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Abstract. We propose a method for finding a global optimal solution of programs with linear

complementarity constraints. The program arises for instance from the bilevel programs. The

main idea of the method is to generate a sequence of points either ending at a global optimal

solution within a finite number of iterations or converging to a global optimal solution. The

construction of such a sequence is based on the techniques such as branch and bound technique,

which are used successfully in global optimization. Some results on a numerical test of the

algorithm are reported.

1. Introduction

The mathematical programming problem to be considered in this article is characterized by the
constraints described as a linear complementarity problem. This is a special case of the mathe-
matical program with equilibrium constraints, and is a typical multiextremal global optimization
problem in which local optimal solutions are in general different from global optimal solutions.

In [6] and references therein, a comprehensive study of mathematical programs with equilibrium
constraints is presented including applications, theoretical results of exact penalty formulations,
optimality conditions, and iterative algorithms. A sequential quadratic programming algorithm is
proposed in [2]. An extreme point algorithm for computing a local optimal solution is presented
recently in [12]. In [9, 10] some stability properties of a special class of programs with linear com-
plementarity constraints are discussed and a cutting plane algorithm for computing an approximate
optimal solution is proposed.

The purpose of the present article is to propose a method for finding a global optimal solution
of programs with linear complementarity constraints. The main idea of this method is to generate
a sequences of points either ending at a global optimal solution or converging to a global optimal
solution of the problem under consideration. The construction of such a sequence is based on
some techniques which are used successfully in global optimization. As we will see below, the
problem considered in this paper belongs to a special class ofMPECs (mathematical programs with
equilibrium constraints) having the mixed P0 property (cf. p.227 in [6]). This implies that most
of the algorithms described in [6] can be applied to the problems. In contrast to those algorithms,
our algorithms a remarkable feature that it only employs linear programs as its subproblems, by
virtue of the special structure of the problem.

The article is organized as follows. The next section contains the exact formulation of the
mathematical programming problem with linear complementarity constraints, and its equivalent
form. Section 3 presents some relaxation forms of the problem, which are used to establish the
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algorithm in Section 4. An illustrative example and some results of preliminary computational
experiments are reported in Section 5.

2. Problem Formulation

We are concerned with the following mathematical programming problem:

(PC)

min f(z, λ)
s.t. z ∈ Z

(z, λ) ∈ Ω
Bz + b ≤ 0
λ�(Bz + b) = 0
λ ≥ 0,

where Z and Ω are convex closed subsets of R
n and R

n+p, respectively, f : R
n+p → R is a

continuous function, B ∈ R
p×n is a given matrix, and b ∈ R

p is a given vector. We assume
throughout the paper that Z is bounded.

Problem (PC) contains as constraints a system of the form

(C)
Bz + b ≤ 0
λ�(Bz + b) = 0
λ ≥ 0,

which is well known as the linear complementarity problem. The theory and solution methods
for the linear complementarity problem can be found, e.g., in [1] and [5]. Characterized by the
linear complementarity (C), Problem (PC) is frequently called the mathematical program with
linear complementarity constraints. 1 Even for the case where Z is a polyhedral set and f is a
linear function, Problem (PC) is a typical multiextremal global optimization problem, where local
optimal solutions are in general different from global optimal solutions.

Let w = −Bz−b. Then there exists a polytope (i.e., bounded polyhedron), sayW , in R
p
+, whose

construction shall be discussed later in Section 4, so that Problem (PC) can be rewritten as

1A special case of the MPEC given below is dealt with in [2]:

min f(z, λ)

s.t. z ∈ Z

(z, λ) ∈ Ω

Bz + Cλ + b ≤ 0

λ�(Bz + Cλ + b) = 0

λ ≥ 0.

When the matrix C is a P0 matrix, the problem is said to have the P0 property. Since C of Problem (PC) is a zero

matrix, which is obviously a P0 matrix, Problem (PC) has the P0 property.
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(P )

min f(z, λ)
s.t. z ∈ Z

(z, λ) ∈ Ω
Bz + w + b = 0
λ�w = 0
λ ≥ 0,
w ∈ W ⊂ R

p
+.

Clearly, Problems (PC) and (P) are equivalent in the sense that

(i) If (z∗, λ∗) is an optimal solution of (PC), then (z∗, λ∗, w∗) with w∗ = −Bz∗− b is an optimal
solution of (P), and

(ii) If (z∗, λ∗, w∗) is an optimal solution of (P), then (z∗, λ∗) is an optimal solution of (PC).

