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Abstract

This thesis deals with surface extraction from noisy volumetric images, which
is a common problem in medical image analysis. Due to noise, the use of
a-priori information about surface topology and shape is necessary for auto-
matic surface extraction methods. Deformable surface models can incorporate
such geometric knowledge into extraction process which is restated as an en-
ergy minimization problem. A drawback of deformable models is that the for-
mulated minimization problem is difficult to solve because of numerous local
minima and a large number of variables. This difficulty may lead to sensitivity
to the initialization, complicating the unsupervised use of deformable models.
The main contributions of this thesis are algorithms for solving the minimiza-
tion problem globally. We propose two classes of algorithms for the task,Dual
surface minimization(DSM) and a hybrid of real-coded genetic algorithms and
a greedy algorithm (GAGR). By global optimization of the energy of the de-
formable models, we are capable of reducing the initialization sensitivity of de-
formable surface models, and hence enabling automation of surface extraction.
Moreover, these methods for global optimization do not lead to unforseeable
sensitivity to values of the model parameters, another problem common with
deformable models. As our second contribution, we extend a shape model-
ing approach for two-dimensional contours to surfaces and analytically derive
a shape model for the sphere (surface). We also consider surface extraction
from positron emission tomography (PET) images as an application of the de-
formable model based on the DSM algorithm. This task is problematic because
of high noise levels in PET as compared to the contrast of the images. Our
automatic method based on the proposed deformable model reliably yielded
extraction results of good accuracy as compared to the imaging resolution. The
success in this application demonstrates the good properties of global optimiza-
tion - based deformable models for automatic surface extraction.
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Chapter 1

Introduction

1.1 Volumetric medical imaging

Several types of devices provide three-dimensional image data. For example,
laser ranging systems produce images where each pixel intensity expresses the
distance between a known reference frame and a visible point in the scene.
These images are called range images or 2.5-dimensional (2.5-D) images. The
focus in this thesis is on another type of three-dimensional image data, namely
volumetric intensity images. These are collections of elementary volume el-
ements called voxels and intensity values associated with them. Voxels are
three-dimensional counterparts of pixels and they have the shape of a rectan-
gular parallelepiped. Three-dimensional intensity images can be considered as
generalizations of ‘normal’ two-dimensional intensity images.

Volumetric intensity images, or volumetric images, are most commonly en-
countered within medical imaging. They are acquired by the means of tomogra-
phy; a method of producing a three-dimensional image of the internal structures
of a solid object by the observation and recording of the differences in the ef-
fects on the passage of waves of energy impinging on those structures [18].
Medical imaging allows non-invasive examination of living beings and offers
valuable information for clinicians in support for making critical decisions .
However, applications of medical images go beyond this; They are important,
for example, in drug development and in image-guided surgery.

Information provided by a medical image depend on the measured physical
phenomenon and there are several imaging modalities each providing different
information about the object imaged [69]. X-ray based computed tomography
(CT) produces images of the photon attenuation of tissue. Magnetic resonance
(MR) imaging measures the proton or water density. MR and CT images are
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Figure 1.1: Examples of medical images of head, from top transaxial, sagittal, and coronal
cross-section views. (Left) A T1-weighted MR image (left) and PET image (right) of the same
subject. Images were provided by Turku PET Centre.

used for describing the anatomical structure of the imaged subject, because
they can make distinctions between different types of tissue. On the other hand,
imaging modalities like positron emission tomography (PET) and functional
MR imaging (fMRI) can delineate information about the functional properties
of the tissue. See Fig. 1.1 for examples of image cross-sections acquired with
MR and PET.

1.2 Analysis of volumetric image data

Medical images can be used qualitatively for aid in making a diagnosis. How-
ever, their use in medical research requires extraction of quantitative and objec-
tive information from images. Several rather distinct entities can be measured
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quantitatively. These include measuring volumes or characterizing shape of
anatomical brain structures based on MR images, or computing the glucose
consumption within biologically meaningful volumes based on FDG (fluoro-2-
deoxy-D-glucose) PET images. Of course, before any values can be computed,
structures of interest must be delineated from images. Structures of interest can
be volumes or surfaces, and procedures for recovering them are called, respec-
tively, image segmentation and surface extraction.

Image segmentation can be, in principle, performed manually by a trained
clinician with suitable equipment. However, manual segmentation has several
drawbacks:

• The amount of acquired data is enormous and performing the structure
extraction manually, or even semi-automatically, can be costly, if feasible
at all.

