear Relax yiyj ≤ yu
i yj + yl

jyi − yu
i yl

j

Bilinear Relax yiyj ≤ yl
iyj + yu

j yi − yl
iy

u
j

We are now left with the task of outer-estimating the univariate functions. At
present, we do not attempt to detect individual functional properties, but de-
compose a univariate function as a recursive sum and product of monomial,
logarithmic, and power terms. This keeps the implementation simple and ac-
counts for most of the functions typically encountered in practical problems.
More functions may be added to those listed above without much difficulty.

Algorithm Univariate Relax f(xj) (Recursive Sums and Products)

if f(xj) = cxp
j then

Introduce variable yf = Monomial Relax cxp
j

else if f(xj) = cpxj then
Introduce variable yf = Power Relax cpxj

else if f(xj) = c log(xj) then
Introduce variable yf = Logarithmic Relax c log(xj)

else if f(xj) =
∏t

i=1 fi(xj), then
for i := 1 to t do

Introduce variable yfi
, such that yfi

= Relax fi(x)
end of for
Introduce variable yf , such that yf = Multilinear Relax

∏t
i=1 yfi

else if f(xj) =
∑t

i=1 fi(xj), then
for i := 1 to t do

Introduce variable yfi
, such that yfi

= Relax fi(xj)
end of for
Introduce variable yf , such that yf =

∑t
i=1 yfi

end of if

We do not detail each of the procedures Monomial Relax , Power Relax and
Logarithmic Relax , as they may be easily derived by constructing the corre-
sponding convex/concave envelopes over [xl

j , x
u
j ]. We do, however, address some

common characteristic problems that arise in the derivation of these envelopes.
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Figure 1: Developing the convex envelope for concavoconvex functions

3.1 Concavoconvex Function

A univariate function f(xj) is concavoconvex over an interval [xl
j , x

u
j ] if, for

some xm
j , f(xj) is concave over [xl

j , x
m
j ] and is convex over [xm

j , xu
j ]. We define:

f̌(xj) =
{

f(xj) xj ∈ [xm
j , xu

j ]
+∞ otherwise.

We are interested in locating a point xξ
j , with a subdifferential x∗ to f(xj) at

xξ
j such that the corresponding tangent hyperplane passes through

(
xl

j , f(xl
j)

)
(see Figure 1). We denote the conjugate of a function f by f∗ and the subgradi-
ent set of f at x by ∂f(x). Given x, we define gx(x) = f̌(x + x). Notice that xξ

j

may not be unique. Given (x, y), we consider the problem of identifying the set
X of all xξ

j such that there exists a subdifferential, x∗, of f̌ (i.e., x∗ ∈ ∂f̌(xξ
j))

and g∗x(x∗) = y. If x < xj for all xj ∈ [xm
j , xu

j ], then x ∈ ∂g∗x(x∗) > 0. It follows
that g∗x(x∗) is a strictly increasing function of x∗. Therefore, the inverse g∗x

−1

is unique. Inverting, we get x∗ = g∗x
−1(y). Since ∂g∗x = (∂gx)−1,

X =
(
∂f̌∗)(g∗xl

j

−1(f(xl
j))

)
=

(
∂f̌∗)((

f̌∗ − ·xl
j

)−1(f(xl
j))

)
.

When f(x) is differentiable, it may be simpler to use the gradient expression:

f(xl
j) − f(xj) + ∇f(xj)(xl

j − xj) = 0.

Note that the left-hand-side of the above equation is an increasing function of xj

as long as xj ≥ xl
j and, hence, any numerical technique like the secant method

or bisection method may be used for its solution.
Similar techniques may be used to derive the concave envelope of a concav-

oconvex function, and the envelopes of a convexoconcave function.
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Figure 2: Outer-approximation of convex functions

3.2 Outer-Approximation

The relaxations to factorable programs derived above are typically nonlinear.
However, nonlinear programs are harder to solve and are associated with more
numerical issues than linear programs. For this reason, we propose the polyhe-
dral outer-approximation of the above-derived nonlinear relaxations, thus gen-
erating an entirely linear programming based relaxation.

Consider a convex function g(x) and the inequality g(x) ≤ 0. With s ∈
∂g(x), we have the subgradient inequality:

0 ≥ g(x) ≥ g(x) + s(x − x). (1)

We are mainly interested in outer-approximating univariate convex functions
that lead to the inequality: φ(xj) − y ≤ 0 (see Figure 2). Then, (1) reduces to:

0 ≥ φ(xj) − y ≥ φ(xj) + s(xj − xj) − y.

To construct a polyhedral outer-approximation, we need to locate points xj in
[xl

j , x
u
j ] such that the subgradient inequalities approximate φ(xj) closely.

The problem of outer-approximating convex functions is closely related to
that of polyhedral approximations to convex sets [15, 14]. It is known that the
distance between a planar convex figure and its best approximating n− gon is
O(1/n2) under various error measures like Hausdorff, and area of the symmetric
difference. For convex functions, with vertical distance as the error measure,
the convergence rate of the error of the approximation can be shown to be, at
best, O(1/n2) by considering a parabola y = x2 [29].
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Figure 3: Rules for selecting supporting lines in sandwich algorithms
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The sandwich algorithm is a template of outer-approximation schemes that
attains the above asymptotic performance guarantee in a variety of cases [13, 29].
At a given iteration, this algorithm begins with a number of points at which
tangential outer-approximations of the convex function have been constructed.
Then, at every iterative step, the algorithm identifies the interval with the max-
imum outer-approximation error and subdivides it at a suitably chosen point.
Five known strategies for identifying such a point are as follows:

1. Interval bisection: bisect the chosen interval (see Figure 3(a)).

2. Slope bisection: find the supporting line with a slope that is the mean of
the slopes at the end points (see Figure 3(b)).

3. Maximum error rule: Construct the supporting line at the x− ordinate of
the point of intersection of the supporting lines at the two end points (see
Figure 3(c)).

4. Chord rule: Construct the supporting line with the slope of the linear
overestimator of the function (see Figure 3(d)).

5. Angle bisection: Construct the supporting line with the slope of the an-
gular bisector of the outer angle θ of ROS (see Figure 3(e)).

It was shown in [29] that, if the vertical distance between the convex function
and the outer-approximation is taken as the error measure, then the first four
procedures lead to an optimal performance guarantee. If xl∗

j is the right-hand
derivative at xl

j and xu∗
j is the left-hand derivative at xu

j , then, for n ≥ 2,
interval and slope bisection schemes produce a largest vertical error ε such that:

ε ≤ 9(xu
j − xl

j)(x
u∗
j − xl∗

j )
8n2

.