Using the equivalent formulation (P), we develop a method for globally solving Problem (PC). The
main idea can be sketched out as follows. Let Γ be the feasible set of Problem (P), and let

Γ = {(z, λ,w) : z ∈ Z, (z, λ) ∈ Ω, Bz + w + b = 0, λ ≥ 0, w ∈W}.

The algorithm generates a sequence {(zk, λk, wk)}k=1,2,··· ⊂ Γ having the property that, for each k,
f(zk, λk) provides a lower bound of the optimal value of Problem (P). Such a sequence either ends
at some iteration k yielding an optimal solution or converges to an optimal solution of Problem
(P).

3. Relaxation Problems

Letting S be any polytope contained in W with the vertex set V (S) = {s1, s2, · · · , sπ}, we
consider the problem (P(S)) which is obtained from Problem (P) by replacing W by S:

(P (S))

min f(z, λ)
s.t. z ∈ Z

(z, λ) ∈ Ω
Bz + w + b = 0
λ�w = 0
λ ≥ 0,
w ∈ S.

Based on Problem (P(S)) we define the following programming problem in variables (z, λ1, · · · , λπ, β)
with z ∈ R

n, λi ∈ R
p (i = 1, · · · , π), and β ∈ R

π:

(P1(S))

min f(z,
∑π

i=1 λ
i)

s.t. z ∈ Z
(z,

∑π
i=1 λ

i) ∈ Ω
Bz +

∑π
i=1 βis

i + b = 0∑π
i=1 βi = 1∑π
i=1(s

i)�λi = 0
λi ≥ 0 (i = 1, · · · , π)
β ≥ 0.
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The main distinction between Problem (P1(S)) and Problem (P(S)) is the introduction of the
variables λ1, · · · , λπ and β to represent λ and w, respectively. This relaxes the nonlinear constraint
λ�w = 0 in Problem (P) to the linear constraint

∑π
i=1(s

i)�λi = 0 in Problem (P1(S)), which will
be seen in the following proposition. This relaxation technique is used in [3] for the minimum
maximal flow problem.

Theorem 3.1. Let f(S) and µ1(S) denote the optimal values of Problems (P(S)) and (P1(S)),
respectively, and let (z(S), λ1(S), · · · , λπ(S), β(S)) be an optimal solution of Problem (P1(S)). Then

(i) µ1(S) ≤ f(S), i.e. Problem (P1(S)) is a relaxation of Problem (P(S)).
(ii) If (

∑π
i=1 βi(S)si)�(

∑π
i=1 λ

i(S)) = 0, then (z(S), λ(S), w(S)) with λ(S) =
∑π

i=1 λ
i(S) and

w(S) =
∑π

i=1 βi(S)si is an optimal solution of Problem (P(S)).

Proof. (i) It suffices to show that for each feasible solution (z, λ,w) of Problem (P(S)) there exists
a feasible solution (z, λ1, · · · , λπ, β) of Problem (P1(S)) such that

∑π
i=1 λ

i = λ. Note that each
w ∈ S is represented by

w =
π∑

�=1

βis
i, βi ≥ 0 (i = 1, · · · , π),

π∑
i=1

βi = 1.

Define

λi = βiλ for i = 1, · · · , π.(3.1)

Then clearly
∑π

i=1 λ
i = λ and (z, λ1, · · · , λπ, β) satisfies the first four groups of constraints of

Problem (P1(S)) as well as λi ≥ 0 (i = 1, · · · , π) and β ≥ 0. For the remaining constraint, from
(3.1), we have

π∑
i=1

(si)�λi =
π∑

i=1

βi(si)�λ = λ�w = 0.

Thus, (z, λ1, · · · , λπ , β) is a feasible solution of Problem (P1(S)).
(ii) Let (z(S), λ1(S), · · · , λπ(S), β(S)) be an optimal solution of Problem (P1(S)), and let

λ(S) =
π∑

i=1

λi(S), w(S) =
π∑

i=1

βi(S)si.

Then obviously, (z(S), λ(S), w(S)) satisfies all the constraints of Problem (P(S)) except for λ(S)�w(S) =
0. Thus, if

(
π∑

i=1

βi(S)si)�(
π∑

i=1

λi(S)) = w(S)�λ(S) = 0,

(z(S), λ(S), w(S)) is a feasible solution of Problem (P(S)), and therefore, it follows from (i) that
(z(S), λ(S), w(S)) is an optimal solution of Problem (P(S)).

Next, we show that the optimal value of the relaxation problem has an useful monotonicity
property.

