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ABSTRACT 

In this paper two improved versions of 
Genetic Clustering (GC) algorithm [1] are 
described. GC is a parallel global optimization 
algorithm that was designed in order to solve such 
parameter inverse problems in which an 
approximation of certain level sets (central parts 
of basins of attractions of local minimizers) is 
required. The approximation of these sets can be 
useful when some additional criteria of 
optimization are considered after main results of 
parameter identification are obtained. In spite of 
some good properties of GC, tests have shown 
that GC is not effective for problems with more 
than 4 dimensions. 

Two modifications of GC are proposed in 
order to overcome the dimensionality limitation. 
In the first modification clusters are remembered 
as ellipsoids. The second modification is based on 
the idea of cluster recognition with the use of 
Kohonen Self Organizing Maps (SOM) neural 
networks [2].  

 
INTRODUCTION 

One of sources of difficulties that are 
encountered in parameter inverse problems – 
apart of bad conditioning – is the existence of 
many solutions. The both mentioned properties 
make such problems to be ill posed. The paper 
focuses on parameter inverse problems that are 
formulated as global optimization tasks. 
Moreover, the algorithms that are considered are 
especially suitable for problems, in which an 
approximation of certain level sets (central parts 
of basins of attractions of local minimizers) is 
required. The approximation of these sets can be 
useful when some additional criteria of 
optimization are considered after main results of 
parameter identification are obtained. Such 
criteria can express in some way for instance the 

availability and/or the cost of materials. When 
one knows approximations of central parts of the 
basins he can give an approximate answer to the 
question: how much one can change the value of 
a parameter with “not too high“ change of the 
objective. 

A hybrid genetic parallel algorithm called GC 
(Genetic Clustering) was proposed in [1] in order 
to solve such problems. 

The GC strategy is inspired with clustering 
methods in global optimization [3], [4], [5] and 
genetic algorithms [6]. GC finds local minimizers 
and also gives additional information – central 
parts of basins of attraction of local minimizers 
can be approximated.  
 
PARALLEL GENETIC CLUSTERING (GC) 

The aim of original version of GC algorithm is 
to find all local minima that have adequately large 
basins of attraction with a sufficiently large 
objective variability. The algorithm also gives 
rough information about the basins. The basins 
(or their central parts) are approximated by sets of 
hypercubes – these sets will be called clusters. 
Additionally, the algorithm deals with large 
differences between values of local minima and 
also with large plateaus.  

An outline of a version of the GC algorithm is 
recalled below. Some asymptotic properties of the 
algorithm have been derived from the Markov 
theory of the Simple Genetic Algorithm [7]. The 
stop criterion has been justified in [8]. 

 
The genetic approach to clustering consists in 

implementing Simple Genetic Algorithm (SGA) 
in the global phase [3]. The idea of sampling by 
running SGA follows from the observation that 
genetic algorithms transform measures in a 
regular way so they deliver information about sets 
rather than about isolated points. In its nature 
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Genetic Algorithm constitutes a dynamical 
system that transforms measures. This fact allows 
us to expect good properties of genetic clustering, 
because density of measure contains information 
that is useful in clusters recognition. 

GC consists in four operations that are 
executed consecutively: genetic sampling, 
subclusters’ recognition, subclusters’ aggregation 
and fitness modification. These operations are 
performed in a loop until the global stop criterion 
is satisfied. 

 
The outline of the GC is as follows: 

1. Divide the feasible set D into p subdomains 
(each subdomain is divided into small 
hypercubes that constitute the grid). 

2. Set all subdomains to be "active". 
3. REPEAT 
Parallel in "active" subdomains: 

3.1 Generate initial population from uniform 
distribution. 

3.2 Evaluate fitness function f outside 
recognized clusters. 

3.3 Modify fitness function (f ← MAX on 
clusters).  

3.4 Steps of simple genetic algorithm (SGA) 
- evaluate new generations until the 
complex stop criterion is satisfied:  
a) subclusters can be recognized, or  
b) GA recognizes plateau outside 

known clusters (then the subdomain 
is set to be "passive").      

Subclusters are parts of clusters that can 
be recognized after point 3.4. 

3.5 Subclusters recognition. (output: new 
information about clusters and new 
"passive" subdomains). The seed of a 
subcluster is this cell (hypercube) of the 
grid that contains “the best” individual. 
All neighbor cells that contain more 
individuals than a certain threshold are 
added to the subcluster. One local 
method is started in each subcluster. 

3.6 Join “proper” subclusters into clusters. 
UNTIL all subdomains are "passive" OR 
satisfactory set of clusters is found. 

