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Abstract

Coupled local minimizers (CLM) is a new method applicable to global optimization of functions with multiple local

minima. In CLM a cooperative search mechanism is set up using a population of local optimizers, which are coupled

during the search process by synchronization constraints. CLM is characterised by a relative fast convergence since the

local optimizers are gradient-based. The combination of both, the coupled parallel strategy and the fast convergence,

offers an efficient global optimization algorithm. In the paper the CLM method is described and is illustrated with a test

function. Due to the simultaneous and coupled search of a whole population of optimizers, CLM is able to find the

global minimum of the test function. Next, CLM is successfully applied to FE model updating using experimental

modal data. In an example the damage pattern of a reinforced concrete beam is identified.

� 2003 Published by Elsevier Ltd.
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1. Introduction

FE models are widely used to predict the dynamic

properties of structures. However, the results obtained

from a FE model often differ from the experimental

results obtained from a vibration test. This discrepancy

can be caused by both, errors in the experimental data

and errors in the analytical model. Despite the presence

of experimental errors, it is generally assumed that the

experimental data are a better representation of how the

structure behaves than are the predictions from the ini-

tial FE model. Consequently, the FE model is corrected
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in a FE model updating procedure, in which the un-

certain model properties are adjusted such that the nu-

merical predictions correspond as closely as possible to

the measured data [1,2]. In FE model updating using

experimental modal data, an optimization problem is

solved with an objective function defined by the dis-

crepancies between the numerical and experimental

modal parameters (natural frequencies and mode

shapes). The function can be quite irregular and can

contain several local minima. The updating variables are

the correction factors of the uncertain model properties.

The success of the application of the updating method

depends on the accuracy of the numerical FE model, the

quality of the modal test, the definition of the optimi-

zation problem and the mathematical capabilities of the

optimization algorithm. Conventional gradient-based

mathematical programming (MP) methods have a sat-

isfactory convergence rate, but they may get stuck into

any local minimum depending on the starting point [3–

mail to: anne.teughels@bwk.kuleuven.ac.be
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5]. The basic MP method is the Newton method which

makes use of the local curvature of the original function

to build an approximate quadratic model function. This

model function is calculated in each point of the iterative

process and minimized to obtain the consecutive point.

The process ends when the minimum is reached. Other

local optimization methods are quasi-Newton, conju-

gate gradient, sequential quadratic programming, aug-

mented Lagrangian method, etc.

The global search methods, such as genetic algorithms

(GA) [6] and simulated annealing (SA) [7], are in general

more robust, i.e. the choice of the starting position has

little influence on the final results, and they present a

better global behaviour [8]. However, both algorithms

share the disadvantage of requiring a large number of

function evaluations since they are based on probabi-

listic searching without the use of any gradient infor-

mation. They are both derived from analogies with

natural phenomena: GA with natural evolution and SA

with a thermodynamic cooling process.

Recently, a method of coupled local minimizers

(CLM) has been proposed by Suykens et al. [9,10].

Within the framework of optimization problems the

CLM method can be used for global optimization

problems. The method couples multiple local optimiza-

tion runs in order to create interaction and information

exchange between the search points. A relative fast

convergence is maintained, due to the derivative infor-

mation used in the local algorithms. Furthermore the

global minimum is expected to be found more easily,

since multiple search points are used simultaneously.

This paper deals with the CLM algorithm, which is

originally developed as a continuous-time optimization

method in the framework of neural networks [9,10]. This

paper proposes a new implementation of the algorithm,

such that it can be used as a numerical, iterative, global

optimization method that generates discrete steps in the

design space instead of continuous-time variations of the

design variables. The theoretical background of CLM

and its implementation are described in the paper and the

method is illustrated with a test function containing

multiple local minima. The advantages of CLM over

conventional local optimization algorithms (multistart

local optimization) are shown. Next, CLM is applied to

FEmodel updating, used for the damage identification of

a reinforced concrete beam. The damage identification is

performed in two updating steps in order to adjust the

FE model to the reference and the damaged state of the

beam respectively. The damage pattern of the concrete

beam is identified successfully with the CLM method.

This paper is organized as follows. The global search

methods, GA and SA, are briefly reviewed in Section 2.

In Section 3 we present the theory of the CLM algorithm

and its implementation. In Section 4 we illustrate the

CLM algorithm with a test function. In Section 5 CLM
is applied to FE model updating. In Section 6 conclu-

sions are made.