The maximum error and chord rules have a better performance guarantee of:

ε ≤ (xu
j − xl

j)(x
u∗
j − xl∗

j )
n2

.

Note that, since the initial xu∗
j −xl∗

j can be rather large, the sandwich algorithm
may still lead to high approximation errors for low values of n.

Let G (f) denote the set of points (x, y) such that y = f(x). Projective error
is another error measure which is commonly used to describe the efficiency of
an approximation scheme. If φo(xj) is the outer-approximation of φ(xj), then

εp = sup
pφo∈G (φo)

inf
pφ∈G (φ)

{‖pφ − pφo‖}. (2)

It was shown in [13] that the projective error of the angular bisection scheme
decreases quadratically. In particular, if the initial outer angle of the initial
function is θ, then:

εp ≤ 9θ(xu
j − xl

j)
8(n − 1)2

.
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We suggest another scheme where the supporting line is drawn at the point in
G (φ) which is closest to the intersection point of the slopes at the two endpoints
(see Figure 3(f)). We call this the projective error rule. We next show that the
resulting sandwich algorithm exhibits quadratic convergence.

Lemma 3.3. If a, b, c, and d are four positive numbers such that ac = bd, then
ac + bd ≤ ad + bc.

Proof. ac = bd implies that a ≥ b if and only if c ≤ d. Therefore, (b−a)(c−d) ≥
0. Expanding, we obtain the desired inequality.

Theorem 3.4. Consider a convex function φ(xj) : [xl
j , x

u
j ] �→ R and the outer-

approximation of φ formed by the tangents at xl
j and xu

j . Let R =
(
xl

j , φ(xl
j)

)
and S =

(
xu

j , φ(xu
j )

)
. Assume that the tangents at R and S intersect at O

and let θ be π − ∠ROS, and L be the sum of the lengths of RO and OS. Let
k = Lθ/εp. Then, the algorithm needs at most

N(k) =
{

0, k ≤ 4;
�√k − 2�, k > 4,

supporting lines for the outer-approximation to approximate φ(xj) within εp.

Proof. We argue that the supremum in (2) is attained at O (see Figure 4).
Indeed, since φ(xj) is a convex function, as we move from R to S the derivative
of φ increases, implying that the length of the perpendicular between the point
on the curve and RO increases attaining its maximum at A. For any two points
X and Y on the curve, we denote by LXY , θXY , and WXY the length of the line
segment joining X and Y , the angle π −∠XOY , and LXO + LOY , respectively.

If φ(xj) is not approximated within εp, then

εp < LAO = LO1A tan θRA = LO1O sin θRA ≤ LROθRA. (3)

Similarly, εp < LOSθAS .
We prove the result by induction on WRSθRS/εp. For the base case:

WRSθRS =
(
LRO + LOS

)(
θRA + θAS

)
≥ (

LO1O + LOO2

)(
sin θRA + sin θAS

)
≥ 2

(
LO1O sin θRA + LOO2 sin θAS

)
(from Lemma 3.3)

= 4LAO.

It follows that, if WRSθRS ≤ 4εp, the curve is approximated within tolerance.
To prove the inductive step, we need to show that:

N(WRSθRS/εp) ≥ max 1 + N(WRAθRA/εp) + N(WASθAS/εp)

s.t. WRA = LRO1 + LO1A
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Figure 4: Proof of Theorem 3.4

WAS = LAO2 + LO2S

WRS = LRO1 + LO1A/ cos θRA + LAO2 + LO2S/ cos θAS

θRS = θRA + θAS

LO1A tan θRA > εp

LAO2 tan θAS > εp

WRA,WAS , LRO1 , LO1A, LAO2 , LO2S , θRA, θAS ≥ 0.

Since N(·) is an increasing function of (·), WRA ≤ LRO1+LO1A/ cos θRA = LRO,
and WAS ≤ LAO2 + LO2S/ cos θAS = LOS , we relax the above mathematical
program by introducing variables LRO and LOS and prove the following tighter
result:

N(WRSθRS/εp) ≥ max 1 + N(LROθRA/εp) + N(LOSθAS/εp)

s.t. θRS = θRA + θAS

WRS = LRO + LOS
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LROθRA > εp (see (3))

LOSθAS > εp

LRO, LOS , θRA, θAS ≥ 0.

Since
√

LROθRA/εp ≥ 1 and
√

LOSθAS/εp ≥ 1, we can apply the induction
hypothesis. We only need to show that:⌈√

WRSθRS/εp − 2
⌉
≥ 1+max

{⌈√
LROθRA/εp − 2

⌉
+

⌈√
LOSθAS/εp − 2

⌉}
.

Since �c − 2� ≥ 1 + �a − 2� + �b − 2� when c ≥ a + b, we prove the result by
showing that:√

WRSθRS/εp ≥ max
{√

LROθRA/εp +
√

LOSθAS/εp

}
,

where LRO + LOS = WRS , and θRA + θAS = θRS . Note that:(√
LROθRA +

√
LOSθAS

)2

≤
(√

LROθRA +
√

LOSθAS

)2

+
(√

LROθAS −
√

LOSθRA

)2

= (LRO + LOS)(θRA + θAS)

= WRSθRS .

Dividing by εp and taking the square root, we get:√
LROθRA/εp +

√
LOSθAS/εp ≤

√
WRSθRS/εp.

Hence, the result is proven.

Implicit in the statement of the above theorem is the assumption that θ < π
which is needed to ensure that the tangents at the end-points of the curve
intersect. This is not a restrictive assumption since the curve can be segmented
into two parts to ensure that the assumption holds.

The above result shows that the convergence of the approximation gap is
quadratic in the number of points used for outer-approximation. This result can
be extended to other error measures such as the area of the symmetric difference
between the linear overestimator and the outer-approximation simply because
the area of the symmetric difference grows super-linearly with the projective
distance h. We provide a more in-depth analysis of the algorithm in [38].