The Simple Genetic Algorith (SGA) was 
chosen in the genetic phase of GC, because it 
allowed us to obtain some theoretical results 
concerning stop criterion and asymptotic behavior 
of GC. 

The fitness modification results in repelling 
individuals from clusters (subclusters) that are 
already known. A single basin of attraction can be 
recognized in one or several steps of the loop. The 
domain D is divided into hypercubes of a volume 
θ . After the SGA is stopped, new subclusters can 
be detected by the analysis of density of 
individuals in the hypercubes. The hypercube that 
contains the best individual is selected as the seed 
of a new subcluster. Neighbor hypercubes, with 
the density of individuals tρρ >  ( tρ  is an 
arbitrary constant), are attached to the cluster. A 
rough local optimization method is started in each 
new subcluster and the result of this optimization 
is retained. If the local method that starts from a 
new subcluster ends in the already recognized 
cluster, then the subcluster is attached to the 
cluster. 

The stop criterion distinguishes two basic 
kinds of SGA behavior. The first one is that SGA 
“finds” clusters after few generations. The second 
one is that SGA converges to the uniform 
distribution of individuals. This corresponds to 
the recognition of a plateau (or areas where 
fitness has small variability) outside of the 
already known clusters. Other cases are treated as 
the situation when SGA does not fit to the 
particular problem and a refinement of SGA 
parameters is suggested. 
 
The stopping strategy is as follows: 

Check stagnation of a sequence of some estimator 
of probabilistic distribution density. If this 
criterion is satisfied, then check if an arbitrary 
number of hypercubes has the density of 
individuals below an arbitrary threshold tρ . If so, 
then begin clustering procedure, otherwise, check 
if individuals are uniformly distributed in D. 

In original version of GC each subdomain is 
divided into hypercubes that constitute a static 
grid. Each cell of the grid that belongs to some 
cluster “remembers” the number of the cluster. 
 
PROPERTIES OF GC 

Each population with a finite number of 
binary coded individuals can be identified with a 
vector which i-th coordinate stands for the 
occurrence frequency of the i-th individual in the 
population. Lets by r denote the length of an 
individual. The frequency vector belongs to the 
unit simplex Λ in ℜr-1. All possible populations of 
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the size n correspond to the finite subset Sn in Λ 
[6]. 

The finite population SGA constitutes a 
stationary Markov chain with states from Sn. By 
non-zero mutation it is ergodic, and there exists a 
weak limit 

n

w

k

k
n ππ →

∞→
 (1)   

of probability distributions k
nπ  on Sn in k-th 

generation [6]. 
In the case of an infinite population n=∝  SGA 

is a deterministic dynamic system with states in Λ 
governed by the genetic search operator Γ:Λ→Λ. 
The sequence of the limit probability distributions 

nπ  has a weak limit distribution *π  when the size 
of population goes to infinity n→∝. Moreover if 
Γ is focused, and K is its set of fixed points then 

1)(* =Kπ  [6]. 
Let  εF  the ε-envelope of the set K 

{ }εε <∈∃Λ∈= ),(;; yxdKyxF  (2)  

where d stands for the distance function in ℜr-1. 
 
Lemma [8]: 000 >∃>∀>∀ Nςε  such that  

)(nGNn ∃>∀  and )(nGk >∀  ( ) ςπ ε −> 1Fk
n . 

It means, that if the population is sufficiently 
large and a sufficiently large number of 
generations were performed, then the population 
is arbitrary close to the fixed one with the 
arbitrary large probability. 
 

It is assumed here that SGA parameters are so 
chosen that Γ is focused. In particular small but 
non-zero mutation is assumed. The desired form 
of the fixed points set is the finite collection of 
isolated points in Λ. Moreover each local 
minimizer of the fitness function is represented in 
K. It corresponds to the population highly 
concentrated on its neighborhood. 
Conjecture: only minimizers that have 
sufficiently large attractors (larger than the cell 
size) with the sufficiently high fitness variation 
can be found. 
 

Algorithm detects situation in which the 
population is sufficiently concentrated in 
attractors so that the density cluster recognition is 
possible. The state in which arbitrary rate of grid 
cells contain the assumed number (less than the 

average) of individuals can be handled as the 
local stop criterion. By Lemma the above 
situation is asymptotically highly probable if there 
exists at least one attractor out of the cluster 
union. 

The chart of modified fitness function 
becomes sufficiently flat at the end of 
computations. It corresponds to the unique fixed 
point of Γ at the center of Λ. 