An explicit comparison between the CLM method

and the GA or SA methods for the FE model updating

application, could be an interesting topic of a bench-

mark study.
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2. Global search methods: genetic algorithms and simu-

lated annealing

The basic GA was suggested by Holland [6]. It is

based on natural evolution and its concept of survival of

the fittest. The algorithm acts on a population of chro-

mosomes, defined by binary strings. Each chromosome

is a representation of a design vector and its fitness value

is given by the objective function. The GA consists of

generating a new population of chromosomes from the

old population using three randomized operators that

mimic those of natural evolution: selection, crossover

and mutation [8,11]. In the first operation, a number of

chromosomes are selected such that those with greater

fitness have a higher probability of selection. A very fit

individual may have several changes to be selected.

Some of the selected chromosomes are then randomly

paired together. Both chromosomes in each pair swap

information beyond a crossover point which is ran-

domly chosen along the binary string. This operator has

the potential to join successful genetic fragments to-

gether to form fitter individuals. Mutation randomly

flips some of the bits in a single chromosome, meant to

reintroduce genetic information that has been lost from

the population. The average fitness of the generation

successively increases and the process is stopped by a

suitable convergence criterion. The capability of finding

the global minimum is mainly due to the simultaneous

search by a whole population of design points using

randomized operators, such that the search space is

widely explored. Moreover, the information exchange

between selected pairs directs the process towards the

optimal point.

Kirkpatrick et al. [7] proposed SA as a powerful

global search method. The method gets its name from

the physical process whereby the temperature of a

physical system is raised to a melting point and then

slowly and discretely lowered. The substance attains its

lowest energy provided that it acquires the least possible

energy at each temperature during the successive cooling

process. This concept of thermal equilibrium is mim-

icked in SA [12,13] by reducing the objective function to

a reasonably low value correlated with the �temperature�
at each state of the optimization process. Global opti-

mum is reached through a search within randomly

generated configurations in the neighbourhood of a

single design state. If the new point has a smaller value
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for the objective function (downhill move), this point is

accepted and replaces the old one. However, in the op-

posite case (uphill move), the candidate design may ei-

ther be rejected or accepted depending on a control

parameter (similar to temperature in the annealing

process) which is reduced slowly so as not to get trapped

in a local minimum. At initial stages of optimization (at

high temperatures), the probability of accepting uphill

moves is higher. Later on (at low temperatures), it be-

comes smaller so that in the end the designs having

higher cost are almost never accepted. Various imple-

mentations of SA exist, based on different cooling

schedules and neighbourhood functions [8]. The success

of SA lies in the fact that a random choice of a candidate

point and the occasional acceptance of uphill moves,

avoid getting stuck in a local minimum.

Both GA and SA are frequently used in structural

optimization problems [13–18].
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3. Coupled local minimizers

In the method of CLM [9,10] a cooperative search

mechanism is set up, which combines the advantage of

the local gradient-based algorithms (fast convergence)

with the global approach of GA (parallel strategy and

information exchange). A population of search points is

used, initially spread over the search space. The deriv-

ative information in each of these points directs the

global search process. Instead of performing separate,

independent searches from each of these points (which is

the case in multistart local optimization 1), the local

optimizers are coupled during the search process by

constraints that enforce the global search process to

converge towards one point. In this way a cooperative

search mechanism is set up that aims to perform better

than multistart local optimization (Fig. 1).

The method is implemented as a minimization prob-

lem in which the average objective function value––i.e.

the function value averaged over all the search points––

is minimized. The whole population of search points

look for the minimum of this average function using

derivative information. And in order to couple the (lo-

cal) search runs, the search points are subjected to

pairwise synchronization constraints that enforce them

to end in the same final point. In this way the constraints

realize an information exchange within the population.

In this paper 2 the CLM technique is implemented

with the augmented Lagrangian method, which is a MP
U

241
242

1 Multistart local optimization consists in performing a

number of local optimization runs, each starting from another

point, but sequentially, so without any coupling.
2 CLM is originally developed in the area of neural

networks. In [9,10] a Lagrange programming network is

therefore considered for the continuous-time optimization.
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method for constrained optimization [3,5]. The aug-

mented Lagrangian function LA is defined by the av-

erage objective function of the population together with

the synchronization constraints between the individual

local minimizers. A standard unconstrained optimiza-

tion algorithm minimizes LA.

3.1. Augmented Lagrangian method

Consider the minimization of an objective function

f ðxÞ with equality constraints hiðxÞ with x 2 Rn. The

augmented Lagrangian function is defined as [3,5]

LAðx; kÞ ¼ f ðxÞ þ
X
i

kihiðxÞ þ
c
2

X
i

h2i ðxÞ; ð1Þ

where ki and c are the Lagrange multiplier estimates and

the penalty parameter respectively. The different terms

in LA are the objective function, the hard and the soft

constraints respectively.