Lemma 3.2. If two polytopes S1 and S2 contained in W satisfy S2 ⊂ S1, then

µ1(S1) ≤ µ1(S2).
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Proof. Let V (S1) = {s11, · · · , s1π1} and V (S2) = {s21, · · · , s2π2} be the vertex sets of S1 and
S2, respectively. We show that to each feasible solution (z, λ21, · · · , λ2π2 , β2) of Problem (P1(S2))
there exists a feasible solution (z, λ11, · · · , λ1π1 , β1) of Problem (P1(S1)) satisfying

f(z,
π1∑
i=1

λ1i) = f(z,
π2∑
i=1

λ2i).(3.2)

First, let w =
∑π2

i=1 β
2
i s

2i. Then w ∈ S2 ⊂ S1. Therefore, there exists a vector β1 ≥ 0 satisfying

w =
π1∑
i=1

β1
i s

1i,

π1∑
i=1

β1
i = 1.

Next, Since S2 ⊂ S1, to each vertex s2i (i = 1, · · · , π2) there exists a vector σi ≥ 0 such that

s2i =
π1∑

j=1

σi
js

1j ,

π1∑
j=1

σi
j = 1.(3.3)

Using these vectors σi (i = 1, · · · , π2), we define vectors λ1i (i = 1, · · · , π1) by

λ1i =
π2∑

j=1

σj
i λ

2j .(3.4)

Then it follows that
π1∑
i=1

λ1i =
π1∑
i=1

π2∑
j=1

σj
iλ

2j =
π2∑

j=1

π1∑
i=1

σj
iλ

2j =
π2∑

j=1

λ2j
π1∑
i=1

σj
i =

π2∑
j=1

λ2j ,

implying (3.2). It is straightforward to see that (z, λ11, · · · , λ1π1 , β1) is a feasible solution of
Problem (P1(S1)). As an example, the equality

π1∑
i=1

(s1i)�λ1i = 0

is proved from (3.3) and (3.4) as
π1∑
i=1

(s1i)�λ1i =
π1∑
i=1

(s1i)�
π2∑

j=1

σj
iλ

2j =
π2∑

j=1

(
π1∑
i=1

σj
i s

1i)�λ2j =
π2∑

j=1

(s2j)�λ2j = 0.

The last equation follows from the feasibility of (z, λ21, · · · , λ2π, β2) to Problem (P1(S2)).

When the polytope S ⊂W is a rectangle given by 0 ≤ s ≤ s as
S = {w ∈ R

p
+ : s ≤ w ≤ s}

Problem (P2(S)) below is also a relaxation of (P(S)) with the same monotonicity property as
(P1(S)).

(P2(S))

min f(z, λ)
s.t. z ∈ Z

(z, λ) ∈ Ω
Bz + w + b = 0
λ�s = 0
λ ≥ 0,
w ∈ S ⊂ R

p
+,
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Theorem 3.3. Problem (P2(S)) is a relaxation of Problem (P(S)) in the sense that

(i) µ2(S) ≤ f(S), where µ2(S) denotes the optimal value of Problem (P2(S)).
(ii) If w(S)�λ(S) = 0, where (z(S), λ(S), w(S)) is an optimal solution of Problem (P2(S)), then

(z(S), λ(S), w(S)) is an optimal solution of Problem (P(S)).
(iii) If S1, S2 are rectangles satisfying S2 ⊂ S1 ⊂W , then µ2(S1) ≤ µ2(S2).

Remark 3.4. Note that for u = (z, λ1, . . . , λπ) ∈ R
n+πp the vector v = (z,

∑π
i=1 λ

i) ∈ R
n+p is

given by v = Lu where

L =

(
In 0 0 O

0 Ip Ip Ip

)
,

where Ik is the identity matrix of dimension k. Let us define G1 : R
n+πp → R by G1(u) = G(Lu)

for a given function G : R
n+p → R. If the function G is convex on R

n+p, we easily see that G1 is
also convex on R

n+πp. 2

Assume that the convex closed set Ω of Problem (P) is given by a convex vector function G :
R

n+p → R
m, i.e., each component gi of G is a convex function, as

Ω = {(z, λ) ∈ R
n+p : G(z, λ) ≤ 0}.

Then in Problem (P1(S)) the constraint (z,
∑π

i=1 λ
i) ∈ Ω is represented by G1(z, λ1, · · · , λπ) =

G(z,
∑π

i=1 λ
i) ≤ 0. Clearly G1(z, λ1, · · · , λπ) is also a convex vector function, so that in Problem

(P1(S)), the set {(z, λ1, · · · , λπ) : G1(z, λ1, · · · , λπ) ≤ 0} remains a convex set. Thus, if the
function f(z, λ) is convex, then so is the function f1(z, λ1, · · · , λπ) = f(z,

∑π
i=1 λ

i), and Problem
(P1(S)) is a convex program. If the function f(z, λ) is linear, and Z and Ω are polyhedral sets,
then (P1(S)) is an ordinary linear program.