If the sufficiently large population that starts 
from the center of Λ (uniform distribution of 
individuals) does not leave its neighborhood 
sufficiently long this implies that the center of Λ 
is the fixed point of Γ (with the arbitrary large 
probability). It corresponds to the situation, that 
the probability of finding new local minimizers is 
arbitrary small. 

One can say, that there is an analogy 
between the way in which mutation and crossover 
rates in SGA imply GC algorithm and the way in 
which the reduction phase implies DC and SL 
clustering algorithms described in [4], [5]. Both 
factors cause that some minima can be 
undetected. However, unlike the DC and SL with 
the reduction phase, the GA constitutes a filter 
that eliminates local minima with small fitness 
variability and shallow basins of attraction. GA 
strategy is also less sensitive on fitness values in 
local minimizers. Such filtering property can be 
useful in some cases. Another interesting feature 
of GC is such that it should be especially 
convenient for functions with large areas of small 
variability (areas “similar to” plateaus) which can 
be difficult for other methods. 

 
Genetic clustering offers some interesting 

properties like: 

• Approximation of basins for all “remarkable” 
local minimizers, 

• Filtering local minima with sufficiently small 
and “shallow” attractors, 

• Good time complexity in cases of objectives 
with large plateaus. 

• The global stop criterion of this strategy can 
be mathematically justified; this is rarely met 
in the case of strategies based on  evolutio-
nary algorithms. 

 
Tests described in [1], [8] have shown that GC 
can be effective in solving some inverse problems 
including for instance the problem of optimal 
pretraction design of a network structure made of 



4th International Conference on Inverse Problems in Engineering 
Rio de Janeiro, Brazil, 2002 

elastic unconnected fibers fastened at their ends to 
a square rigid frame.  

However, GC is not effective for problems 
with more than 4 dimensions. This follows from 
the representation of clusters – they are 
remembered as unions of small hypercubes that 
constitute a regular mesh in the domain of 
searches. 

In order to overcome the above limitation 
three modifications to the GC algorithm are 
proposed. They will be described in following 
sections. 
 
CLUSTERS REPRESENTATION WITH THE 
USE OF ELLIPSOIDS 

One of methods that can be proposed to 
overcome the problem with high dimensionality is 
to represent clusters by ellipsoids. The similar 
approach to clusters in global optimization is 
known in so called Density Clustering (DC) rule 
described in [3]. Some good properties of this 
version of DC are proven in [5]. The version of 
DC proposed by Rinnooy Kan and Timmer 
assumes that the reduction phase is applied, that 
means the initial sample is drawn from the 
uniform distribution over D and all sample points 
where the value of the objective function is below 
certain threshold are rejected [5]. A key 
assumption is that the objective function is well 
approximated by a quadratic function in 
neighborhoods of local minimizers. This implies 
that level sets (and clusters) are approximated by 
ellipsoids. Clusters are recognized iteratively in 
the following way: the seed point x  of a cluster is 
the result of local optimization started from the 
unclustered best point of the reduced sample (the 
unclustered point with the smallest value of the 
objective function). Lets by T0 denote the set { x } 
with the seed of the cluster. In consecutive steps 
next points of the sample are joined to the cluster. 
These points belong to subsets Ti of D, i=1,2,…, 

,...2,1,1 =⊂ + iTT ii . These subsets correspond to 

certain level sets. When 2Cf ∈ we can 
approximate level sets by  

( ) ( )( ){ }2| is
T

i rxxxHxxDxT ≤−−∈= , 
where H denotes hessian. 

All points that are within Ti which is 
described by a critical distance ( )xri  of the seed 
are joined to the cluster. The distance ( )21 , xxd  is 
defined as follows: for points 21 , xx  from a 
neighborhood of x   

( ) ( ) ( )( )[ ]2
1

212121 , xxxHxxxxd T −−= ,  
(an approximation of hessian can be 

obtained as a byproduct of quasi-Newton local 
methods). The parameter ( )xri  is increased 
stepwisely (with increasing i) until there is no 
unclustered point from the reduced sample within 

( )xri . Rinnooy Kan and Timmer gave the formula 
for the critical distance: 

( )

( ) ( )( ) ( )
d

kN
kN

DmxHi

xr

d

i
1

2
1

2
1 log

det1 2 �
�

�
�
�

� +Γ

=

− σπ
, (3)  

where �  is the Gamma function, m denotes 
the Lebesgue measure, N is the sample size and 
σ  is a constant. The whole process of sampling, 
reduction and clusters recognition is repeated (k 
denotes the number of the iteration) until a global 
stop criterion is satisfied. The formula (3) assures 
that the probability of erroneous termination of 
the cluster recognition procedure (the procedure is 
terminated too early, see [5] for details) in step i 
decreases polynomially fast with increasing k.  