• When several experts are processing the images, the reproducibility and
the comparability of the processed images are reduced. This is simply
due to the divergent opinions and the individual working habits of the
people involved. See [85] and page 216 in [69] for particular examples.

These considerations call for automatic methods to perform the structure
extraction. However, automation of medical image analysis is complicated and
it requires advanced techniques, because 1) images are noisy as compared to
their contrast and 2) intensity values in an image do not solely define the (bio-
logically meaningful) structure of interest, as their spatial organization is also
very important. 3) Images are characterized by individual variability.

Noise in medical images is a sum of different components, e.g. measure-
ment noise, natural intensity variation within structures of interest, and modality
dependent imaging artifacts. Noise suppression and artifact correction without
destroying valuable information is therefore not a simple issue. Types and levels
of noise in images vary significantly between imaging modalities. Note that in
medical image analysis the level of noise is more naturally compared to the con-
trast between structures of interest than to the intensity values themselves. This
is because the features that allow us to discriminate between different struc-
tures of interest are differences in intensity values rather than intensity values
themselves.

The spatial relationships, such as inclusion and adjacency, between different
structures in a medical image are oftena-priori known based on existing neu-
roanatomical knowledge. This has to be taken into account when segmenting
images. The high-level prior knowledge simplifies the segmentation problem,
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but at the same time algorithms capable of utilizing it can become more com-
plicated than segmentation algorithms relying only on the image data.

Biological shapes are complex and individually variable and naturally this
has its effect on medical images. Individual variability is reflected also on the
intensity values of images. There does not exist an intensity value that globally
characterizes a certain structure in the images of several subjects. This is, again,
due to individual variability in subjects and sometimes also due to difficulties
in the calibration of tomographs. To summarize, it is necessary to apply high-
level information together with low-level clues to be able to develop automatic
methods for medical image analysis.

1.3 Aims and structure of the thesis

The aim of the thesis is to develop fully automatic techniques for surface ex-
traction from noisy volumetric images. Particularly, focus is on the extraction
of surfaces homeomorphic to the sphere. The proposed methods are based on
deformable surface models, and automation and tolerance to noise are achieved
by using global optimization algorithms for minimization of their energy. The
designed global optimization algorithms are the main contributions of the the-
sis. The extracted surfaces can be applied for segmentation of specific brain
structures from medical images or for other tasks in medical image analysis
requiring surface extraction.

More mathematically oriented definitions of basic concepts such as the im-
age and the surface are provided in Chapter 2, where some standard methods
for surface extraction are also summarized. Chapter 3 reviews the literature on
deformable models. With the literature review our intention is to provide an
unified framework of deformable models that is not blurred by computational
considerations. In Chapter 3, we also present a more detailed description of
the aims of the thesis based on the terminology introduced so far. Chapter 4
focuses on deformable models built on a particular surface representation, sur-
face meshes. In this chapter, the first contributions of this thesis are presented.
Chapter 5 presents two global optimization algorithms for surface extraction
with deformable models. These are the primary contributions of this thesis. In
Chapter 6 we provide an experimental comparison of deformable models based
on our global optimization algorithms and some other other recent deformable
models. The application of the developed surface extraction methods for the
analysis of PET images is described in Chapter 7. Some limitations and advan-
tages of the proposed algorithms are discussed in Chapter 8, where the main
contributions of this thesis are summarized.



Chapter 2

Surface Extraction and Image
Analysis

In this Chapter some basic concepts and terminology are defined. The purpose
of these definitions is to make the problem setting easier to grasp. Preliminaries
from topology are explained, but the reader is assumed to be familiar with the
basic concepts from real analysis that can be found in e.g. [3].

2.1 Images and segmentations

2.1.1 Images

Volumetric digital images are collections of values describing the strength of
some measured physical quantity at a (finite) setD ⊂ R3 of loci. The measured
quantity is referred to as the intensity. The loci in the setD are related to
image voxels and we can assume that they are the voxel centers. For notational
simplicity, we also use the symbolD for the set of voxels, although this is not
strictly true.

Images are defined as maps from the set of lociD to the set of possible
intensity values. However, to simplify the notation later on we define a volu-
metric image as a mapI : R3 → [0, 1], which is piecewise constant and has
a boundedsupportsupp(I) = {x|I(x) 6= 0}. The supportsupp(I) is called
image domain. The range of imageI is selected as[0, 1] for convenience and in
practise this only requires affine scaling of the intensity values of the observed
image appropriately. The requirement that images are piecewise constant sim-
ply means that image intensity inside a particular voxel is constant. (We might
as well consider images that are piecewise trilinear functions.). Intensity values
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of an imageI are nonzero only on a bounded subset ofR
3 because the support

of I is bounded.