4. The Algorithm

Based on the relaxation problems constructed in the previous section, we establish an algorithm
for globally solving Problem (P).

For the sake of representation, to each optimal solution

(z(S), λ1(S), · · · , λπ(S), β(S))

of the relaxation problem (P1(S)), we assign a point (z(S), λ(S), w(S)) defined by

λ(S) =
π∑

i=1

λi(S), w(S) =
π∑

i=1

βi(S)si,

and will say that (z(S), λ(S), w(S)) is an optimal solution of Problem (P1(S)).

2Let u1 ∈ Rn+πp, u2 ∈ Rn+πp and λ ∈ (0, 1). Then we have

G1(λu1 + (1− λ)u2) = G(L(λu1 + (1− λ)u2))

= G(λLu1 + (1− λ)Lu2)

≤ λG(Lu1) + (1− λ)G(Lu2)

= λG1(u
1) + (1− λ)G1(u

2),

which implies that G1 is also convex on Rn+πn.



MATHEMATICAL PROGRAMS WITH COMPLEMENTARITY 7

The main idea of the following algorithm is to construct a sequence of polytopes {Sk}k=1,2,...

and the corresponding sequence

{(zk, λk, wk)}k=1,2,... = {(z(Sk), λ(Sk), w(Sk))}k=1,2,...

such that

(i) either (zk, λk, wk) is a global optimal solution of Problem (P) for some k, or
(ii) each accumulation point of {(zk, λk, wk)}k=1,2,... is a global optimal solution of Problem (P).

4.1. Global Optimization Algorithm (GOA). –
〈〈Initialization〉〉
Construct a simplex (or a rectangle) W ⊂ R

p
+ containing at least a vector w∗ such that w∗

together with some z∗ ∈ R
n and λ∗ ∈ R

p
+ forms an optimal solution (z∗, λ∗, w∗) of Problem

(P). Set S1 = W . Solve the relaxation problem (P1(S1)) (or (P2(S1))), obtaining an optimal
solution (z1, λ1, w1) = (z(S1), λ(S1), w(S1)) and the optimal value f(z1, λ1). Set µ1 = f(z1, λ1).
If (w1)�λ1 = 0, then set γ1 = f(z1, λ1) and (z1, λ

1
, w1) = (z1, λ1, w1). Otherwise, set γ1 = +∞.

Set k = 1 and R1 = {S1}.

〈〈Iteration k〉〉
Execute Steps (i) to (vi) below.

(i) If γk = µk, then stop. (zk, λ
k
, wk) is an optimal solution of Problem (P) with the optimal

value γk.
(ii) If γk > µk, then divide Sk into Sk

1 , . . . , S
k
ν satisfying

ν⋃
j=1

Sk
j = Sk and intSk

j ∩ intSk
j′ = ∅ for j �= j′,

where intA denotes the interior of set A.
(iii) For each j = 1, . . . , ν, solve Problem (P1(Sk

j )) (or (P2(Sk
j )), obtaining an optimal solution

(z(Sk
j ), λ(S

k
j ), w(S

k
j ))

and the optimal value f(z(Sk
j ), λ(S

k
j )). Set µ(S

k
j ) = f(z(S

k
j ), λ(S

k
j )).

If w(Sk
j )

�λ(Sk
j ) = 0, then update

γk = min{γk, f(z(Sk
j ), λ(S

k
j ))},

and update, if necessary, the current best feasible solution (zk, λ
k
, wk) according to γk.

(iv) Set

γk+1 = γk,

(zk+1, λ
k+1

, wk+1) = (zk, λ
k
, wk),

Rk+1 = Rk \ {Sk}⋃{Sk
j : j = 1, · · · , ν},

µk+1 = min{µ(S) : S ∈ Rk+1}.
(v) Choose S ∈ Rk+1 such that µ(S) = µk+1, and set Sk+1 = S,

(zk+1, λk+1, wk+1) = (z(Sk+1), λ(Sk+1), w(Sk+1)).

(vi) Go to iteration k + 1.
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The above algorithm generates a sequence {(zk, λk, wk), µk, γk}k=1,2,···. If an occasion should
arise, it also generates a sequence {(zk, λ

k
, wk)}k=1,2,···. We show that {µk}k=1,2,... is a nonde-

creasing sequence of lower bounds of the optimal value of Problem (P). We also show that if
the algorithm terminates at some iteration k by the stopping criterion γk = µk, then the point
(zk, λ

k
, wk) is an optimal solution.

