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Abstract

Deformablemodelsare by their formulation able to
solve surface extraction problem from noisy volumetric
image dataencounteredcommonlyin medicalimage anal-
ysis. However, this ability is shadowedby the fact that
the minimizationproblem formulatedis difficult to solve
globally. Constrained global solutionsare needed,if the
amount of noise is substantial. This paper presentsa
new optimizationstrategy for deformablesurfacemeshes
basedonrealcodedgeneticalgorithms.Realcodedgenetic
algorithms are favored over binary codedonesbecause
they can more efficiently be adapted to the particular
problemdomain.Theexperimentswith syntheticimagesare
performed.Thesedemonstratethat theapplieddeformable
model is able extract a surfacefrom a noisy volumetric
image. Alsosuperiorityof theproposedapproachcompared
to a greedyminimization with multiple initializations is
demonstrated.

1. Intr oduction

Deformablesurface models [8] are sophisticatedap-
proachesfor surface extraction from volumetric image
data. The problemis formulatedas minimization of the
energy of the surface. A surfacehastwo energy functions
associatedwith it. The external energy is derived from
the image data and the internal energy derives from the
shapeof the surface. The total energy is a weighted
sumof thesetwo functions. By the internalenergy these
modelsare in principle able to copewith noise, outliers
and missing data, problemsoften presentin volumetric
medical images. If the image has low signal to noise
ratio the energy function of the deformablesurface can
have numerouslocal minima. Furthermore,it is often
assumedthatagoodinitial positioningfor thetargetsurface

is available. However, automatedinitialization methods
basedon binarizationsuchasin [2] may not performwell
if the imagedata is noisy. Above considerationslead us
to considera globaloptimizationframework for automated
surface extraction with deformablemodels. Then, the
energy of the deformablesurface is globally minimized,
possiblywith constraintsrelatedto thesizeof thesurfaceor
its locationin the image.Sucha problem,evenif properly
formulated, is difficult to solve. In this paper a novel
solution basedon geneticalgorithmsto the optimization
problemis proposed.

Genetic algorithms (GA) [5] have been successfully
appliedto the numberof complex optimizationproblems.
They arebasedonthegeneticprocessesof biologicalorgan-
isms. Mimicking thenaturalselectionandreproductionan
initial populationevolvesto the solutionof the problemat
thehand.In thecurrentstudy, ageneticalgorithmis applied
to globally minimize the energy of a deformablesurface
mesh. The minimum obtainedis further strengthenedby
a greedyalgorithm[9]. Thenthe resolutionof themeshis
increasedto correspondto that of the image. Finally, the
energy of thefinemeshis locally minimizedfor thecapture
of detailsof the target surface. Throughoutthe paperit
will be assumedthat thereis only a singleclosedsurface
homeomorphicto spherein theimage.

In [1] a GA is usedfor a resemblingoptimizationtask,
namelyto minimize the energy of the snake [7]. Besides
that in [1] contours were considered,the GA applied
there differed from the one we apply and also there the
optimizationwasperformedsolelywith theGA. Moreover,
the internalenergy of thesnake is not scaleinvariant,what
leadsto biasedresults.

2. Deformable model

The applieddeformablemodel is presentedin this sec-
tion. Themodelis basedon a simplex meshrepresentation



of thesurfaces[3]. Thesimplex mesh
�

consistsof a set
of discretepoints,calledmexels, ������� andadjacency
relationsbetweenmexels. Eachmexel �
	��
� is adjacent
to exactly three other mexels �
	������
	������
	�� , which are its
neighbours.The neighbourhoodrelationscanbe modeled
by a3-regularsimplegraph,thegraphof themesh.Simplex
meshesaretopologicaldualsof triangularmeshes[3], and
thereforeonecangeneratesimplex meshesfrom triangular
onesaspresentedin detail in [10].