Remark 3.5. Examples were constructed in [29] to show that there exist func-
tions for which each of the above outer-approximation schemes based on interval,
slope, and angle bisection, as well as the maximum and chord error rules per-
form arbitrarily worse compared to the others. We are not aware of any function
for which the proposed projective error rule will be particularly bad.
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4 Domain Reduction

Domain reduction, also known as range reduction, is the process of cutting
regions of the search space that do not contain an optimal solution. Various
techniques for range reduction have been developed in [41, 18, 17, 20, 30, 31,
35, 43]. We develop a theory of range reduction tools in this section and then
derive earlier results in the light of these new developments.

4.1 Theoretical Framework

Consider a mathematical programming model:

(T) min f(x)

s.t. g(x) ≤ b

x ∈ X ⊆ R
n

where f : R
n �→ R, g : R

n �→ R
m, and X denotes the set of “easy” constraints.

The standard definition of the Lagrangian subproblem for T is:

inf
x∈X

l(x, y) = inf
x∈X

{
f(x) − y

(
g(x) − b

)}
, where y ≤ 0. (4)

Instead, we define the Lagrangian subproblem as:

inf
x∈X

l′(x, y0, y) = inf
x∈X

{−y0f(x) − yg(x)
}
, where (y0, y) ≤ 0,

since the additional dual variable y0 homogenizes the problem and allows us to
provide a unified algorithmic treatment of range-reduction problems.

Assume that b0 is an upper bound on the optimal objective function value
of T and consider the following range-reduction problem:

h∗ = inf
x,u0,u

{
h(u0, u) | f(x) ≤ u0 ≤ b0, g(x) ≤ u ≤ b, x ∈ X

}
, (5)

where h is assumed to be a linear function. Problem (5) can be restated as:

(RC
u ) h∗ = inf

x,u0,u
h(u0, u)

s.t. −y0

(
f(x) − u0

) − y
(
g(x) − u

) ≤ 0 ∀ (y0, y) ≤ 0
(u0, u) ≤ (b0, b), x ∈ X.

Computing h∗ is as hard as solving T. Therefore, we lower bound h∗ with the
optimal value of the following problem:

(RC
u ) hL = inf

u0,u
h(u0, u)

s.t. y0u0 + yu + inf
x∈X

{−y0f(x) − yg(x)
} ≤ 0 ∀ (y0, y) ≤ 0

(u0, u) ≤ (b0, b).
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Much insight into our definition of the domain reduction problem and its
potential uses is gained by restricting h(u0, u) to a0u0 + au where (a0, a) ≥ 0
and (a0, a) �= 0. Interesting applications arise when (a0, a) is set to one of the
principal directions in R

m+1.
Using Fenchel-Rockafellar duality, the following algorithm is derived in [38]

to iteratively obtain lower and upper bounds on the range-reduction problem
with a linear objective. The algorithm is similar to the iterative algorithm com-
monly used to solve the Lagrangian relaxation of T. The treatment herein can
be generalized to arbitrary lower semicontinuous functions h(u, u0). We refer
the reader to [38] for a detailed discussion, related proofs, and generalizations.

Algorithm SimpleReduce

Step 0. Set K = 0, u0
0 = b0, u0 = b.

Step 1. Solve the relaxed dual of (5):

hK
U = max

(y0,y)
(y0 + a0)b0 + (y + a)b − z

s.t. z ≥ y0u
k
0 + yuk k = 0, . . . , K − 1

(y0, y) ≤ −(a0, a)

Let the solution be
(
yK
0 , yK

)
.

Step 2. Solve the Lagrangian subproblem:

inf
x

l′(x, yK
0 , yK) = −max

x,u0,u
yK
0 u0 + yKu

s.t. f(x) ≤ u0

g(x) ≤ u
x ∈ X

Let the solution be (xK , uK
0 , uK). Note that (y0, y) ≤ 0 implies that

uK
0 = f(xK) and uK = g(xK).

Step 3. Augment and solve the relaxed primal problem:

hK
L = min

(u0,u)
a0u0 + au

s.t. yk
0u0 + yku + inf

x
l′(x, yk

0 , yk) ≤ 0

k = 1, . . . , K
(u0, u) ≤ (b0, b)

Step 4. Termination check: If hK
U − hK

L ≤ tolerance, stop; otherwise, set
K = K + 1 and goto Step 1.

The reader will notice that the Algorithm SimpleReduce reduces to the stan-
dard Lagrangian lower bounding procedure for problem T when (a0, a) = (1, 0).
In this case, y0 can be fixed to −1 and the relaxed master problem is equiva-
lent to maintaining the maximum bound obtained from the solved Lagrangian
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subproblems: maxk=1,...,K infx∈X l(x, y). Similarly, Algorithm SimpleReduce
reduces to the standard Lagrangian lower bounding procedure for the problem:

(Rgi) min gi(x)
s.t. g(x) ≤ b

f(x) ≤ b0

x ∈ X ⊆ R
n

when ai = 1 and aj = 0 for all j �= i. Since the Lagrangian subproblem is
independent of (a0, a) and homogenous in (y0, y), the cuts z ≥ y0u

k
0 + yuk and

yk
0u0 + yku + infx l(x, yk

0 , yk) ≤ 0 derived during the solution of the Lagrangian
relaxation at any node in a branch-and-bound tree can be used to hot-start the
Lagrangian procedure that determines lower bounds for gi(x) as long as (yk

0 , yk)
can be scaled to be less than or equal to (a0, a). Note that it may not always
be possible to solve the Lagrangian subproblem efficiently, which may itself be
NP-hard. In such cases, any suitable relaxation of the Lagrangian subproblem
can be used instead to derive a weaker lower bound on h(u0, u).

4.2 Applications to Polyhedral Sets

We shall, as an example, specialize some of the results of the previous section to
polyhedral sets using linear programming duality theory. Consider the following
dual linear programs:

(PP) min cx

s.t. Ax ≤ b
Duality⇐⇒

(PD) max λb

s.t. λA = c

λ ≤ 0

where A ∈ R
n×m. Construct the following perturbation problem and its dual:

(PU) min ui

s.t. Ax ≤ b + eiui

cx ≤ U

Duality⇐⇒

(PR) max rb + sU

s.t. rA + sc = 0

−rei = 1

r, s ≤ 0.

