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Abstract

Deformable modelsare by their formulation able to
solve surface extraction problem from noisy volumetric
image dataencounteed commonlyin medicalimage anal-
ysis. However, this ability is shadowedby the fact that
the minimization problem formulatedis difficult to solve
globally. Constained global solutionsare needed,f the
amount of noise is substantial. This paper presentsa
new optimizationstrategy for deformablesurfacemeshes
basedonreal codedgeneticalgorithms.Realcodedgenetic
algorithms are favored over binary coded onesbecause
they can more efficiently be adaptedto the particular
problemdomain.Theexperimentsvith synthetidmagesare
performed.Thesedemonstate that the applieddeformable
modelis able extract a surfacefrom a noisy volumetric
image. Alsosuperiorityof theproposedapproadc compaed
to a greedy minimizationwith multiple initializations is
demonstated.

1. Intr oduction

Deformable surface models [8] are sophisticatedap-
proachesfor surface extraction from volumetric image
data. The problemis formulatedas minimization of the
enepy of the surface. A surfacehastwo enepgy functions
associatedwith it. The external enegy is derived from
the image data and the internal enegy derives from the
shapeof the surface. The total enegy is a weighted
sum of thesetwo functions. By the internal enegy these
modelsare in principle able to cope with noise, outliers
and missing data, problemsoften presentin volumetric
medical images. If the image has low signal to noise
ratio the enepgy function of the deformablesurface can
have numerouslocal minima. Furthermore,it is often
assumedhatagoodinitial positioningfor thetamgetsurface

is available. However, automatedinitialization methods
basedon binarizationsuchasin [2] may not performwell

if the imagedatais noisy Above considerationdead us
to considera global optimizationframework for automated
surface extraction with deformablemodels. Then, the

enegy of the deformablesurfaceis globally minimized,
possiblywith constraintgelatedto the sizeof the surfaceor

its locationin theimage. Sucha problem,evenif properly
formulated, is difficult to solve. In this papera novel

solution basedon geneticalgorithmsto the optimization
problemis proposed.

Genetic algorithms (GA) [5] have been successfully
appliedto the numberof comple optimizationproblems.
They arebasednthegeneticprocessesf biologicalorgan-
isms. Mimicking the naturalselectionandreproductionan
initial populationevolvesto the solutionof the problemat
thehand.In thecurrentstudy ageneticalgorithmis applied
to globally minimize the enegy of a deformablesurface
mesh. The minimum obtainedis further strengthenedby
a greedyalgorithm[9]. Thenthe resolutionof the meshis
increasedo correspondo that of the image. Finally, the
enegy of thefine meshis locally minimizedfor the capture
of details of the tamget surface. Throughoutthe paperit
will be assumedhat thereis only a single closedsurface
homeomorphito spheren theimage.

In [1] a GA is usedfor a resemblingoptimizationtask,
namelyto minimize the enegy of the snale [7]. Besides
that in [1] contourswere considered,the GA applied
there differed from the one we apply and also there the
optimizationwasperformedsolelywith the GA. Moreover,
theinternalenepgy of the snale is not scaleinvariant,what
leadsto biasedresults.

2. Deformable model

The applieddeformablemodelis presentedn this sec-
tion. The modelis basedon a simplex meshrepresentation



of the surfaceg[3]. The simplex meshM consistsof a set
of discretepoints, called mexels, V. c R3 andadjaceng

relationsbetweermexels. Eachmexel v; € V is adjacent
to exactly three other mexels v;, , v4,, v;,, which are its

neighbours.The neighbourhoodelationscanbe modeled
by a3-regularsimplegraph thegraphof themesh.Simplex

meshesaretopologicaldualsof triangularmesheg3], and
thereforeonecangeneratesimplex meshedrom triangular
onesaspresentedn detailin [10].