The key to surfaceextraction with deformablemodels
is the definition of its energy function. With deformable
meshestheenergy of themeshis thesumof energiesof in-
dividual mexels. An alternative approachwith deformable
meshesis to considerforcesactingonmexels.Ourattention
is directedto the energy-basedapproachdueto the global
optimizationframework. Theenergy of themeshis
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internalenergy is definedas
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The internal energy is similar in spirit with the surface
orientationcontinuityconstraintproposedin [3]. Thearea
constant

F � �$�
is required for scale invariance of the

internal energy. We calculateit as the averageareaof
facesof the mesh

�
. Areas of facesare calculatedby

triangulatingthem. With the areaconstant,the internal
energy is scale, rotation and translationinvariant. The
externalenergy is definedas
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whereH ��S � is theintensityof theinput image.It is assumed
that H ��S ��T < for all

S ����� . Constraintscanbeembedded
in (2) by addingsuitablepenaltyterms.

3. Surfaceextraction basedon the deformable
meshand a geneticalgorithm

In this section, an algorithm for the global surface
extraction in noisy conditions is presented. First, we
introduce a hybrid algorithm of a GA and the greedy
algorithm [9] to minimize (2). Then, the appliedGA is
describedwith moredetailbecausethenovelty in thework
lies there.

3.1. Hybrid algorithm for deformable mesh opti-
mization

The optimization processis divided in four separate
steps:

1. Global minimization of the energy of the meshby a
GA;

2. Greedy minimization of the energy of the mesh
obtainedfrom first step;

3. Adaptationof theresolutionof themesh;

4. Minimizationof theenergy of theadaptedmeshfor the
final solutionby thegreedyalgorithm;

Optimizationis not solely donewith GAs due to their
slow convergencein the final stagesof the minimization.
Thepurposeof theGA is to performanexplorationfor an
approximativesurfacein theclosevicinity of therealtarget.
Thereaftera local searchby the greedyalgorithm will be
moreefficient (thantheGA) for thesurfaceextraction.

During thefirst two stepsacoarsemesh,ascomparedto
theresolutionof theimage,is appliedin orderto reducethe
computationalburden. The resolutionof the meshis then
adaptedto correspondto thatof the image.Theadaptation
procedureis thefollowing: If theareaof a faceof themesh
is greaterthanagiventhreshold,thenthefaceis dividedby
applying U EE operatordefinedin [3].

3.2.Geneticalgorithm

Thebasicstructureof aGA is presentedin Algorithm 1.

Algorithm 1 GeneticAlgorithmVXW <
initialize a populationY � V � of surfacemeshes
evaluateY � V � by computingtheenergy of eachindividual
in it
while NOT terminationconditiondoVXWZV % '

selectY � V � from Y � V )[' �
recombineY � V �
evaluateY � V �

endwhile

The populationsconsistof simplex mesheshaving the
samegraph. Insteadof the traditional binary coding, the
real codedGA (RCGA) is applied [6]. With RCGAs it
is possibleto definerecombinationoperatorsthat can do
well in a particular problem domain. This is especially
importantwith deformablemeshesbecausemeaningfulbut
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Figure 1. Test surfaces: a) sphere b) metasphere 1 c) metasphere 2.

randominitial populationsarehardor even impossibleto
construct. The strategy usedin this study was to begin
with an initial populationconsistingonly surfacemeshes
of simple shapesand producethe randomnessin shapes
by applyingsuitablerecombinationoperators.The initial
populationwasconstructedby transforminga spheremesh
of 320 mexels by random affine transformations. We
appliedBLX- \ crossover [4, 6]: If � 4 �^] � 44 � G_G�G �`� 4acb
and � E �d] � E4 � G_G_G �`� Ea b aretheparents,thentheoffspring
is e A �f]�g A 4 � G_G�G � g A a b �ih � ' �kj , where

g 4	 � � 4	 %l 	 � � E	 ) � 4	 � , g E	 � � E	 % l 	 � � 4	 ) � E	 � andeachl 	 is randomly
chosenfrom theinterval

6 ) \X� ' % \ 9 . Wedid notapplyany
mutationdueto theselectedcrossoveroperator.