2.1.2 Segmentations

Segmentation1 of the imageI denoted byIs provides the information about
which voxels belong to a certain structure of interest. Let us denote byL =
{1, . . . ,m} the set of labels of structures of interest. In medical image analysis
labels are known prior to any processing. Also, labels are not interchangeable,
meaning each label is identified with a particular structure of interest. In a
segmentation a label (or labels) is assigned to each voxel. Asegmentationof I
is therefore a collection of subsets ofD, i.e. Is = {Rl ⊆ D|l ∈ L}. Indeed,
we sometimes wish to associate several labels with a single voxel. Consider an
anatomical MR-image of a human head. We know that ventricles, nuclei and
all the other brain structures are inside the brain, but the skull, for instance, is
not inside the brain. This is easiest to model if we can assign both labels ‘brain’
and ‘ventricles’ to a voxel belonging to ventricles.

As already mentioned, we often know quite a lot about the spatial relations
between structures of interest. Therefore, we can assert constraints on setsRl,
such as connectivity, adjacency or non-adjacency betweenRa andRb, inclusion
and so on. Algorithms aiming at image segmentations that respect the given
constraints can be coarsely classified into two classes. 1) Algorithms that try to
solve the whole problem in one step in e.g. [50], and 2) algorithms that make
use of intermediate goals, i.e. divide the segmentation problem into smaller
sub-problems as in e.g. [55].

Structures of interest can be surfaces instead of image sub-volumes. If this is
the case, we face another problem termed surface extraction, which is the topic
of this thesis. Surface extraction and segmentation problems are closely related
when considering an input in the form of a volumetric image. Particularly,
knowing the bounding surfaces of the volumetric structure gives the information
about the voxels inside that structure; the segmentation problem can be attacked
via surface extraction. This leads to a segmentation strategy of the type 2)
above. We can extract surfaces of interest in the image one by one starting from
the easiest surfaces to extract, and then utilize information of the already found
surfaces for succeeding (more difficult) surface extraction tasks. A practical
example of application of this ‘segmentation via surface extraction’ paradigm
is presented in Chapter 7, where we consider automatic analysis of PET images.

1The term segmentation is used for the process of segmenting images as well as the result
of that process.
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Also other applications of the surface extraction exist, some examples are cited
in Chapter 2.3.

2.2 Surfaces

In this Section we consider surfaces from a topological point of view. The
material of the section is mainly taken from [19]. However, most of it can be
found in almost any text on topology (e.g. [36]) and also in the Internet resource
[79].

2.2.1 Preliminaries from topology

Before we can define surfaces we need some definitions from topology. Recall
that the Euclidean topology ofR3 means a set of open subsets of the metric
spaceR3 with the Euclidean distance as the metric. The Euclidean spaceR

3

equipped with this topology becomes a topological space. A functionf : X →
Y between two topological spaces iscontinuousif the inverse image

f−1(O) = {x ∈ X|f(x) ∈ O}

is open for every open setO ⊂ Y . This definition is equivalent to the standard
definition of continuity when the Euclidean topology is considered. Ahome-
omorphismbetween two topological spaces is a bijective continuous function
between these spaces that has a continuous inverse. If there exist a homeomor-
phism between two topological spaces they are said to be homeomorphic, i.e.
topologically equivalent.

Two-dimensionalmanifolds (2-manifolds) are topological spaces which
have the property that each of their points has a local neighborhood that is
homeomorphic toR2. Now, surfaces(in R3) can be defined mathematically
as connected two-dimensional sub-manifolds ofR

3. The practical meaning of
restricting surfaces to be sub-manifolds ofR3 is that we do not allow such 2-
manifolds as surfaces that cannot be drawn inR

3 without self-intersections. An
example of such a 2-manifold is the Klein’s bottle. In this thesis, we consider
only closed surfaces i.e. manifolds that are also closed and bounded as sets.

Particularly, our interest lies on surfaces that are homeomorphic to the
sphere. Unlike Jordan curves all (non-selfintersecting) closed surfaces are not
topologically equivalent. To decide whether two surfaces are homeomorphic,
we need the notion of genus. Thegenusof a surface is defined as the largest
number of non-intersecting simple closed curves that can be drawn on the sur-
face without separating it. For example, the genus of the sphere is 0 and the
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genus of the torus is 1. Two surfaces are homeomorphic if and only if they have
the same genus. The genus is sometimes referred to as the number of handles
or holes in the surface.