In each main iteration k, the function LAðx; kkÞ is

minimized with respect to x to find x�
k . The values of

kk ¼ ðk1; k2; . . . ; ki; . . .Þk are then updated to start the

next main iteration. The update formula for each ki is
[3,5]

ðkiÞkþ1 ¼ ðkiÞk þ chiðx�
kÞ: ð2Þ

The process continues until the optimal k� are found,

which are the Lagrange multipliers at x�.

3.2. Coupled local minimizers method

Consider now the unconstrained minimization of the

objective function f ðxÞ. In CLM, a population is used

consisting of q local minimizers, whose average cost is

defined as

hf i ¼ 1

q

Xq

i¼1

f ðxðiÞÞ: ð3Þ

Pairwise synchronization constraints are applied to the

design vectors xðiÞ (¼ vectors of variables), resulting in a

constrained minimization problem:

min
xðiÞ2Rn

hf i such that xðiÞ � xðiþ1Þ ¼ 0 ð4Þ

for i ¼ 1; 2; . . . ; q and with boundary condition

xðqþ1Þ ¼ xð1Þ.

One defines the augmented Lagrangian function:

LAðx;KÞ ¼
g
q

Xq

i¼1

f ðxðiÞÞ þ
Xq

i¼1

hkðiÞ; ½xðiÞ � xðiþ1Þ�i

þ c
2

Xq

i¼1

kxðiÞ � xðiþ1Þk2 ð5Þ

with x ¼ ½xð1Þ; . . . ; xðqÞ� and K ¼ ½kð1Þ; . . . ; kðqÞ�,
(xðiÞ; kðiÞ 2 Rn). h�; �i denotes the inner product (for the
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hard constraints) and k:k the Euclidean norm of a vector

(for the soft constraints). g is a weighting factor of the

average objective function.

The main idea is to impose upon the multiple design

vectors to reach the same final position. When the initial

states of the design vectors are located in different val-

leys, they are enforced to take a decision about which

valley to choose. If the parameters g and c are chosen

appropriately, an improved solution is obtained, which

is usually the global minimum.

The number of q needed to achieve a good perfor-

mance, depends on the complex shape of the surface or

typically on the number of local minima per volume in

the search space.
 C 279
280
281
282
283
284
285
286
287
288
289
RR
E3.3. Implementation of CLM

In this paper 3 we implement the CLM algorithm with

a standard Trust Region Newton method [5] for mini-

mizing LAðx;KkÞ with respect to x. In each sub-itera-

tion s, a quadratic approximation mðpÞ of LA at the

current population xs has to be minimized within a trust

region Ds. The quadratic model mðpÞ is defined by the

truncated Taylor series of LA:
290
291
292
293
Omin
p

mðpÞ ¼ LA þ ½rLA�Tp

þ 1
2
pT½r2LA�p; such that kpk6D; ð6Þ
C

294

295
296
297
298
UN

where p denotes a step-vector from xs and where LA,

rLA and r2LA are the values of the function, the

gradient and the Hessian of LA at xs respectively.

Since we assume that each local minimizer is inde-

pendent of the values of the other minimizers, we have:

(for i ¼ 1; . . . ; q)
3 In [9,10] a steepest descent method is used for solving the

Lagrange programming network. Our implementation with the

Trust Region Newton method is meant for realizing a faster

convergence and for obtaining a robust optimization process.
OrxðiÞLA ¼ g
q
rxðiÞf ðxðiÞÞ � kði�1Þ þ kðiÞ

� c½xði�1Þ � xðiÞ� þ c½xðiÞ � xðiþ1Þ�; ð7Þ
Pr2
xðiÞLA ¼ g

q
r2

xðiÞf ðx
ðiÞÞ þ 2cI ; ð8Þ
r2
xðiÞxði�1ÞLA ¼ �cI; ð9Þ
299
300
301
302
303
304
TE
Dr2

xðiÞxðiþ1ÞLA ¼ �cI; ð10Þ

to be included in the gradient vector or the band-struc-

tured Hessian matrix. I denotes the identity matrix

(n� n). The boundary constraints are: xð0Þ ¼ xðqÞ,

xðqþ1Þ ¼ xð1Þ.

Since a Newton-based method is used, the search

process in CLM is carried out with a high convergence

speed. Furthermore, the convergence is enforced by the

use of a Trust Region strategy.

Additionally, bound constraints on the design vectors

xðiÞ can be added. Although these constraints are not

really necessary, because of the proper restriction of the

trust region, they can be desirable in order to impose

specific limitations.

The CLM algorithm is implemented in the optimiza-

tion toolbox of MATLAB [19]. The Trust Region

Newton method, used for the minimization of LA with

respect to x, is applied by means of the command

fmincon, for which the �Trust Region� option is chosen.