The tournamentselectionwith tournamentsize of ten
was applied. The crossover rate was 1. From each
generation, ten meshesof lowest energy automatically
survivedto thenext generation.

4. Experimentsand Results

A set of synthetic test imageswas used to test the
introduced energy minimization method. The images
containeda closedsurfaceof intensityvaluesof one. See
Fig. 1 for surfaces,which are metaspheresintroducedin
[10]. Dimensionsfor the appliedsyntheticimagesweremMnpoqmMnpormMn

. For eachsurfacethe imageset contained
a noiselessversionandtwo noisy versionscorruptedwith
white Gaussiannoise.Variancesof noisewere0.3and0.6.
Noisy imageswerefilteredwith aGaussianfilter. Thefilter
had s o s o s kernelwith thestandarddeviationequalto 1.

The population size for the GA was 4000. The
regularizationparameter

�t� < G s in all tests.Thethreshold
for the resolutionadaptationroutinewas3. The GA was
terminatedwhen 100 generationswere evaluated. In all
cases,after100generations,thespeedof convergencewas
alreadyvery low. BLX-0.3 crossover wasused. BLX-0.1
and BLX-0.5 crossovers were also tested,but they gave
worse resultsthan the selectedcrossover operator. With

BLX-0.1, the problemwasprematureconvergence.When
BLX-0.5 operatorwas applied, the speedof convergence
wastoo slow: In a few experimentsthat weremade,even
within 1000 generationsno better solution than the best
initial onewasfound.

Quantitative testresultswerecomputedwith thefollow-
ing measure:Let Uvucw � denotethesetof voxelsinsidethe
true(digital) surfaceandlet

�cx Uvu F�y U �{z bethesetof
voxelsinsidetheextractedsurface.Thentheerroris

| � '*) > �}x Uvu F�y U �{z�~ Uvucw � >> �}x Uvu F�y U �{z�� Uvucw � > G (4)

To depict the measureassumethat the true surface is a
sphereof radius16 and the extractedsurface is identical
expectthatit is translocatedoneunit in eachdirectionfrom
thetruesurface.Then | � < G ' m .

Energies of meshesafter the GA and the first greedy
minimization (Step2 in the hybrid algorithm) as well as
valuesof | aftereachminimizationsteparelisted in Table
1. Somequalitative resultsareshown in Figs. 2 and3. All
surfaceswereaccuratelyextractedfrom noiselessimages,
ascanbe seenfrom Table1. Whenthe varianceof noise
was 0.3, sphereand metasphere1 were extractedwell as
canbe seenfrom Figs. 2 and3. With metasphere2, the
result was not good in highly curved partsof the surface
(SeeFig. 2), but acceptablein a global sense.Whenthe
varianceof noisewas0.6,spherewasextractedwell. With
metasphere1, highly curved details of the surface were
not captured,but overall result was still acceptable.The
extractionresultfor metasphere2 in thiscasewasnotgood.
Applicationof thegreedyalgorithmaftertheGA is justified
sincetheenergy of themeshwasloweredin eachcase.For
noiselessimagesandthetwo metaspheres,thedecreasewas
notable. However, in two caseswherethe surfacein the
imagewas sphere,valuesof | were slightly higher after
the first greedyminimization than after the GA. Indeed,
there is no guaranteethat a lower energy yields a better
result. However, our global optimizationstrategy is still



valid, becausewecanassumethat,on theaverage,energies
are lower near the true surface. Thereforea low energy
valueyieldsa goodresult.

Also anothersimulationwasmade.In thesimulationall
meshesin theinitial populationfor theGA wereoptimized
by the greedyalgorithm. The surfaceto be extractedwas
thespherein a noisy image. Whennoisevariancewas0.6
(respectively 0.3),thelowestenergy afterall minimizations
was0.1546(0.1681). With the proposedhybrid algorithm
a betterresult (after the first greedyminimization)0.1372
(0.1599) was achieved. With the hybrid algorithm also
lower errors | wereobtained.Minimization of energiesof
all themesheswith thegreedyalgorithmhasa complexity
about16 timesgreaterthan100generationsof theGA.