Lemma 4.1. {µk}k=1,2,... is a nondecreasing sequence of lower bounds of the optimal value of (P).

Proof. It is straightforward to show that µk is a lower bound of the optimal value of (P). We
only show the monotonicity. By the choice of µk in Step (iv) and Sk in Step (v) we see that
µ(Sk) = µk ≤ µ(S) for any S ∈ Rk. Since the sets Sk

1 , . . . , S
k
ν added to Rk to construct Rk+1

are subsets of Sk, we obtain from Lemma 3.2 the inequality µ(Sk) ≤ µ(Sk
j ) for j = 1, 2, . . . , ν.

Therefore µk ≤ µ(S) for any S ∈ Rk+1, implying the desired monotonicity µk ≤ µk+1.

Lemma 4.2. When (GOA) terminates in Step (i), (zk, λ
k
, wk) is an optimal solution of Problem

(P).

Proof. Note that f(zk, λk) = γk = µk holds when the algorithm terminates, and µk is a lower
bound of the optimal value of (P) by Lemma 4.1. These facts together with the feasibility of
(zk, λk, wk) yield the lemma.

Before establishing the convergence of the algorithm for the case where it does not terminate
after finitely many iterations, we discuss some details of an implementation of this algorithm.

4.2. Construction of the first polytope. Since the set Z is compact, there exist nonnegative
numbers ζj , ξj (j = 1, · · · , p) defined by

ζj = max{0, min{wj : w = −Bz − b, z ∈ Z, (z, λ) ∈ Ω, λ ≥ 0,

wi ≥ 0 for i �= j}},
ξj = max{wi : w = −Bz − b, z ∈ Z, (z, λ) ∈ Ω, λ ≥ 0,

wi ≥ ζi for i = 1, 2, . . . , p}.

(4.1)

If ξj < 0 for some j, then it follows that Problem (PC) is infeasible, because the constraint
Bz + b ≤ 0 cannot be satisfied for any z with z ∈ Z, (z, λ) ∈ Ω, λ ≥ 0.

Assuming that ξj ≥ 0 for all j = 1, · · · , p, we define further a number θ and a set W by

θ = max

{
p∑

i=1

wi : w = −Bz − b, z ∈ Z, (z, λ) ∈ Ω, λ ≥ 0, w ≥ ζ
}
,

W =


w ∈ R

p : wj ≥ ζj (j = 1, · · · , p),
p∑

j=1

wj ≤ θ

 .

(4.2)

Then clearly, each optimal solution (z∗, λ∗, w∗) of Problem (P) satisfies the condition w∗ ∈ W .
Note that W is a p–simplex having p+ 1 vertices w1, · · · , wp+1, where

wp+1 = (ζ1, · · · , ζp)
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and for each j = 1, · · · , p the vertex wj is defined by

wj
j = θ −

p∑
i=1

ζi + ζj

wj
i = ζi (i = 1, · · · , p; i �= j).

Alternate choice of the set W is a rectangle defined by

W = {w ∈ R
p : ζi ≤ wi ≤ ξi (i = 1, · · · , p)}.(4.3)

4.3. Simplicial Division. If W is defined by (4.2), the following simplicial division should be
used. Let S be an p–simplex with vertex set V (S) = {s1, · · · , sp+1}. Choose a point r ∈ S \V (S),
which is uniquely represented as

r =
p+1∑
i=1

βis
i, βi ≥ 0 (i = 1, . . . , p+ 1),

p+1∑
i=1

βi = 1.

For each i such that βi > 0 form the simplex Si defined by V (S) with si replaced by r, i.e.,
Si = co{s1, · · · , si−1, r, si+1, · · · , sp+1}, where coA denotes the convex hull of a set A. This division
is called radial simplicial division.

The division of S into two subsimplices by choosing the midpoint of one of the longest edges of
S as r is called simplicial bisection.

4.4. Rectangular Division. For the case where W is a rectangle defined by (4.3), we propose to
use the following rectangular division. Let S be any rectangle of the form S = {w ∈ R

p
+ : s ≤ w ≤

s}, where 0 ≤ s ≤ s. Choose a point r ∈ S \ V (S) and an index j, and define two vectors s′ and
s′ by

s′ = (s1, · · · , sj−1, rj , sj+1, · · · , sp) and s′ = (s1, · · · , sj−1, rj , sj+1, · · · , sp).
Then S is divided into

S1 = {w ∈ R
p
+ : s ≤ w ≤ s′} and S2 = {w ∈ R

p
+ : s′ ≤ w ≤ s}.

If r is the midpoint of one of the longest edges, the division is called rectangular bisection.