Note that the optimal objective function value of PU provides a lower bound
for Aix− bi assuming that U is an upper bound on cx. In particular, PU is the
range-reduction problem defined in (5) when h(u0, u) = ui. Then, PR models
the dual of PU which is equivalent to the following Lagrangian relaxation:

max
y≥0,yi=1

min
x∈X

y(Ax − b) + bi + y0(cx − U)

In this case, l′(x, yk
0 , yk) = y0cx + yAx and moving the terms independent of x

outside the inner minimization we obtain the Lagrangian relaxation:

max
y≥0,yi=1

−y0U − yb + bi + min
x∈X

y0cx + yAx
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Algorithm SimpleReduce then reduces to the outer-approximation procedure to
solve the Lagrangian dual (see [4]). Let (r, s) be a feasible solution to the above
problem. Then, either s = 0 or s < 0.

• Case 1: s < 0. The set of solutions to (PR) are in one-to-one correspon-
dence with the solutions to (PD) by the following relation:

s = 1/λi, r = −λs.

• Case 2: s = 0.

(PRM) max rb

s.t. rA = 0

−rei = 1

r ≤ 0

Duality⇐⇒

(PUM) min ui

s.t. Ax ≤ b + eiui.

The dual solutions are in direct correspondence with those of (PUM).

Note that PR and PD both arise from the same polyhedral cone:

rA + sc = 0

r, s ≤ 0

with different normalizing planes s = −1 and −rei = 1. Therefore, apart from
the hyperplane at infinity, the correspondence between both sets is one-to-one.
As a result, dual solutions of PP (not necessarily optimal) can be used to derive
lower bounds for PU. The dual solutions are useful in tightening bounds on the
variables when some or all of the variables are restricted to be integer. Also,
when the model includes additional nonlinear relations, the domain-reduction
is particularly useful since relaxation schemes for nonlinear expressions often
utilize variable bounds as was done in Section 3.

4.3 Relation to Earlier Works

4.3.1 Optimality-Based Range Reduction

The following result is derived as a simple corollary of Algorithm SimpleReduce.

Theorem 4.1. Suppose the Lagrangian subproblem in (4) is solved for a certain
dual multiplier vector y ≤ 0. Then, for each i such that yi �= 0, the cut gi(x) ≥(
b0 − infx l(x, y)

)
/yi does not chop off any optimal solution of T.

Proof. A lower bound on gi(x) is obtained by solving the relaxed primal problem
in Step 3 of Algorithm SimpleReduce with (a0, a) = −ei, where ei is the ith

column of the identity matrix. It is easily seen that the optimal solution sets
uj = bj for j �= i and the optimal solution value is

(
b0 − infx l(x, y)

)
/yi.
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We show next that simple applications of the above result produce the range-
reduction schemes of [31, 43]. Assuming that appropriate constraint qualifica-
tions hold, the strong duality theorem of convex programming asserts that the
optimal objective function value, L, of a convex relaxation with optimal dual
multipliers, y∗, is less than or equal to the optimal value of the corresponding
Lagrangian subproblem, infx l(x, y∗). The cut

gi(x) ≥ (U − L)/y∗
i

proposed in Theorem 2 of [31] is therefore either the same as derived in Theo-
rem 4.1 or weaker than it. Theorem 3 and Corollaries 1, 2, and 3 in [31] as well
as the marginals-based reduction techniques in [41, 20] and the early integer
programming literature [27] follow similarly. Also similarly, follows Corollary
4 in [31] which deals with probing , the process of temporarily fixing variables
at their bounds and drawing inferences based on range reduction. More gen-
eral probing procedures are developed in [38] as a consequence of the domain
reduction strategy of Section 4.1.

In [43], a lower bound is derived on the optimal objective function of T
by solving an auxiliary contraction problem. We now derive this result as a
direct application of Theorem 4.1. Consider an auxiliary problem constrained
by f(x) − U ≤ 0 with an objective function fa(x), for which an upper bound
fu

a is known. Let la(x, y) be the Lagrangian function for the auxiliary problem.
Consider a dual solution, ya, with a positive dual multiplier, yaf , corresponding
to f(x)−U ≤ 0. By Theorem 4.1, the following cut does not chop off an optimal
solution:

yaf

{
f(x) − U

} ≤ fu
a − inf

x
la(x, y).

Using the auxiliary contraction problem below:

min xi

s.t. g(x) ≤ 0

f(x) − U ≤ 0

x ∈ X ⊆ R
n,

Theorem 3, Theorem 4, Corollary 1, and Corollary 2 of [43] follow immediately.

4.3.2 Feasibility-Based Range Reduction

Consider the constraint set
∑n

j=1 aijxj ≤ bi, i = 1, . . . , m. Processing one
constraint at a time, the following variable bounds are derived:



xh ≤ 1
aih


bi −

∑
j �=h

min
{
aijx

u
j , aijx

l
j

}
 , aih > 0

xh ≥ 1
aih


bi −

∑
j �=h

min
{
aijx

u
j , aijx

l
j

}
 , aih < 0

(6)
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where xu
j and xl

j are the tightest upper and lower bounds available for xj at the
current node. This procedure was referred to as “feasibility-based range reduc-
tion” in [35] and has been used extensively in mixed-integer linear programming
(cf. [34]). We now derive this scheme as a consequence of the duality framework
of Section 4.1. Note that this feasibility-based range reduction may be viewed
as a rather simple application of Fourier-Motzkin elimination to the following
problem—obtained by relaxing all but the ith constraint:

min xh

s.t. aix ≤ bi

x ≤ xu

x ≥ xl.

Assuming aih < 0 and xh is at not at its lower bound, the optimal dual solution
can easily be gleaned from the above linear program to be:

y = 1/aih

rj = −max
{
aij/aih, 0

}
for all j �= h

sj = min
{
aij/aih, 0

}
for all j �= h

rh = sh = 0

where y, rj , and sj are the dual multipliers corresponding to aix ≤ bi, xj ≤ xu
j ,

and xj ≥ xl
j , respectively. Then, the following relaxed primal master problem

is constructed:

min{xh | −xh + yu + rv − sw ≤ 0, u ≤ b, v ≤ xu, w ≥ xl}. (7)

Consequently, the bounds presented in (6) follow easily from (7).

4.4 New Range Reduction Procedures

4.4.1 Duality-based Reduction

When a relaxation is solved by dual ascent procedures such as dual Simplex or
Lagrangian relaxations, dual feasible solutions are generated at every iteration
of the algorithm. These solutions can be maintained in a set, S, of solutions
feasible to the following system:

rA + sc = 0

r, s ≤ 0

As described in Section 4.2, the feasible solutions to PD as well as PR belong
to the polyhedral cone defined by the above inequalities. Whenever a vari-
able bound is updated as a result of partitioning or otherwise, or a new upper
bounding solution is found for the problem, new bounds on all problem variables
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are obtained by evaluating the objective function of PR—with the appropriate
perturbation—using the dual solutions stored in S.