5. Discussionand Summary

We have shown how to apply genetic algorithms to
optimizationof deformablesurfacemeshes.Theproposed
schemeis well-suitedfor noisy conditions. However, two
points ought to be studiedfurther. The initial population
should contain more shapesthan just ellipsoids to make
the methodmoreflexible for differentshapesof the target
surface. The crossover-operatorappliedis not optimal. A
lot of thecomputationtime is wastedby evaluatingmeshes
that are of irregular shapeand hencehave high energy.
However, all theothercrossoveroperatorstestedperformed
worsethanBLX- \ operators.BLX- \ crossoversalsotend
to producenon-smoothmeshesthatareeasilycorrectedby
the greedyalgorithm, and thereforethey are well-suited
for simple hybrid algorithmslike the one which we have
presented.

The choice of value of \ is a tradeoff betweencom-
putation time and the goodnessof the result. A good
compromiseis achieved by setting \ � < G s . However, in
somecasesbetteroptimizationresultsmay be achieved at
theexpenseof longercomputationtimeby increasing\ .

To summarize,the global optimization of deformable
meshesprovidesa soundframework for automatedsurface
extraction from noisy images,a problem commonly en-
counteredwhenprocessingmedicalimages.In thispaper, a
novel techniquefor the global optimizationof deformable
surface meshesis proposed. The experimentssuggest
that with the global optimizationscheme,surfacescanbe
extractedalsofrom noisyimages.
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Figure 2. The extracted sphere from the image with noise of the variance 0.3. Columns a), b) and c).
Top row : central cross sections of the filtered noisy image in (resp.) ��� , �7� and �Q� -planes. Bottom
row: central cross sections of the extracted surface (in white) and the true surface (in grey) in (resp.)��� , �7� and �Q� planes. The column d). The extracted meshes after the 1st greed y (on top) and after the
2nd greed y minimization (on bottom). Simple x meshes have been triangulated before visualization.

Table 1. Energies and values of the error criteria (4) of meshes after the minimization steps. Symbol� E denotes the variance of noise in the image. For target surfaces see Fig. 1. Energies after
the 1st greed y minimization and the 2nd greed y minimization are not comparab le because meshes
after the 2nd greed y minimization have more mexels. Theref ore energy values after the 2nd greed y
minimization are omitted from the table.

energy of themeshafter errorafter
surface � E GA 1stgreedy GA 1stgreedy 2ndgreedy
sphere 0 0.0113 0.0038 0.05 0.09 0.04

metasphere1 0 0.0745 0.0069 0.12 0.11 0.04
metasphere2 0 0.1643 0.0107 0.27 0.17 0.07

sphere 0.3 0.1768 0.1599 0.09 0.08 0.07
metasphere1 0.3 0.1742 0.1365 0.16 0.11 0.08
metasphere2 0.3 0.2076 0.1739 0.26 0.21 0.18

sphere 0.6 0.1518 0.1372 0.08 0.11 0.10
metasphere1 0.6 0.2036 0.1646 0.27 0.18 0.18
metasphere2 0.6 0.2004 0.1695 0.39 0.36 0.35
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Figure 3. The extracted metasphere 1 and metasphere 2 from the images with noise of the variance
0.3. Two topmost rows are dedicated to metasphere 1 and two bottom rows deal with metasphere 2.
Columns a), b) and c). Top row for both surfaces : central cross sections of the filtered noisy image
in (resp.) ��� , �7� and �Q� -planes. Bottom row for both surfaces: central cross sections of the extracted
surface (in white) and the true surface (in grey) in (resp.) ��� , �7� and �Q� planes. The column d). The
extracted meshes after the 1st greed y (on top) and after the 2nd greed y minimization (on bottom).
Simple x meshes have been triangulated before visualization.