4.5. Exhaustiveness. We recall the exhaustiveness of the division process introduced for the
establishment of convergence properties of branch and bound algorithms in global optimization
[11].

An infinite nested sequence of subsets {Sq}q=1,2,... is said to be exhaustive if
∞⋂

q=1

Sq is a singleton.

A division process is called exhaustive if each nested infinite subsequence of subsets generated by
the process is exhaustive. It is known and easily seen that the simplicial bisection process as well
as the rectangular bisection process is exhaustive.

4.6. Convergence of (GOA).

Theorem 4.3. Assume that Problem (P) has an optimal solution and that (GOA) with an exhaus-
tive division process generates an infinite sequence {(zk, λk, wk)}k=1,2,.... Then every accumulation
point of the sequence is a global optimal solution of Problem (P).
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Proof. We prove the theorem when the simplicial division process and the relaxation problem
(P1(S)) are used. The convergence for other cases can be seen in the similar way.

Let (z∗, λ∗, w∗) be an arbitrary accumulation point of {(zk, λk, wk)}k=1,2,..., and let {zκ, λκ, wκ}κ∈K

be a subsequence converging to (z∗, λ∗, w∗). Take a subsequence if necessary, we can assume that
λκi −−−→

κ∈K
λi∗ for each i = 1, . . . , p+1. From Lemma 3.2 {µκ}κ∈K = {µ(Sκ)}κ∈K is nondecreasing

and bounded from above by the optimal value f∗ of Problem (P). Then there exists a limit µ∗

of {µκ}κ∈K . By taking further a subsequence if necessary, we can assume that the corresponding
sequence {Sκ}κ∈K is nested, i.e., Sκ+1 ⊂ Sκ for all κ ∈ K.

Since the sets Z, W , Ω and {(z, w) : z ∈ Z, w ∈ W, Bz + w + b = 0, } are all closed, it follows
that

z∗ ∈ Z, w∗ ∈W, (z∗, λ∗) ∈ Ω, Bz∗ + w∗ + b = 0.(4.4)

Since the division process is exhaustive, it follows that⋂
κ∈K

Sκ = {s∗},

with s∗ ∈W , and hence, denoting by sκi (i = 1, . . . , p+ 1) the vertices of Sκ we have sκi −−−→
κ∈K

s∗

for i = 1, · · · , p+ 1, implying w∗ = s∗.
Notice that

∑p+1
i=1 (s

κi)�λκi = 0. Then we obtain

0 = lim
κ∈K

p+1∑
i=1

(sκi)�λκi =
p+1∑
i=1

lim
κ∈K

(
(sκi)�λκi

)
=

p+1∑
i=1

(
lim
κ∈K

sκi

)�(
lim
κ∈K

λκi

)

=
p+1∑
i=1

(s∗)�
(
lim
κ∈K

λκi

)
= (s∗)�

p+1∑
i=1

(
lim
κ∈K

λκi

)
= (s∗)�

(
lim
κ∈K

p+1∑
i=1

λκi

)

= (s∗)�
(
lim
κ∈K

λκ

)
= (s∗)�λ∗.

(4.5)

From (4.4) and (4.5), it follows that (z∗, λ∗, w∗) is a feasible solution of Problem (P). Noting that
µκ ≤ f∗ implies that µ∗ ≤ f∗, we see that (z∗, λ∗, w∗) is an optimal solution of (P).

Remark 4.4. In [6], the authors discuss a number of assumptions under which we can obtain
the uniformly boundedness of generated sequences. Among others, a technical but quite general
assumption is the sequentially bounded constraint qualification (SBCQ). For the problem (PC),
this assumption can be represented as follows:

For any convergent sequence {(zk, λk) : zk ∈ Z, (zk, λk) ∈ Ω, λk ≥ 0}, there exists for
each k a wk = −Bzk − b ≥ 0 satisfying (wk)�λk = 0 and {λk} is bounded.

Since the boundedness of {(zk, λk)} implies the boundedness of {wk = −Bzk − b}, a sufficient
condition of the SBCQ for the problem (PC) is given by

For any (z, λ) satisfying z ∈ Z, (z, λ) ∈ Ω and λ ≥ 0, there exists a w = −Bz − b ≥ 0
such that (w)�λ = 0.