3.4. Choice of g, c––normalization

Since the tuning parameters g and c are problem de-

pendent, it is difficult to determine them a priori or in a

general way. Moreover, they enable the analyzer of each

particular problem to direct the process, just by adjust-

ing them (see Section 4.1). The difficulty of selection of

values for these parameters is typical for global search

methods (e.g. GA and SA), but at the same time they

provide the capability of finding the global minimum.

This is in contrast with local MP methods, which are

fully determined but can only find local minima.
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However, in order to generalize the CLM method as

much as possible, the objective function and the syn-

chronization constraints ðDxðiÞj ¼ xðiÞj � xðiþ1Þ
j Þ in LA are

normalized:

fn ¼
f þ t
scf

) 06 fn 6 1; ð11Þ
RO
OF
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Fig. 2. Test function with four local minima, one of which is

the global minimum (surface plot above a contour plot).
DxðiÞjn ¼
DxðiÞj
sccj

) 06 jDxðiÞjn j6 1: ð12Þ

The inequalities in Eqs. (11) and (12) should hold only

on that part of the search space that will be tried out

during the process. Consequently, the translation value t
and the factors scf ; sccj are not unique and can only be

estimated. The following expressions can be used when

choosing the normalization parameters:

t ¼ jminð0; fminÞj; scf ¼ fmax þ t; sccj ¼ jxj;upper � xj;lowerj;
with fmin; fmax denoting the minimum, maximum func-

tion value encountered during the process and

xj;upper; xj;lower the upper and lower boundary of design

variable xj. With this approach a normalized objective

function fn is minimized but still with respect to the

unscaled design vector x. The formulas for LA, rLA

and r2LA in Eqs. (6)–(8) and the update formula for

kðjÞ are accordingly adjusted. Due to the normalization

the relative weights of the different terms in LA are less

dependent on the characteristics of each particular

minimization problem.
 C 359
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To illustrate the CLM method, a two-dimensional test

function is minimized:

f ðxÞ ¼
X2

j¼1

0:01ððxj þ 0:5Þ4 � 30x2j � 20xjÞ

with � 66 xj 6 6: ð13Þ

In Fig. 2 the test function is visualized. There are four

local minima. One of them is the global minimum, lo-

cated at ()4.454;)4.454).
The applied normalization parameters are: t ¼ 6;

scf ¼ 21; scc1 ¼ scc2 ¼ 12.

A CLM run is carried out with a population of 8 (¼ q)
local minimizers. Their initial values are randomly

spread in the search space (Fig. 3a). The initial values in

kðiÞ are randomly chosen in the interval [)1;1], for reason
of generality. The tuning parameters are: g ¼ 3 and

c ¼ 0:3. All the eight minimizers end up in the global

minimum (Fig. 3b). Even if all the minimizers are initially

situated in the valley of a local minimum (Fig. 4a, q ¼ 5),

the CLM method finds the global minimum (Fig. 4b).

For this case also five independent local optimization

runs were carried out starting from each point separately
TE
D
Pand they all ended up in the same local minimum, dif-

ferent from the global minimum. This illustrates that

instead of multistart local optimization consisting of in-

dependent runs, the search process is clearly improved

with CLM by coupling the local optimizers during the

process. Furthermore, in CLM a Trust Region approach

is used in order to be able to minimize a nonconvex

function. This is essential, since a nonconvex augmented

Lagrangian function makes it possible to escape from a

local minimum, as it is the case in Fig. 4.
4.1. Influence of g, c

In order to detect the global minimum, the search

process can be influenced by the tuning parameters g
and c. Fig. 3c shows the search path corresponding with

the parameter values: g ¼ 3 and c ¼ 0:3, as used in

previous paragraph. About 70 iterations are performed

before converging to the global minimum. By increasing

c, more weight is given to the soft constraints in LA and

consequently the convergence rate is improved. But one

should be careful to choose c not too high since in this

case the CLM run would end up in the local minimum

that is closest to the geometrical center of gravity of the

population (Fig. 5a, 20 iterations). A low c value on the

other hand leads to more exploration in the search do-

main, but consequently decreases the speed of conver-

gence. Many iterations are necessary before the

convergence criterion is satisfied (Fig. 5b, 450 itera-

tions). By reducing c and g, still much exploration is

carried out, but now the soft constraints are relatively

more stringent than in previous case, which results in

fewer––but still many––iterations (Fig. 5c, 350 itera-

tions).