This version of DC has also other advantages: 
• It has the property of asymptotic correctness 

in the sense that it finds global minimum 
with the probability 1 as k increases to 
infinity. 

• It is possible (and relatively easy) to apply 
bayesian stopping rules [3], [5]. 

The main drawbacks are obvious: 
• The success of the method depends on how 

well the assumed approximation is. 
• In fact each recognized cluster can contain 

more than one minimizer. 
 
Applying similar approach to GC can 

diminish disadvantages that are caused by high 
dimensionality. Clusters are parametrized by the 
central point and radiuses. Each point generated 
by SGA can be classified as belonging to some 
cluster or not, so the idea of fitness modification 
can be almost unchanged. 

The Bayesian stopping rules derived for DC 
cannot be applied directly to GC, because these 
rules assume uniform distribution of sample 
points. Also such good properties of DC as 
mentioned above cannot be directly attributed to 
GC. Analogous estimations for GC are still open 
problems, because it is difficult to predict and 
calculate the exact distribution of points after 
some genetic epochs.  
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Introducing such cluster representation to GC 
causes also that stopping strategy from GC should 
be modified. Under the assumption that clusters 
cannot intersect, the criterion “all subdomains are 
passive” in real cases should be removed. 

The critical distance ( )xri  has not the same 
meaning as in DC, but it can be probed as if the 
concentration of points would be caused by the 
reduction phase with sample points distributed 
uniformly. 
 
CLUSTERS RECOGNITION AND REPRE-
SENTATION WITH THE USE OF NEURAL 
NETWORKS  

Clustering methods are known also as 
methods that help in constructing categories or 
taxonomies. Special kind of neural networks – so 
called self-organizing maps SOM ([2] and 
bibliography cited there, [9]) were proposed as 
tools for exploratory data analysis, in particular 
for visualization of high dimensional data items. 

We propose to join GC with the mechanism 
analogous to SOM in order to recognize and 
remember clusters. Additionally the method can 
visualize clusters in some way. 

SOM is a special kind of neural network with 
competitive learning. Competitive learning is an 
adaptive process in which the neurons gradually 
became sensitive to different input categories [2], 
for instance clusters of points. After the process 
of learning is finished, neurons become 
specialized – they “represent” different categories 
(clusters). The mechanism which allows neurons 
to specialize bases on a competition among them. 
After an input data x arrives, this neuron wins 
which better “represents” the data. Moreover 
neurons can “learn data” (it will be described 
below). 

In SOM neurons are located on a discrete 
lattice that constitute the “self-organizing map”. 
During the learning process the winning neuron 
and its neighbors on the lattice are allowed to 
learn.  

The input data is represented in neurons by a 
vector wi (reference vector), whose components 
correspond to synaptic weights. Neurons can be 
indexed with k. The winner neuron is determined 
from the formula: 

( ) { }2
minarg i
i

wxxkk −==  (4) 

That means the winner is this neuron, whose 
reference vector is closest to the input data x. This 

neuron and its neighbors modify their reference 
vectors according do the formula (5).  

( ) ( ) ( ) ( ) ( )[ ]twtxthtwtw ikiii −+=+1  (5) 

Neighbors are determined by so called 
neighborhood kernel function kih . 

In the simplest case the neighborhood function 
can be defined as follows: 
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where ri and rj are vectors that represent 
location of neurons in the lattice, t  denotes time 
and λ is a constant. 

In general the neighborhood function can also 
be variable in time – “wide” at the beginning of 
the learning process and decreasing slowly during 
learning.  

In such approach clusters can be represented 
as reference vectors of neurons. The number of 
clusters does not need to be estimated in advance, 
the maximum number is equal to number of 
neurons. Learned neurons can categorize any 
further sample points to clusters. 

Additionally a method of visualization of 
clusters was proposed by Kohonen [9]. The 
distances between the reference vectors of 
neighbor neurons can visualize the clusters 
structure on a two dimensional map. Details can 
be found in [2]. 

 
TESTS 

The modified version of the GC in which 
clusters were represented as ellipsoids was tested 
on the same problems as the original version of 
GC (see [1], [8]). 