From [7] (Theorem 2, Part (b)), it follows that under some usual constraint qualifications, there
exists a constant c > 0 such that in Problem (PC), constraint λ ≥ 0 can be replaced by the constraint
‖λ‖ ≤ c, λ ≥ 0, where ‖ · ‖ is any polyhedral norm on R

p. Therefore, if we add to the relaxation
problem (P1(S)) the constraints e�λi ≤ c (i = 1, · · · , π) and to Problem (P2(S)) the constraint
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e�λ ≤ c, where e = (1, · · · , 1) ∈ R
p, then the existence of an accumulation point of the sequence

{(zk, λk, wk)}k=1,2,... is guaranteed. In particular, for the case that the set

Y = {(z, λ) : z ∈ Z, (z, λ) ∈ Ω, Bz + b ≤ 0, λ ≥ 0}
is a polyhedron, consider the function

φ(z, λ) =
p∑

i=1

min{λi, (−Bz − b)i}.

Then, clearly, the constraint λ�(Bz + b) = 0 is equivalent to the constraint φ(z, λ) = 0. Since
φ(z, λ) is concave, nonnegative over the set Y , and takes its minimum over Y at some vertex of
Y , the constant c can be estimated by the input data defining the polyhedron Y .

From a numerical point of view, the algorithm should terminate whenever some approximation
of an optimal solution of Problem (P) is found. In the rest of this section, we introduce a concept
of approximate optimal solutions of Problem (P), and give a modification of the (GOA) so that it
terminates within a finite number of iterations and provides an approximate optimal solution.

Definition 4.5. Given a real numbers ε > 0, a point (z, λ,w) is called an ε–optimal solution of
Problem (P) if it satisfies the following conditions:

(a) (z, λ,w) is a feasible solution of Problem (P) with constraint λ�w = 0 replaced by λ�w ≤ ε,
and

(b) f(z, λ) is a lower bound of the optimal value of Problem (P).

The modification is an additional stopping criterion in Step (i) at each iteration k:

(i)’ If γk = µk, then stop. (zk, λ
k
, wk) is an optimal solution of Problem (P) with the optimal

value γk. If (λk)�wk ≤ ε for a given ε > 0, then stop. (zk, λk, wk) is an ε–optimal solution
of Problem (P).

From Proposition 4.1 and Remark 4.1, we obtain immediately the following result.

Theorem 4.6. Assume that Problem (P) has an optimal solution and that within (GOA) the
division process is exhaustive, and the modified step (i)’ above is used at each iteration k. Then
(GOA) always terminates after finitely many iterations yielding an ε–optimal solution of Problem
(P).

5. Illustrative Example and Computational Experiments

To illustrate the algorithm we present a numerical example which arises from the following linear
bilevel programming problem:

min x1 + 2x2 + 2y1 − y2
s.t. x1 + x2 + 0.5y1 + y2 ≤ 6

x ≥ 0, y ≥ 0
y ∈ arg min y1 − 2y2

s.t.− x1 + 2x2 + y2 ≤ 4
−x1 − x2 + y1 + y2 ≤ 5
y ≥ 0,

(5.1)

where arg min{q(z) : z ∈ F} denotes the set of optimal solutions of the problem min{q(z) : z ∈ F}.
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By setting z = (x, y), and

c =
(

1.0, 2.0, 2.0, −1.0
)
,

D =


 1.0 1.0 0.5 1.0

−1.0 2.0 0.0 1.0
−1.0 −1.0 1.0 1.0


 , d =


 −6.0

−4.0
−5.0


 ,

C =

(
0.0 1.0 −1.0 0.0
1.0 1.0 0.0 −1.0

)
, q =

(
1.0

−2.0

)
,

B =




−1.0 2.0 0.0 1.0
−1.0 −1.0 1.0 1.0
0.0 0.0 −1.0 0.0
0.0 0.0 0.0 −1.0


 , b =




−4.0
−5.0
0.0
0.0


 ,

Problem (5.1) is transformed to the following program with linear complementarity constraints:

min cz

s.t. Dz + d ≤ 0
Cλ+ q = 0
Bz + b ≤ 0
λ�(Bz + b) = 0
z ≥ 0, λ ≥ 0,

(5.2)

which is equivalent to

min cz

s.t. Dz + d ≤ 0
Cλ + q = 0
Bz + w + b = 0
λ�w = 0
z ≥ 0, λ ≥ 0, w ∈ W ⊂ R

4
+,

(5.3)

where W is a simplex constructed by (4.1)-(4.2).
The vertices of W are wi = 21ei for i = 1, · · · , 4, where ei is the ith unit vector of R

4, and
w5 = 0.
Initialization. Set S1 = W . Solving the relaxed problem P1(S) we obtain (z(S1), λ(S1), w(S1))
with

z(S1) = (0.0, 0.0, 0.0, 4.0), λ(S1) = (0.0, 2.0, 3.0, 0.0), w(S1) = (0.0, 1.0, 0.0, 4.0),

and the optimal value µ1 = µ(S1) = cz(S1) = −4.0. (z(S1), λ(S1), w(S1)) is not a feasible solution
of Problem (5.3).
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Iteration 1. S1 is divided into S1
1 and S1