Appropriate values for the tuning parameters are

problem dependent. Since in real optimization problems,

the global minimum is not known beforehand and
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Fig. 3. A CLM run with a population of eight searching points, which are initially randomly spread over the whole search space (a)

and end up in the global minimum (b). The search path of all local searchers is plotted in (c) on the contour plot of the normalized
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Utherefore it is not sure whether the result is a local or the

global minimum, one should look at the history of the

(normalized) objective function fn evaluated by each

search point. Fig. 3d shows that the final objective

function value, i.e. the one evaluated at the final solu-

tion, is the least one of all values encountered during the

process, i.e. when the search points explored the search

space. If, on the other hand, lower fn values would ap-

pear during the history, the analyzer knows that he has
to adjust the tuning parameters until the final fn value is
the least one.
5. FE model updating

In this section we discuss the application of CLM to

FE model updating using measured modal data. First

the general updating procedure is explained. Next, we
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Fig. 5. Search paths of three CLM optimization runs (a–c) with different values for g and c, each drawn on the contour plot of the test

function.
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will illustrate the CLM application by identifying the

damage pattern of a reinforced concrete beam.

5.1. General procedure

In FE model updating one aims to identify the un-

certain properties of a structure by minimizing the dis-

crepancies between the experimental vibration data,

extracted from a dynamic test on the structure, and

those computed with the numerical FE model. There-

fore, an optimization problem is solved in which the

objective function contains the differences between the

experimental and numerical modal data (natural fre-

quencies and mode shapes) [1,2]. The updating variables

are the uncertain model properties.

The cost function is stated as a nonlinear least-squares

problem [20]:

f ðaÞ ¼ 1

2
krðaÞk2 ¼ 1

2

rfðaÞ
rsðaÞ

����
����
2

ð14Þ

with

rfðaÞ ¼
x2

j ðaÞ � ~xx2
j

~xx2
j

with xj ¼ 2pmj; ð15Þ
O

446
447
448
449
UN
CrsðaÞ ¼

/l
jðaÞ

/r
jðaÞ

�
~//l
j

~//r
j

: ð16Þ

The residual vector r : Rn ! Rm contains the discrepan-

cies in eigenfrequencies mj (Eq. (15)) and in mode shapes

/j (Eq. (16)). l and r denote an arbitrary and a reference

degree of freedom (DOF) respectively. The vector

a 2 Rn represents the set of uncertain model proper-

ties. 4 The experimental modal parameters, ~mmj and ~//j,
4 Note that the symbol a is used in this section on FE model

updating, whereas the symbol x is used in the general

mathematical formulations of previous sections.
TE
D
PRare obtained from a modal test. Only the translation

DOFs of the mode shapes can be measured.

Relative differences are taken in rf in order to obtain a

similar weight for each frequency residual. In rs the

mode shapes are scaled to one in a reference point r,
since the numerical and experimental mode shapes can

be scaled differently. As in civil engineering, measure-

ments are often conducted in operational conditions,

which means that the exciting forces (coming from wind,

traffic,. . .) are unknown, an absolute scaling of the mode

shapes is not possible. The reference point r should be

chosen at the DOF with the largest magnitude, or at

least at one with a large magnitude.

The updating parameters are the uncertain physical

properties of the numerical model, determined on ele-

mental level. Instead of the absolute value of each un-

certain variable X e, a fractional correction factor ae is

used, with respect to the initial value X e
0 :

ae ¼ �X e � X e
0

X e
0

) X e ¼ X e
0 ð1� aeÞ: ð17Þ

The gradient and the Hessian of f ðaÞ are:

rf ðaÞ ¼
Xm
j¼1

rjðaÞrrjðaÞ ¼ JaðaÞTrðaÞ; ð18Þ
450
451
452
453
454
r2f ðaÞ ¼ JaðaÞTJaðaÞ þ
Xm
j¼1

rjðaÞr2rjðaÞ

� JaðaÞTJaðaÞ ð19Þ

with Ja the Jacobian matrix, containing the first partial

derivatives of the residuals rj (¼ rf and rs) with respect

to a. The Hessian is approximated with the first order

term in Eq. (15) as it is the case in most nonlinear least-

squares methods [5]. The approximation is equivalent

with a linearization of the residual functions in a.
The first partial derivatives of each frequency residual

rf (Eq. (15)) and mode shape residual rs (Eq. (16)) with
respect to the correction parameters a are:
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oae