In fact, if the matrix A also depends on the bounds of the variables as is
the case when nonlinear programs are relaxed to linear outer-approximations
(see Section 3) then a slightly cleverer scheme can be employed by treating the
bounds as “easy” constraints and including them in the Lagrangian subproblem.
Consider, for example, a linear relaxation which takes the following form:

min c(xL, xU )x

s.t. l(xL, xU ) ≤ A(xL, xU )x ≤ u(xL, xU ) (8)

xL ≤ x ≤ xU

Assume that (8) contains the objective function cut c(xL, xU )x ≤ U . Construct
a matrix Π, whose each row is a vector of dual multipliers of (8) (possibly from
the set S described above). Feasibility-based tightening is done on the surrogate
constraints generated by pre-multiplying the linear constraint set with this Π
matrix. Clearly, there exists a vector π of dual multipliers that proves the best
bound which can be derived from the above relaxation. The feasibility-based
range reduction is a special case of duality-based tightening when Π is chosen
to be the identity matrix. The marginals-based range reduction is a special case
of the proposed duality-based range-reduction where the optimal value dual
solution is augmented with −1 as the multiplier for the objective function cut.

4.4.2 Learning Reduction Heuristic

In order to guarantee exhaustiveness, most rectangular partitioning schemes
resort to periodic bisection of the feasible space along each variable axis. Let
us assume that, after branching, one of the child nodes turns out to be inferior.
Then, it is highly probable that a larger region could have been fathomed if
a proper branching point was chosen initially. In cases of this sort, a learning
reduction procedure can introduce an error-correcting capability by expanding
the region that is provably inferior. In particular, consider a node N where the
following relaxation is generated:

min
x

(
fN (xL, xU )

)
(x)

s.t.
(
gN (xL, xU )

)
(x) ≤ 0

xL ≤ x ≤ xU

where
(
fN (xL, xU )

)
(·) and

(
gN (xL, xU )

)
(·) are convex functions. We assume

that the relaxation strategy is such that, when a variable is at its bound, the
dependent functions are represented exactly. Consider now the partitioning of
node N into N1 and N2 by branching along xj at xB

j . Define

xa = [xU
1 , . . . , xU

j−1, x
B
j , xU

j+1, . . . , x
U
n ]
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and
xb = [xL

1 , . . . , xL
j−1, x

B
j , xL

j+1, . . . , x
L
n ].

N1 and N2 are constructed so that xL ≤ x ≤ xa for all x ∈ N1 and xb ≤ x ≤ xU

for all x ∈ N2. Assume further that node N1 is found to be inferior and y∗ is
the vector of optimal dual multipliers using the relaxation generated at node
N1. The constraint x ≤ xB

j is assumed to be active in the solution of N1.
If we can construct the optimal dual solution y∗

NP
2

for the following program:

(PN2) min
x

(
fN2(x

b, xU )
)
(x)

s.t.
(
gN2(x

b, xU )
)
(x) ≤ 0

xb ≤ x ≤ xU

xj ≥ xB
j ,

then we can apply the techniques developed in earlier sections for domain re-
duction. Construction of y∗

NP
2

is expensive since it involves lower bounding the
nonconvex problem at N2. However, when the relaxation technique has certain
properties, y∗

NP
2

can be computed efficiently. We assumed that the relaxations

at nodes N1 and N2 are identical when xj = xB
j and that x ≤ xB

j is active.
These assumptions imply that not only is the optimal solution of the relaxation
at N1 optimal to PN2 , but the geometry of the KKT conditions at optimality
is identical apart from the activity of the constraint xj ≤ xB

j . Therefore, it is
possible to identify the set of active constraints for PN2 . Once this is done, y∗

NP
2

can be computed by solving a set of linear equations. In fact, the only change
required to y∗

N1
is in the multiplier corresponding to xj ≤ xB

j .
There is, however, a subtle point that must be realized while identifying the

set of active constraints. A function r(x) in the original nonconvex program may
be relaxed to max{r1(x), . . . , rk(x)} where each ri(·) is separable and convex.
In this case, the function attaining the supremum can change between the nodes
N1 and N2. We illustrate this through the example of the epigraph of a bilinear
function z ≤ xjw. We relax z using the bilinear envelopes as follows [25]:

z ≤ min{xL
j w + wUxj − xL

j wU , xU
j w + wLxj − xU

j wL}.
In particular, at node N1:

z ≤ min{xL
j w + wUxj − xL

j wU , xB
j w + wLxj − xB

j wL}
and at node N2:

z ≤ min{xB
j w + wUxj − xB

j wU , xU
j w + wLxj − xU

j wL}.

When x = xB
j in the relaxation at node N1, the dominating constraint is z ≤

xB
j w + wLxj − xB

j wL whereas, in PN2 , the dominating constraint is z ≤ xB
j w +

wUxj−xB
j wU . If µ is the dual multiplier for constraint z ≤ xB

j w+wLxj−xB
j wL
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in y∗
N1

, then µ should be the dual multiplier of z ≤ xB
j w + wUxj − xB

j wU in
y∗

NP
2

. Adding (wU − wL)(xB
j − xj) ≥ 0, yields the desired constraint:

z ≤ xB
j w + wLxj − xB

j wL.

Thus, it is possible that the multiplier corresponding to the upper bounding
constraint xj ≤ xB

j increases when a dual solution is constructed for PN2 from
a dual solution of N1. Such an increase would not occur if the only difference
between the relaxations at N1 and N2 is the bound on xj , which is most often
the case with relaxations of integer linear programs.

5 Node Partitioning Schemes

Rectangular partitioning—to which we restrict our attention—splits the feasible
region, at every branch-and-bound iteration, into two parts by intersecting it
with the half-spaces of a hyperplane orthogonal to one of the coordinate axes.
In order to define this hyperplane uniquely, the coordinate axis perpendicular
to the hyperplane and the intercept of the hyperplane on the axis must be
specified. The choice of the coordinate axis and the intercept are referred to as
the branching variable and branching point selection, respectively.