The key to surface extraction with deformablemodels
is the definition of its enegy function. With deformable
mesheghe enegy of the meshis thesumof enegiesof in-
dividual mexels. An alternatve approachwith deformable
meshesgs to considerforcesactingon mexels. Our attention
is directedto the enegy-basedapproactdueto the global
optimizationframevork. The enegy of themeshis
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where E;,; is the internal enegy, E.,; is the external
enegy and\ € [0, 1] is theregularizationparameter The
internalenepy is definedas
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The internal enegy is similar in spirit with the surface
orientationcontinuity constraintproposedn [3]. The area
constantA(M) is required for scale invariance of the
internal enegy. We calculateit as the averagearea of
facesof the mesh M. Areasof facesare calculatedby
triangulatingthem. With the areaconstant,the internal
enegy is scale, rotation and translationinvariant. The
externalenepy is definedas
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wherel (x) is theintensityof theinputimage.It is assumed
thatZ(x) > 0 for all x € R%. Constraintsanbeembedded
in (2) by addingsuitablepenaltyterms.

3. Surface extraction basedon the deformable
meshand a geneticalgorithm

In this section, an algorithm for the global surface
extraction in noisy conditionsis presented. First, we
introduce a hybrid algorithm of a GA and the greedy
algorithm [9] to minimize (2). Then, the applied GA is
describedvith moredetail becausehe novelty in the work
liesthere.

3.1. Hybrid algorithm for deformable mesh opti-
mization

The optimization processis divided in four separate
steps:

1. Global minimization of the enegy of the meshby a
GA;

2. Greedy minimization of the enegy of the mesh
obtainedfrom first step;

3. Adaptationof theresolutionof themesh;

4. Minimizationof theenegy of theadaptedneshfor the
final solutionby the greedyalgorithm;

Optimizationis not solely donewith GAs dueto their
slow corvergencein the final stagesof the minimization.
The purposeof the GA is to performan explorationfor an
approximatve surfacein theclosevicinity of therealtamget.
Thereaftera local searchby the greedyalgorithmwill be
moreefficient (thanthe GA) for the surfaceextraction.

During thefirst two stepsa coarsemesh,ascomparedo
theresolutionof theimage,is appliedin orderto reducethe
computationaburden. The resolutionof the meshis then
adaptedo correspondo thatof theimage. The adaptation
procedures thefollowing: If the areaof afaceof themesh
is greatethana giventhresholdthenthefaceis divided by
applyingT3 operatodefinedin [3].

3.2.Geneticalgorithm

Thebasicstructureof a GA is presentedn Algorithm 1.

Algorithm 1 GeneticAlgorithm
t+0
initialize a populationP(t) of surfacemeshes
evaluateP(t) by computingtheenepy of eachindividual
in it
while NOT terminationconditiondo
t—t+1
selectP(t) from P(t — 1)
recombineP(t)
evaluateP(t)
endwhile

The populationsconsistof simplex mesheshaving the
samegraph. Insteadof the traditional binary coding, the
real codedGA (RCGA) is applied[6]. With RCGAs it
is possibleto definerecombinationoperatorsthat can do
well in a particular problem domain. This is especially
importantwith deformablameshedecauseneaningfulbut



a) b)

c)

Figure 1. Test surfaces: a) sphere b) metasphere 1 c) metasphere 2.

randominitial populationsare hard or even impossibleto
construct. The strat@y usedin this study was to begin
with aninitial populationconsistingonly surface meshes
of simple shapesand producethe randomnessn shapes
by applying suitablerecombinationoperators. The initial
populationwasconstructedy transforminga spheremesh
of 320 mexels by random affine transformations. We
appliedBLX-« crossweer [4, 6]: If V! = {v],..., vk}
andV? = {v? ... v%} aretheparentsthentheoffspring
is W/ = {w],...,wi},j = 1,2, wherew} = v} +
ri(v?—v}),w? = vZ+r;(v} —v?) andeachr; israndomly
choserfrom theintenal [—a, 1 + a]. We did notapplyary
mutationdueto the selecteccrossaer operator

The tournamentselectionwith tournamentsize of ten
was applied. The crossweer rate was 1. From each
generation,ten meshesof lowest enegy automatically
survivedto the next generation.