¼ 1

~xx2
j

ox2
j

oae
; ð20Þ
OO
F

Fig. 6. Cross section of the beam.
ors
oae

¼ 1

/r
j

o/l
j

oae
�

/l
j

ð/r
jÞ

2

o/r
j

oae
: ð21Þ

The modal sensitivities in Eqs. (20) and (21) are calcu-

lated using the formulas of Fox and Kapoor [21]. If only

stiffness parameters have to be corrected, these formulas

are simplified to

ox2
j

oae
¼ /T

j

oK

oae
/j; ð22Þ
D
PRhydraulicjack

hinge support

roller support
o/j

oae
¼

Xd

q¼1; q6¼j

/q

x2
j � x2

q

/T
q

oK

oae
/j

� �
: ð23Þ

K represents the stiffness matrix of the FE model. In-

stead of the complete base (d is the analytical model

order) a truncated base is used.
CT
E

Fig. 7. A static point load is applied, at 4 m of the left beam

end, in order to produce cracks.
E

5.2. Example: damaged RC beam

The FE model updating method can be used for

damage assessment (damage localisation and quantifi-

cation) of civil structures. In this paper the damage

pattern of a reinforced concrete beam, which was dam-

aged artificially in a laboratory test program, will be

identified by updating the FE model of the beam.
493

494
495
496

springs

Fig. 8. A modal test is performed on the (reference and dam-

aged) beam with free–free boundary conditions, established by

using very flexible springs.
UN
CO
RR5.3. Laboratory test program

The beam has a length of 6 m. Its section is plotted in

Fig. 6. In the test program damage is induced by sub-

jecting the beam to a static point load of 25 kN to

produce cracks. The load is applied at 4 m of the left end

of the beam (Fig. 7). Before and after applying this load,

an experimental modal analysis is carried out to obtain

the modal parameters of the reference and damaged

state respectively. The modal test is performed on the

beam with free–free boundary conditions, which are

established by using very flexible springs supporting the

beam (Fig. 8). Accelerometers are placed each 20 cm at

both longitudinal edges of the upper side of the beam (62

measurement points in total, which are averaged to 31

values). The stochastic subspace identification technique

[22] is applied to the dynamic response signals to extract

the modal parameters. The first four bending modes are

identified. The corresponding eigenfrequencies are given

in Tables 1 and 2 for the reference and the damaged

state respectively.
5.4. FE model updating

The beam is modelled with 30 beam elements in

ANSYS [23] (Fig. 9a). The initial model for the un-

damaged state is characterised with a Young�s modulus
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(a)
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Fig. 9. FE model of the beam (a) and parabolic damage

function (b).

Table 1

Reference state: eigenfrequencies and correlation values

Reference Experiment Initial FE

model

Updated FE

model

Mode n0 ~mm [Hz] m� ~mm
~mm

[%]

MAC

[%]

m� ~mm
~mm

[%]

MAC

[%]

1 22.02 9.12 99.82 1.66 99.85

2 63.44 3.54 99.91 1.19 99.91

3 123.27 3.21 99.81 )0.05 99.90

4 201.92 2.55 99.81 )0.64 99.91

Table 2

Damaged state: eigenfrequencies and correlation values

Damaged Experiment Reference FE

model

Updated FE

model

Mode n0 ~mm [Hz] m� ~mm
~mm

[%]

MAC

[%]

m� ~mm
~mm

[%]

MAC

[%]

1 19.35 15.69 99.35 1.96 99.81

2 56.90 12.82 99.11 1.52 99.91

3 111.64 10.36 98.15 )0.33 99.90

4 185.22 8.32 97.29 )1.27 99.94

(a)

(b)

Fig. 10. Reference (a) and damaged state (b) of the beam.
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COof E0 ¼ 37:5 GPa and a moment of inertia of

I ¼ 1:93� 10�4 m4.

The structural damage is represented by a reduction

factor on Young�s modulus Ee of each beam element

ae ¼ � Ee�E0

E0

� �
. Instead of modifying all 30 elements

separately, a parabolic damage function is used to de-

termine the damage pattern (Fig. 9b and Eq. (24)). The

parabola is characterised by three parameters fp1; p2; p3g
determining the position (element n0: x), the height

(relative stiffness reduction: a [–]) and the width (number

of elements) of the damage pattern respectively. They all

vary continuously in the process. Each set fp1; p2; p3g
determines the corresponding vector of correction pa-

rameters a in a unique sense, by discretising the con-
TE
D
PR
OO

Ftinuous distribution aðxÞ in the beam elements of the FE

model.

aðx; pÞ ¼ max
�4 p2

p2
3

x2 þ 8 p1p2
p2
3

xþ p2 � 4
p2
1
p2
p2
3

;

0:

(
ð24Þ

The Jacobian matrix Ja, containing the sensitivities to a,
has to be adjusted as follows:

½Jp�m�3 ¼ ½Ja�m�n

oa

op1

oa

op2

����
���� oaop3

� �
n�3

; ð25Þ

to obtain the Jacobian matrix Jp with sensitivities to p,
which are the variables of the optimization problem.

The damage detection is performed in two updating

processes, to identify the reference and the damaged

state respectively (Fig. 10).

In order to make the damage identification method

successful, it is necessary to build an adequate FE model

that predicts well the structural behaviour. Only some

uncertainties remain (such as the stiffness of supports, of

material or joints) that have to be determined in a first

updating process, i.e. one that defines a representative

reference FE model. In this process the analyzer chooses

appropriate initial values of the uncertain parameters

based on its engineering judgement.