2 by a simplicial bisection, where

S1
1 =






21.0
0.0
0.0
0.0


 ,




0.0
21.0
0.0
0.0


 ,




0.0
0.0
10.5
10.5


 ,




0.0
0.0
0.0

21.0


 ,




0.0
0.0
0.0
0.0




 ,

S1
2 =






21.0
0.0
0.0
0.0


 ,




0.0
21.0
0.0
0.0


 ,




0.0
0.0

21.0
0.0


 ,




0.0
0.0

10.5
10.5


 ,




0.0
0.0
0.0
0.0




 .

Solving Problems P1(S1
1)) and P1(S1

2)), we respectively obtain

z(S1
1) = (0.0, 0.0, 0.0, 4.0), λ(S1

1) = (0.0, 2.0, 3.0, 0.0), w(S1
1 ) = (0.0, 1.0, 0.0, 4.0),

µ(S1
1) = −4.0,

z(S1
2) = (0.0, 0.0, 0.0, 0.0), λ(S1

2) = (0.0, 2.0, 3.0, 0.0), w(S1
2 ) = (4.0, 5.0, 0.0, 0.0),

µ(S1
2) = 0.0.

Thus, µ2 = −4.0. No feasible point was found.

At Iteration 11, while considering the simplex

S11
1 =






2.625
2.625
0.000
5.250


 ,




0.000
5.250
0.000
5.250


 ,




0.000
0.000
2.625
2.625


 ,




0.000
0.000
0.000
5.250


 ,




0.000
2.625
0.000
2.625




 ,

we obtain

z(S11
1 ) = (0.25, 0.0, 0.0, 4.25), λ(S11

1 ) = (2.0, 0.0, 1.0, 0.0), w(S11
1 ) = (0.0, 1.0, 0.0, 4.25),

µ(S11
1 ) = −4.0.

Since λ(S11
1 )�w(S11

1 ) = 0, (z(S11
1 ), λ(S11

1 ), w(S11
1 ) is a feasible solution, and hence an optimal

solution with the optimal value cz(S11
1 ) = −4.0.

To test the algorithm, problems of the form (5.2)-(5.3) are chosen. Denote the dimensions of
the matrices D and C by m× n and n1 × p, respectively and assume n1 < n. Accordingly, d ∈ R

n

and q ∈ R
n1 . Each element of D, C, c, d, q is randomly generated by using a pseudo-random

number from a uniform distribution on [−1,+1].
For each triple (m, p, n) arbitrarily chosen by the programmer, the number n1 is set to �n/2�.

The algorithm was run on 10 thus randomly generated test problems. Typical results (in the sense
of average) are summarized in Table 1.

Throughout the algorithm, the simplicial bisection given in Section 4 is used. Moreover, when-
ever an upper bound γk is found, the stopping criterion γk = µk is replaced by γk − µk ≤ δ|γk|.
For all test problems we chose δ = 10−3. It is worth noting that for all test problems, the algorithm
terminated by this criterion.

The test was run on a PC 800 MHz Processor, 128 MB RAM, using a FORTRAN 90 code.
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Table 1. Computational Results

m1 m2 n ITER MAX FEAS TIME
5 3 40 28 5 1 1.50
5 3 60 118 27 2 12.36
9 3 20 192 6 2 3.34
9 3 40 143 6 2 8.64
9 3 80 123 7 1 27.13
15 3 20 165 5 2 3.82
15 3 40 315 45 1 23.81
15 3 60 205 10 2 34.68
15 3 80 226 12 2 37.68
5 5 20 3606 226 4 143.78
5 5 60 4001 155 4 1191.84
5 5 80 7224 516 4 1280.89
9 5 20 11930 1143 4 585.21
9 5 60 5540 308 2 1254.01
9 5 80 19598 601 3 7875.78
15 5 20 2330 364 5 152.26
15 5 40 9571 1009 3 2029.82
15 5 60 8375 276 4 2201.94
5 7 20 2524 214 2 201.72
5 7 40 21049 408 5 3222.32
5 7 80 10271 494 5 4423.18
9 7 20 18269 490 1 1428.95
9 7 60 91 25 1 35.80
9 7 80 243 23 2 130.08
15 7 20 7028 98 1 763.96
15 7 60 10867 301 2 4656.37
15 7 80 8296 446 3 5866.96

ITER = number of iterations;
MAX = maximal number of subsimplices stored at an iteration;
FEAS = number of feasible solutions found throughout the algorithm;
TIME = CPU time in seconds.
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