The representative results of these tests will be 
presented for the 8-dimensional global optimiza-
tion problem given by formula (9). Also the 16-
dimensional version was tested. The original 
version of GC was tested on the 2-dimensional 
case of this problem (see [1]). A parameter 
inverse problem with a similar cost function and 
analogous complexity was presented in [1]. It was 
optimal pretraction design of a network structure 
made of elastic unconnected fibers fastened at 
their ends to a square rigid frame. 
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The linearized and homogenized governing 
equation (see [1]): 

�
	



Ω=
Ω=−

∂
σ

on                      0
,in         )(div

w

qDw
 (8) 

 
delivers the relationship between the compliance 
w(x), pretraction tensor  

( ))(),()( 1221 xxdiagx σσσ = , and the transversal 
loading density q(x) on the frame area Ω. 

Given q try to find ( )2* )(Ω∈ ∞Lσ  such that 

)()( FF * σσ ≤  for all ( )2
)(Ω∈ ∞Lσ , and 

)(1
0* Ω∈ Hwσ  satisfies the state equation (8).  

The cost functional )(P)(E)(F σσσ += , where 

�Ω= dxDw
2

)(E σσσ  is the stored energy of the 

network, and )(σP  denotes a penalty that forces 
pretractions suitable for an available assortment 
of fibers. )(P σ  is a multimodal, nonnegative 
function which reaches zero for many admissible 
pretractions.  

Moreover, the following constraints are 
defined: Λ≤≤< 21 ,0 σσλ  in Ω, 

( )�Ω =+ Sdx21 σσ  with [ ]Λ∈ 2,2λS . 

 
 

Figure 1. Schema of the fiber construction 
 
 
The case of a balanced loading �Ω = 0qdx  was 

considered. It is proved that under above 
assumptions there is more than one minimizer 

*σ .  
 

The adequate test global optimization problem 
can be as follows (see [1]): 
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where RRf →8: , ix , i=1,…8 stand for the 
components of x. The formula 
( )..., =<> jbxANDax jj  stands for one, if the 

condition in brackets is true for all given j, 
otherwise it stands for zero.  

The constant c for 8-dimensional problem was 
equal to 0.00024. The domain of searches was a 
hypercube given by 

100100 <<− ix , i=1,…,8 (10) 
The function f has two distinct “deep” local 

minima and many “shallow” local minima. One 
of the deep minima is the global minimum. Two-
dimensional version of f is presented on Figure 1.  

It is assumed that clusters are well approxima-
ted by spheres. For the 8-dimensional case the 
population of SGA was 500. Each time twenty 
generations were processed before clustering was 
applied. Only two distinct “deep” minima were 
discovered and two clusters were located.  

 
 

Table 1. Results for 8-dim. problem 
 minimum 1 

f(x)=5.11 
minimum 2 

f(x)=2.61 
component 

of x 
value value 

1 -50,0 70,0 
2 -70,0 70,0 
3 -50,0 70,0 
4 -69,7 69,9 
5 -49,9 69,7 
6 -66,5 69,8 
7 -49,9 69,5 
8 -66,6 69,5 

x2

x1

σ 2(x1)

σ 1(x2)

q
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Figure 1. Two dimensional version of the 8-

dimensional test function. 
 
 

The scalar version of the algorithm was 
applied (without the division of the domain). 

The results are presented in Table 1. The 
radius of the cluster 1 (minimum 1) was 32.2, the 
radius for the cluster 2 (minimum 2) was 8.37. 
The number of function calls in local searches 
(MIGRAD method from the CERN ROOT-
Minuit package) was 1752 (968 for cluster 1 and 
784 for cluster 2). 

These results are much better than for original 
version of GC in which a great number of cells 
must be considered (this number depends of the 
chosen resolution). 

However, clusters are not recognized so 
precisely as in GC. They do not contain whole 
basins of attraction of local minima. Moreover, 
they also include parts of the domain that should 
not be included. A modification is required when 
one would like to use points from clusters. For 
each such point the value of the objective function 
should be calculated (in tests the maximum value 
of the objective function was also remembered for 
each cluster).  

When one wants to recognize clusters more 
precisely he or she can apply the original version 
of GC with the smaller domain that includes 
recognized cluster/clusters. 

Tests showed, that the proposed algorithm 
maintains the filter property.  

The maximum 16-dimensional case was tested 
successfully, however this is not the largest 
possible dimension. It seams, that problems can 
occur with the local strategies when the 
dimension is bigger than several tens. 

 
The version with neural network 

representation of clusters is being tested now.  
First tests made for two-dimensional case of 

the presented problem have shown that this 
method of clustering data in GC is costly in time 
and its superiority could be seen for problems 
with not too low dimensionality. One of ways to 
accelerate computations is to parallelize algorithm 
that simulates neural networks, another is to 
construct a hardware neural network. 
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