The actual damage, however, is unknown to the an-

alyzer and is identified in the second updating process.

Since no prior knowledge exists, the initial damage pa-

rameters are chosen randomly, however still within

physically meaningful limits.

In the reference state of the test beam some initial

cracks were already present, 5 probably due to the self

weight or the drying process of the fresh concrete.

5.4.1. Reference state

An objective function is set up consisting of four

frequency residuals rf and 104 mode shape residuals rs
corresponding with the major displacements of each of

the four modes (Eqs. (15) and (16)). The experimental

modal parameters are obtained from the modal test on

the undamaged beam. In each iteration step, the MAC-

values are calculated MAC ¼ j/T
j
~//j j2

ð/T
j /jÞð~//T

j
~//jÞ

� �
and used to

correlate appropriately the experimental with the nu-

merical modes. The vector of variables contains the

three parameters fp1; p2; p3g of the parabolic damage

function. The correction factors aeref for all 30 beam el-
5 The initial damage is not shown on Fig. 10.
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Fig. 11. Surface plot of the objective function with p3 ¼ 10
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Fig. 12. Search path of a CLM run with four searching points,

drawn on the contour plot of the objective function.
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Rements can be derived using Eq. (24). Note that a pos-

itive correction factor aeref means a stiffness reduction:

Ee ¼ E0ð1� aerefÞ: ð26Þ
UN
CO
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Fig. 14. Initial and updated correction factors aref , corresp
TE
D
PRIn order to visualize the objective function, the third

parameter p3 is, in a first approach, kept fixed to 10,

retaining only two variables p1 and p2. This means that

the width of the damage pattern is set to 10 elements

beforehand and that only the position and the height of

the damage have to be determined. The applied bounds

are: �106 p1 6 40; 0:056 p2 6 0:6.
The function is plotted with respect to p1 and p2 in

Fig. 11. The surface is characterised by multiple valleys.

Therefore, a global minimization method is required to

find the global minimum, which is situated at p1 ¼ 16:7;
p2 ¼ 0:24 for p3 ¼ 10.

A CLM optimization run is carried out with an initial

population consisting of four searching points

fs1; s2; s3; s4g (Fig. 12), chosen well-spread in the design

space by the analyzer. The normalization factors (Eqs.

(11) and (12)) are scf ¼ 0:3; scc1 ¼ 30; scc2 ¼ 1. Also the

updating variables pi are scaled to obtain a well-scaled

function f . The tuning parameters are set to: g ¼ 3 and

c ¼ 0:4 . The initial kðiÞ values are randomly distributed

in the interval [)1;1]. The search process ends up in the

global minimum (16.7; 0.24) (Fig. 12) after about 90

iterations.
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onding to the four searching points of the CLM run.
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Fig. 15. Initial and updated correction factors adam, corresponding to four independent local optimization runs.
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UAs illustration also the search path of a standard local

minimization run, i.e. starting from only one point in the

search space, is carried out. Fig. 13 shows that this

process gets trapped in the nearest valley.

The improvement obtained with the CLM method in

comparison to the standard local optimization methods

is clear. Since a whole population of points explores the

search space, the global minimum is detected with the
CLM method, which is not always the case with a local

method.

Additionally, the same objective function is also

solved by varying all the three parameters fp1; p2; p3g of

the parabolic damage function. In this case the position,

the height and the width of the damage pattern have to

be determined. Four local runs are carried out, resulting

in different solutions, which indicates the existence of
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Fig. 17. Comparison of the stiffness distribution EI of the reference and damaged state, obtained with different techniques.

6 The optimization with only two parameters is not reported

here.
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Emultiple local minima. Therefore, again a CLM opti-

mization run is performed with a population consisting

of four searching points. The corresponding initial par-

abolic damage patterns are plotted in Fig. 14a. The same

normalization and tuning parameters as previously are

used (plus scc3 ¼ 10). The third parameter is bounded by

76 p3 6 16. The CLM run ends in the global optimum as

can be seen in Fig. 14b, showing the damage pattern

reached at the end of the optimization process. The

obtained values for fp1; p2; p3g are:

p�1 ref ¼ 16:7; p�2 ref ¼ 0:24; p�3 ref ¼ 10:4 ð27Þ

and are found in about 90 iterations. The reference state

is characterised by a symmetrical damage pattern with a

maximum reduction of 24%. Table 1 lists the relative

differences in eigenfrequencies and the MAC-values,

both for the undamaged and updated FE model. A clear

improvement can be observed, particularly for the fre-

quency differences.