4. Experiments and Results

A set of synthetic test imageswas usedto test the
introduced enegy minimization method. The images
containeda closedsurfaceof intensity valuesof one. See
Fig. 1 for surfaces,which are metaspheregtroducedin
[10]. Dimensionsfor the applied syntheticimageswere
64 x 64 x 64. For eachsurfacethe imagesetcontained
a noiselessversionandtwo noisy versionscorruptedwith
white Gaussiamoise.Varianceof noisewere0.3and0.6.
Noisy imageswerefilteredwith a Gaussiafilter. Thefilter
had3 x 3 x 3 kernelwith the standarddeviation equalto 1.

The population size for the GA was 4000. The
regularizationparametei = 0.3 in all tests.Thethreshold
for the resolutionadaptatiorroutinewas 3. The GA was
terminatedwhen 100 generationsvere evaluated. In all
casesafter 100 generationsthe speedof corvergencewas
alreadyvery low. BLX-0.3 crosseer wasused. BLX-0.1
and BLX-0.5 crossw@ers were also tested, but they gave
worse resultsthan the selectedcrosseer operator With

BLX-0.1, the problemwas prematurecorvergence. When
BLX-0.5 operatorwas applied, the speedof corvergence
wastoo slow: In afew experimentsthat were made,even
within 1000 generationsno better solution than the best
initial onewasfound.

Quantitatve testresultswerecomputedwith the follow-
ing measureLet TRU E denotethe setof voxelsinsidethe
true (digital) surfaceandlet EXTRACTED bethe setof
voxelsinsidethe extractedsurface. Thentheerroris

|[EXTRACTED NTRUE)]

=1- . 4
¢ |[EXTRACTED UTRUE] @

To depict the measureassumethat the true surfaceis a
sphereof radius 16 and the extractedsurfaceis identical
expectthatit is translocateaneunit in eachdirectionfrom
thetruesurface.Thene = 0.16.

Enegies of meshesafter the GA and the first greedy
minimization (Step 2 in the hybrid algorithm) aswell as
valuesof ¢ aftereachminimizationsteparelistedin Table
1. Somequalitative resultsareshowvn in Figs. 2 and3. All
surfaceswere accuratelyextractedfrom noiselessmages,
ascanbe seenfrom Table1. Whenthe varianceof noise
was 0.3, sphereand metaspherd were extractedwell as
canbe seenfrom Figs. 2 and 3. With metasphere, the
resultwas not goodin highly curved partsof the surface
(SeeFig. 2), but acceptablén a global sense.Whenthe
varianceof noisewasO0.6, spherewasextractedwell. With
metaspherel, highly curved details of the surface were
not captured,but overall result was still acceptable.The
extractionresultfor metaspheré& in this casewasnotgood.
Applicationof thegreedyalgorithmafterthe GA is justified
sincethe enegy of themeshwasloweredin eachcase.For
noiselessmagesandthetwo metasphereshedecreasavas
notable. However, in two caseswherethe surfacein the
image was sphere,valuesof ¢ were slightly higher after
the first greedy minimization than after the GA. Indeed,
thereis no guaranteehat a lower enegy yields a better
result. However, our global optimization strateyy is still



valid, becausave canassumehat,ontheaverage gnepies
are lower nearthe true surface. Thereforea low enegy
valueyieldsagoodresult.

Also anothersimulationwasmade.In the simulationall
meshesn theinitial populationfor the GA wereoptimized
by the greedyalgorithm. The surfaceto be extractedwas
the spherein a noisyimage. Whennoisevariancewas0.6
(respectiely 0.3),thelowestenegy afterall minimizations
was0.1546(0.1681). With the proposedhybrid algorithm
a betterresult (after the first greedyminimization) 0.1372
(0.1599) was achieved. With the hybrid algorithm also
lower errorse were obtained. Minimization of enegies of
all the mesheswith the greedyalgorithmhasa compleity
aboutl6timesgreateithan100generation®f the GA.