5.1 Branching Variable Selection

The selection of the branching variable determines, to a large extent, the struc-
ture of the tree explored and affects the performance of a branch-and-bound
algorithm significantly. We determine the branching variable through “violation
transfer.” First, violations of nonconvexities by the current relaxation solution
are assigned to problem variables. Then, the violations are transferred between
variables utilizing the functional relationships in the constraints and objective.
Finally, violations are weighted to account for branching priorities and the po-
tential relaxation improvement after branching, and a variable leading to the
maximum weighted violation is chosen for branching.

Algorithm Relax of Section 3 reformulates the general problem such that
multi-dimensional functions are replaced with either univariate functions or bi-
linear functions. We provide branching rules for both cases in this section.

Consider a variable y that depends on xj through the relation y = f(xj). Let
(x∗

j , y
∗) denote the value attained by (xj , y) in the relaxation solution. Define

Xy
j = f−1(y∗). The violation of xj is informally defined to be the length of the

interval obtained as the intersection of [xL
j , xU

j ] and the smallest interval around
x∗

j which contains, for every variable y dependent on x∗
j , an xy

j ∈ Xy
j .

The violations on all variables are computed in a two-phase process, the
forward-transfer phase and the backward-transfer phase. In the forward trans-
fer, the violations on the dependent variables are computed using the relaxation
solution values for the independent variables using all the introduced relations.
In the backward-transfer phase, these violations are transmitted back to the
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independent variables. For each dependent variable y we derive an interval
[ylv, yuv]. Similarly, we derive an interval [xlv

j , xuv
j ] for xj .

Algorithm ViolationTransfer

Step 0. Set ylv = yuv = y∗. If xj is not required to be integer-valued, set
xlv

j = xuv = x∗
j . Otherwise, set xlv

j = �x∗
j� and xuv

j = �x∗
j�.

Step 1. Forward transfer:

ylv = max
{
yL,min{ylv, f(xlv

j ), f(xuv
j )}}

yuv = min
{
yU ,max{f(xlv

j ), f(xuv
j ), yuv}}

Step 2. Backward transfer:

xlv
j = max

{
xL

j ,min{xlv
j , f−1(ylv), f−1(yuv)}}

xuv
j = min

{
xU

j ,max{f−1(ylv), f−1(yuv), xuv
j }}

Step 3. vy = yuv − ylv, vxj
= xuv

j − xlv
j .

For bilinear functions, the violation transfer scheme is more involved. We
refer the reader to [38] for details.

Define
xl = [x∗

1, . . . , x
∗
j−1, x

lv
j , x∗

j+1, . . . , x
∗
n]

and
xu = [x∗

1, . . . , x
∗
j−1, x

uv
j , x∗

j+1, . . . , x
∗
n].

Consider the Lagrangian function l(x, π) = f(x)−πg(x). Let f l and fu, gl and
gu be the estimated minimum and maximum values of f and g, respectively,
over [xl, xu]. Also, let π∗ denote the set of marginals obtained at the relaxation
of the current node. Then, the weighted violation of xj is computed as

βxj

{
fu − f l +

m∑
i=1

π∗
i

(
max{0, gl} − gu

)
+ αxj

vxj

}

where αxj
and βxj

are appropriately chosen constants (branching priorities). In
the case of linear relaxations of the form min{cx | Ax ≤ b}, the above may be
approximated as:

βxj

{
|cj |vxj

+
m∑

i=1

|π∗
i Aij |vxj

+ αxj
vxj

}
.

The branching variable is chosen to be the one with the largest weighted viola-
tion.
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5.2 Branching Point Selection

Following the choice of the branching variable, the branching point is typically
chosen by an application of the bisection rule, ω-rule, or their modified versions
[31, 35, 38]. In Section 3.2, we showed that, for any univariate convex function,
the gap between the over- and under-estimators reduces as O(1/n2), provided
that the branching point is chosen via the interval bisection rule, slope bisection
rule, projective rule, maximum error rule, chord rule, or the angular bisection
rule. The branch-and-bound algorithm operates in a manner similar to the
sandwich algorithm as it identifies and subsequently refines regions where the
function is desired to be approximated more closely. However, in branch-and-
bound, those regions are chosen where the lower bounding function attains the
minimum value. In contrast, in the sandwich algorithm, the error measure
between the function and its approximating functions is used for the selection
of the interval for further refinement. Still, in the course of our branch-and-
bound, the approximation error of a function reduces by O(1/n2). Here, n is
the number of times partitioning was done along the variable axis corresponding
to the independent variable in all ancestors of the current node.

As an alternative strategy, a bilinear program for branching point selection
is given in [38]. For a given branching variable, this formulation identifies a
branching point that locally maximizes the improvement in the lower bound for
the current node.

6 Tree Navigation and Expansion

At every iteration, branch-and-bound chooses a node from the list of open nodes
for processing. The choice of this node governs the structure of the branch-and-
bound tree explored before convergence is attained. This choice also determines
to a large extent the memory requirements of the algorithm.

The node selection rule we employ is a composite rule based on a priority
ordering of the nodes. Priority orderings based on lower bound, violation, and
order of creation are dynamically maintained during the search process. The
violation of a node is defined as the summation of the errors contributed by
each variable of a branch-and-bound node (see Section 5.1). The default node
selection rule switches between the node with the minimum violation and the
one with least lower bound. When memory limitations become stringent, we
temporarily switch to the LIFO rule.

While solving large problems using branch-and-bound methods, it is not un-
common to generate a large number of nodes in the search tree. Let us say
that the number of open nodes in the branch-and-bound tree at a given point
in time is L. The naive method of traversing the list of nodes to select the node
satisfying the priority rule takes Θ(L) time. Unlike most other procedures con-
ducted at every node of the branch-and-bound tree, the node selection process
consumes time that is super-polynomial in the size of the input. It therefore
pays to use more sophisticated data structures for maintaining priority queues.

25



In particular, we maintain the priority orderings using the heap data struc-
ture for which insertion and deletion of a node may be done in O(log L) time
and retrieval of the node satisfying the priority rule takes only O(1) time. In
particular, for combinatorial optimization problems, the node selection rule is
guaranteed to spend time linear in the size of the input.

Once the current node has been solved and a branching decision has been
taken, the branching decision is stored and the node is partitioned only when it
is chosen subsequently by the node selection rule. This approach is motivated
by two reasons. First, it results in half the memory requirements as compared to
the case in which the node is partitioned immediately after branching. Secondly,
postponement offers the possibility of partial optimization of a node’s relaxation.
For example, consider a relaxation that is solved using an outer-approximation
method based on Lagrangian duality, Benders decomposition, or a dual ascent
procedure such as bundle methods. In such cases, it may not be beneficial to
solve the relaxation to optimality if, after a certain number of iterations, a lower
bound is proven for this node which significantly reduces the priority of this
node. When this node is picked again for further exploration, the relaxation
may be solved to optimality. A similar scheme is followed if range reduction
leads to significant tightening of the variable bounds.