5.4.2. Damaged state

In order to identify the applied damage, a second

updating step is carried out in which the correction pa-
rameters adam are determined with respect to the updated

Young�s modulus of the previous step:

Ee ¼ Ee
refð1� aedamÞ ¼ E0ð1� aerefÞð1� aedamÞ; ð28Þ

where aeref is obtained by substituting p�i ref (Eq. (27)) in
Eq. (24). An analogous optimization problem as in the

first updating step is solved. The experimental modal

parameters are now extracted from the measurements

on the damaged beam. The same frequency and mode

shape residuals are selected to construct the objective

function. In this updating step, fp1; p2; p3g determine the

correction factors for the damaged state, aedam. All the

three of them are varied 6 and bounded by

�106 p1 6 40; 0:156 p2 6 0:6; 76 p3 6 20. They are also

scaled to form a well-scaled function f .
A CLM optimization run is performed, again with a

population consisting of four local minimizers. In order

to show the robustness of the method, their initial values

are chosen such that four independent local runs,
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Fig. 18. Experimental and numerical (reference and updated) bending mode shapes (damaged state).
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REstarting from the same four points separately and using

a standard local optimization method, all end up in a

wrong solution 7 (Fig. 15). Notwithstanding that, the

CLM method does find the global minimum (Fig. 16),

situated at
654
655
Rp�1 dam ¼ 21:1; p�2 dam ¼ 0:4; p�3 dam ¼ 15:7: ð29Þ

656
657
658
659
660
661
662
663
664
665
666
667
668
UN
COThe tuning parameters used for the optimization are

g ¼ 3 and c ¼ 0:3 and the normalization factors are

scf ¼ 1 and ðscc1; scc2; scc3Þ ¼ ð30; 1; 10Þ. The global

minimum is identified in about 110 iterations.

The applied damage is identified correctly (Fig. 16b).

It is an asymmetrical damage pattern with a maximum

value of aedam ¼ 40% of the reference Young�s modulus,

at the location where the static load was applied, i.e. at 4

m of the left beam end (Fig. 7). The influence of the

cracks is spread out over a zone consisting of 16 beam

elements.
7 An undamaged state is obtained in the first three runs

(p1 6 � 4) and an almost undamaged state in the last run

(p1 ¼ 32).
In Fig. 17a the updated stiffness distribution EI is

plotted for the reference and the damaged state, the

latter obtained by applying the identified damage of the

second updating step to the reference stiffness distribu-

tion of the first step (Eq. (28)). The resulting stiffness

distribution shows an asymmetrical pattern with a

maximum dip of 49% of the initial bending stiffness E0I
at 3.7 m.

It can be compared with the stiffness distribution

obtained through FE model updating using nine piece-

wise linear p-independent damage functions and a

standard optimization method [24] (Fig. 17b). The

stiffness distribution is also calculated with the direct

stiffness calculation (DSC) method [25]. This damage

assessment technique calculates the stiffness directly,

without using or updating any FE model, and is based

on the modal frequencies and curvatures. The method is

applied on the same beam using the first three modes

and the results are shown in Fig. 17c. 8 A similar pattern

is identified for the undamaged as well as for the dam-
8 The calculated values for the bending stiffness at the ends

of the beam are omitted.
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aged beam for the three figures. Particularly, the amount

of induced damage corresponds well.

Table 2 lists the relative differences in eigenfrequencies

and the MAC-values with respect to the experimental

data of the damaged beam. Again a satisfactory result is

obtained.

Additionally, the experimental and numerical (refer-

ence and updated) mode shapes of the four bending

modes are plotted in Fig. 18. They are all scaled to 1 in

the reference node, located at right beam end (at 6 m).

The experimental and the updated mode shapes corre-

spond well. Only some minor discrepancies remain,

probably due to the initial cracked state, which is not

perfectly symmetrical with respect to the longitudinal

beam axis and therefore cannot be modelled accurately

with the beam model. Also the identified damage pattern

is restricted to a parabola, which might differ from the

real damage distribution.
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6. Conclusions

A new global optimization method is investigated,

named coupled local minimizers. In CLM the average

objective function value of multiple design vectors is

minimized, subjected to pairwise synchronization con-

straints. This is done with the augmented Lagrangian

method, which we have implemented with a Newton-

based algorithm, in order to maximize the convergence

rate. Furthermore, the Trust Region approach makes it

possible to minimize a nonconvex function. In order to

generalize the problem, the objective function and the

synchronization constraints are normalized.

The CLM method is successfully applied to a test

function containing several local minima. We have

demonstrated the robustness of CLM, in the sense that

the method finds the global minimum of the test func-

tion, even if all the search points are initially situated in

the valley of a local minimum. The influence of the

tuning parameters on the search process is shown. In a

second illustration, CLM is used for FE model updat-

ing. The correct damage pattern of a beam is identified

with the method. In both examples the advantages of

CLM over conventional multistart local optimization

algorithms are clearly shown.
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