5. Discussionand Summary

We have shovn how to apply genetic algorithmsto
optimizationof deformablesurfacemeshes.The proposed
schemds well-suitedfor noisy conditions. However, two
points oughtto be studiedfurther The initial population
should contain more shapesthan just ellipsoidsto make
the methodmoreflexible for differentshapef the tamget
surface. The crosswer-operatorappliedis not optimal. A
lot of the computatiortime is wastedby evaluatingmeshes
that are of irregular shapeand hencehave high enegy.
However, all theothercrossweroperatorgestecherformed
worsethanBLX-a operators BLX-« crosseersalsotend
to producenon-smoothmesheghatareeasilycorrectedby
the greedyalgorithm, and thereforethey are well-suited
for simple hybrid algorithmslike the one which we have
presented.

The choice of value of « is a tradeof betweencom-
putation time and the goodnessof the result. A good
compromiseds achieved by settinga = 0.3. However, in
somecasedetteroptimizationresultsmay be achiered at
the expenseof longercomputatiortime by increasingy.

To summarize,the global optimization of deformable
meshegprovidesa soundframewvork for automatedsurface
extraction from noisy images,a problem commonly en-
counteredvhenprocessingnedicalimages.In thispapera
novel techniquefor the global optimizationof deformable
surface meshesis proposed. The experimentssuggest
that with the global optimizationscheme surfacescanbe
extractedalsofrom noisyimages.
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Figure 2. The extracted sphere from the image with noise of the variance 0.3. Columns a), b) and c).
Top row : central cross sections of the filtered noisy image in (resp.) zy, zz and yz-planes. Bottom
row: central cross sections of the extracted surface (in white) and the true surface (in grey) in (resp.)
zy, vz and yz planes. The column d). The extracted meshes after the 1st greedy (on top) and after the
2nd greedy minimization (on bottom). Simple x meshes have been triangulated before visualization.

Table 1. Energies and values of the error criteria (4) of meshes after the minimization steps. Symbol
o? denotes the variance of noise in the image.
the 1st greedy minimization and the 2nd greedy minimization are not comparab le because meshes
after the 2nd greedy minimization have more mexels. Therefore energy values after the 2nd greedy

minimization are omitted from the table.

()

c)

d)

For target surfaces see Fig.

enegy of the meshafter errorafter
surface o? GA 1stgreedy GA 1stgreedy 2ndgreedy
sphere 0 | 0.0113 0.0038 0.05 0.09 0.04
metaspheré | 0 | 0.0745 0.0069 0.12 0.11 0.04
metaspher@ | 0 | 0.1643 0.0107 0.27 0.17 0.07
sphere 0.3 ] 0.1768 0.1599 0.09 0.08 0.07
metaspheré | 0.3 | 0.1742 0.1365 0.16 0.11 0.08
metaspher@ | 0.3 | 0.2076 0.1739 0.26 0.21 0.18
sphere 0.6 | 0.1518 0.1372 0.08 0.11 0.10
metaspheré | 0.6 | 0.2036 0.1646 0.27 0.18 0.18
metaspher@ | 0.6 | 0.2004 0.1695 0.39 0.36 0.35

1. Energies after



metaspheré

d)

Figure 3. The extracted metasphere 1 and metasphere 2 from the images with noise of the variance
0.3. Two topmost rows are dedicated to metasphere 1 and two bottom rows deal with metasphere 2.
Columns a), b) and c). Top row for both surfaces : central cross sections of the filtered noisy image
in (resp.) zy, xz and yz-planes. Bottom row for both surfaces: central cross sections of the extracted
surface (in white) and the true surface (in grey) in (resp.) zy, zz and yz planes. The column d). The
extracted meshes after the 1st greedy (on top) and after the 2nd greedy minimization (on bottom).
Simple x meshes have been triangulated before visualization.