7 Implementation and Computational Results

The Branch-and-Reduce Optimization Navigator (BARON) [32] is an imple-
mentation of our branch-and-bound algorithm for global optimization problems.
BARON is modular with problem-specific enhancements (modules) that are iso-
lated from the core implementation of the branch-and-bound algorithm.

BARON’s core consists of nine major components: preprocessor, navigator,
data organizer, I/O handler, range reduction utilities, sparse matrix utilities,
solver links, automatic gradient and function evaluator, and debugging facilities:

• The navigator—the principal component of BARON—coordinates the tran-
sitions between the preidentified computation states of a branch-and-
bound algorithm, including node preprocessing, lower bounding, range
reduction, upper bounding, node postprocessing, branching, and node se-
lection. The execution of the navigator can be fine-tuned using a wide
variety of options available to the user. For example, the user may choose
between various node selection schemes like LIFO, best bound, node vi-
olation, and other composite rules based on these priority orders. The
navigator calls the module-specific range reduction, lower bounding, up-
per bounding, feasibility checker, and objective function evaluator during
the appropriate phases of the algorithm.

• The data organizer is tightly integrated with the navigator and maintains
the branch-and-bound tree structure, priority queues, and bases informa-
tion to hot-start the solver at every node of the search tree. These data
structures are maintained in a linear work array. Therefore, the data

26



organizer provides its own memory management facilities (allocator and
garbage collector) which are suited to the branch-and-bound algorithm.
Data compression techniques are used for storing bounded integer arrays
like the bounds of integer variables and the LP basis. Each module is
allowed to store its problem-specific information in the work-array before
the computation starts at every node of the branch-and-bound tree.

• The I/O handler provides the input facilities for reading in the problem
and the options that affect the execution of the algorithm. A context-
free grammar has been developed for the input of factorable nonlinear
programming problems where the constraint and objective functions are
recursive sums and products of univariate functions of monomials, powers,
and logarithms. In addition, each module supports its own input format
through its input routine. Output routines provide the timing details
and a summary of the execution in addition to the solutions encountered
during the search process. The output routines may also be instructed
to dump detailed information from every step of the branch-and-bound
algorithm for debugging purposes.

• The range reduction facilities include feasibility-based tightening, marginals-
based range reduction, probing, duality-based tightening schemes, and in-
terval arithmetic utilities for logarithmic, monomial, power, and bilinear
functions of variables.

• BARON has interfaces to various solvers like OSL, CPLEX, MINOS,
SNOPT, and SDPA. BARON also provides automatic differentiation rou-
tines to interface to the nonlinear solvers. The interfaces save the requisite
hot-starting information from the solver and use it at subsequent nodes
in the tree. Depending on the degree of change in the problem fed to the
solver, an appropriate update scheme is automatically chosen by each in-
terface. The interfaces also provide the I/O handler with the solver-specific
information that may be desired by the user for debugging purposes.

In addition to the core component, the BARON library includes solvers for
mixed-integer linear programming, separable concave quadratic programming,
indefinite quadratic programming, separable concave programming, linear mul-
tiplicative programming, general linear multiplicative programming, univariate
polynomial programming, 0−1 hyperbolic programming, integer fractional pro-
gramming, fixed-charge programming, power economies of scale, mixed-integer
semidefinite programming, and factorable nonlinear programming. In partic-
ular, what we refer to as the factorable NLP module of BARON is the most
general of the modules and addresses the solution of factorable NLPs with or
without additional integrality requirements. Without any user intervention,
BARON constructs linear/nonlinear relaxations and solves relaxations while at
the same time performing local optimization using widely available solvers.

Extensive computational experience with the proposed algorithm on over 500
problems is reported in [38]. Below, we present computational results on three
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BARON SCQP BARON SCQP BARON NLP
no probing probing no probing

Problem m n Ttot Ntot Nmem Ttot Ntot Nmem Ttot Ntot Nmem

FP7a 10 20 0.17 77 5 0.28 71 4 1.38 51 6
FP7b 10 20 0.19 93 7 0.25 59 4 1.38 51 6
FP7c 10 20 0.19 81 7 0.28 71 4 1.29 45 6
FP7d 10 20 0.19 81 4 0.25 65 4 1.26 49 6
FP7e 10 20 0.38 197 16 0.56 141 12 8.87 339 30
RV1 5 10 0.04 35 3 0.04 11 3 0.29 29 3
RV2 10 20 0.16 103 7 0.20 37 5 1.37 65 8
RV3 20 20 0.40 233 15 0.28 73 10 3.22 141 11
RV7 20 30 0.32 155 6 0.23 41 4 3.63 109 7
RV8 20 40 0.47 187 13 0.45 58 8 3.1 81 8
RV9 20 50 1.25 526 38 1.19 184 31 15.9 331 34
M1 11 20 0.36 189 3 0.61 151 3 2.11 99 7
M2 21 30 0.93 291 3 1.67 233 2 5.57 159 2

Table 1: Computational results for small SCQPs

representative classes of problems: a purely continuous nonlinear class, a purely
integer nonlinear class, and miscellaneous mixed-integer nonlinear programs.
The machine on which we perform all of our computations is a 332 MHz RS/6000
Model 43P running AIX 4.3 with 128MB RAM and a LINPACK score of 59.9.
For all problems solved, we report the total CPU seconds taken to solve the
problem (Ttot), the total number of nodes in the branch-and-bound tree (Ntot),
and the maximum number of nodes that had to be stored in memory during
the search (Nmem). Unless otherwise noted, computations are carried out with
an absolute termination tolerance (difference between upper and lower bounds)
of εa = 10−6. BARON converged with a global optimal solution within this
tolerance for all problems reported in this paper.

7.1 Separable Concave Quadratic Programs (SCQPs)

In Table 1, we present computational results for the most difficult of the sepa-
rable concave quadratic problems in [35]. In this table, m and n, respectively,
denote the number of constraints and variables of the problems solved. We use
the BARON SCQP module with and without probing and the NLP module with-
out probing to solve these problems. As seen in this table, our general purpose
factorable NLP module takes approximately the same number of branch-and-
bound iterations to solve the problems as the specialized SCQP module.

The problems tackled in Table 1 are relatively small. We next provide com-
putational results on larger problems that are generated using the test problem
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Algorithm GOP96 [42] GOP/MILP [42] BARON SCQP
Computer HP9000/730 HP9000/730 RS6000/43P

Ttot Ttot Ttot Ntot Nmem

m n k avg avg min avg max min avg max min avg max
50 50 50 0.12 0.12 0.10 0.10 0.10 1 2 3 1 1 2
50 50 100 0.15 0.14 0.10 0.22 0.30 1 13 24 1 5 9
50 50 200 6.05 1.57 0.30 0.70 1.60 9 51 170 5 17 45
50 50 500 — 14.13 1.00 1.86 2.80 21 68 108 9 16 30
50 100 100 0.22 1.37 0.30 0.72 1.10 20 62 127 6 23 48
50 100 200 0.36 11.98 0.50 1.48 3.30 17 98 246 4 20 39

100 100 100 0.31 0.31 0.40 0.46 0.50 3 7 14 2 4 8
100 100 200 0.38 0.36 0.70 0.78 0.90 14 26 37 5 8 11
100 100 500 — 80.03 1.61 4.40 15.2 43.7 740 2314 44 161 425
100 150 400 — 180.2 1.20 18.8 82.6 8 927 4311 3 163 721

Table 2: Comparative computational results for large SCQPs

generator of [28]. The problems generated are of the form:

min
1
2
θ1

n∑
j=1

λj(xj − ω̄j)2 + θ2

k∑
j=1

djyj

s.t. A1x + A2y ≤ b

x ≥ 0, y ≥ 0

where x ∈ R
n,λ ∈ R

n, ω̄ ∈ R
n, y ∈ R

k, d ∈ R
k, b ∈ R

m, A1 ∈ R
m×n,

A2 ∈ Rm×k, θ1 = −0.001, and θ2 = 0.1. The results of Table 2 were obtained by
solving 5 randomly generated instances for every problem size. The algorithms
compared in Table 2 used a relative termination tolerance of εr = 0.1. Our
algorithm is up to an order of magnitude faster than that of [42] for large
problems.

7.2 Cardinality Constrained Hyperbolic Programming

Cardinality constrained hyperbolic programs are of the following form:

(CCH) max
m∑

i=1

ai0 +
∑n

j=1 aijxj

bi0 +
∑n

j=1 bijxj

s.t.
n∑

j=1

xj = p

n∑
j=1

bi0 + bijxj > 0 i = 1, . . . , m

xj ∈ {0, 1} j = 1, . . . , n,
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where a ∈ R
n+1 and b ∈ R

n+1 for i = 1, . . . , m, p ∈ Z, 0 ≤ p ≤ n.
As we detail in [39], we can convert the pure nonlinear integer program CCH

to an MILP using the reformulation strategy shown below where vij = gixj is
enforced by using the bilinear envelopes of [25]:

(R7) max
m∑

i=1

gi

s.t.
n∑

j=1

xj = p

n∑
j=1

vij = gip i = 1, . . . , m

bi0gi +
n∑

j=1

bijvij = ai0 +
n∑

j=1

aijxj i = 1, . . . , m

vij ≤ gu
i xj i = 1, . . . , m; j = 1, . . . , n; bij < 0

vij ≤ gi + gl
ixj − gl

i i = 1, . . . , m; j = 1, . . . , n; bij < 0
vij ≥ gi + gu

i xj − gu
i i = 1, . . . , m; j = 1, . . . , n; bij > 0

vij ≥ gl
ixj i = 1, . . . , m; j = 1, . . . , n; bij > 0

x ∈ {0, 1}n

We derive tight bounds on gi using an algorithm devised by Saipe in [33]. Then,
we use BARON to carry out the above reformulation at every node of the tree
to solve CCH and compare the performance of our algorithm against that of
CPLEX on the MILP. As Table 3 shows, range contraction and reformulation
at every node results in a much superior approach.

Problem CPLEX 6.0 BARON HYP
m n p Ttot Ntot Nmem Ttot Ntot Nmem

5 20 12 1.07 40 39 1.9 11 4
10 20 8 105 1521 1518 70.5 234 54
10 20 12 7.4 96 95 11.2 31 7
20 30 14 22763 47991 47076 1811 1135 216
20 20 12 207 666 632 83 85 18
20 30 16 17047 38832 36904 1912 1353 256
5 50 25 19372 506225 184451 2534 6959 1230
5 50 27 — — — 1803 5079 893

“—” in this table indicates a problem for which
CPLEX did not converge after a day.

Table 3: Computational results for CCH

7.3 Mixed-Integer Nonlinear Programs from minlplib

In this section, we address the solution of mixed-integer nonlinear programs. In
particular, we focus our attention on a collection of MINLPs from minlplib [8],
which provides complete model descriptions and references to original sources
for all problems solved in this section.
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The computational results are presented in Table 4 where, for each problem,
we report the globally optimal objective function value, the number of problem
constraints (m), the total number of problem variables (n), and the number of
discrete variables (nd), in addition to CPU and node information. Problems
nvs01 through nvs24 originate from [16] who used local solutions to noncon-
vex nonlinear programs at each node and conducted branch-and-bound on the
integer variables. Even though the problem sizes are small, the solutions we ob-
tained for problems nvs02, nvs14, nvs20, and nvs21 correspond to significantly
better objective function values than those reported in the original source of
these problems [16], demonstrating the benefits of global optimization.

Amongst the remaining problems of this table, one finds a nonlinear fixed-
charge problem (st e27), a reliability problem (st e29), a mechanical fixture
design problem (st e31), a heat exchanger network synthesis problem (st e35),
a pressure design problem (st e38), a truss design problem (st e40), a problem
from the design of just-in-time manufacturing systems (jit), and a particulary
challenging molecular design problem (primary).

8 Conclusions

The subject matter of this paper has been the development and implementation
of a global optimization algorithm for mixed-integer nonlinear programming.
Our algorithmic developments included a new outer-approximation scheme that
provides an entirely LP-based relaxation of MINLPs, a new theoretical frame-
work for domain reduction, and new branching strategies. Computational re-
sults with our branch-and-bound implementation in BARON demonstrated the
flexibility that such a computational model offers in solving MINLPs from a
variety of disciplines through an entirely automated procedure.
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