Note, however, that if there exists an homeomorphismf between surfaces
S1 andS2, there need not to exist such a homeomorphismf̂ : R3 → R

3 that
f̂(S1) = S2. For more about the topic, see pp. 174 - 178 in [36] and references
therein.

2.2.2 Simplicial complexes

A finite collection of points is said to beaffinely independentif no affine space
of dimensioni contains more thani + 1 of the points and this is true for ev-
ery i. For example, three points ofR3 are affinely independent if they do
not lie on the same line. Ak-simplexυ in Rd is the convex hull of a set
U = {x1, . . . ,xk+1} ⊂ Rd of k + 1 affinely independent points,

υ = {x =
k+1∑
i=1

aixi|ai ∈ [0, 1],
∑

ai = 1}.

Hence inR3, 0-simplices are points ofR3, 1-simplices are edges ofR3 and 2-
simplices are triangles inR3. Thedimensionof k simplex isk. A faceτ of the
simplexυ is a convex hull of any subsetT of U . Note thatτ of υ is itself a
simplex. Ifτ is a face ofυ, we denoteτ ≤ υ.

A simplicial complex is a collection of faces of simplices, any two of which
are either disjoint or meet in a common face, cf. Fig. 2.1. Mathematically, it is
a collectionK of simplices such that

1. if υ ∈ K andτ ≤ υ, thenτ ∈ K;

2. if υ ∈ K andς ∈ K, thenφ ≤ υ andφ ≤ ς, whereφ = υ ∩ ς.

Thedimensionof K is the largest of dimensions of its simplices. If the dimen-
sion ofK is k,K is ak-complex.

Simplicial complexes can be defined also without referring to the geometry
in their construction, and particularly without specifying the space in which
they lie. See e.g. [19] or [37] for details of these abstract simplicial complexes.

It remains to be explained how simplicial complexes relate to surfaces. The
underlying space|K| of a simplicial complexK in Rdis the union of its sim-
plices together with the subspace topology inherited fromRd, i.e.

|K| = {x ∈ Rd|x ∈ υ ∈ K}.
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Figure 2.1: Sets of triangles that violate the condition 2 in the definition of simplicial com-
plexes.

A triangulation of the topological spaceX is a simplicial complexK whose
underlying space is homeomorphic toX. Now, since surfaces are topological
spaces and particularly 2-manifolds, a triangulation of the surface is a simpli-
cial complex homeomorphic to that surface. Particularly, the dimension of the
simplicial complex must be equal to 2. Later on, we refer to 0-simplices of a
triangulation as vertices, 1-simplices of a triangulation as edges and 2-simplices
of triangulation as faces. Note that this definition of the face is somewhat nar-
rower than the one that was given previously.

In this thesis our objective is to extract surfaces of a particular topological
type from the images. The topological type of the surface can be deducted from
a triangulation of it. Denote bypk the number ofk-simplices in a triangulation
of a surface inR3, then

2∑
k=0

(−1)kpk = 2− 2g, (2.1)

whereg is the genus of the surface. The above result is known as theEuler-
Poincaŕe formula. It extends to some other topological entities besides triangu-
lations of surfaces, an example of which are embeddings of the graphs [8, 34].

In medical image analysis, the topological type of the imaged object is of-
ten known more precisely than that can be expressed with simple set-theoretic
constraints on the segmentations. In fact, looking at the surfaces present in the
image, their topological type is knowna-priori in many applications. This is
the reason behind the interest in constraining surface topologies within med-
ical image analysis. Of course, the expected surface topologies and also the
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set theoretic constraints imposed on segmentations may be violated by severe
pathologies.

2.3 Surface extraction

Surface extraction, or reconstruction, is a general problem that can be studied
from several viewpoints. The problem is to recover a finite representation, for
example a triangulation, of a surface of interest given some input data. Here,
we assume that the initial form of the input is a volumetric image. Other forms
of input data such as unorganized sets of points can as well be considered cf.
[7, 38, 37].

2.3.1 Iso-surface algorithms

Probably the best known surface extraction algorithms are so-called iso-surface
algorithms [62]. The algorithms belonging to this class take a functionf from
R

3 toR as their input. The zero level set of the functionf is assumed to be the
surface to be approximated. Iso-surface algorithms work by dividing the space
R

3 into cubes, or into some other polyhedral primitives, and thereafter evaluat-
ing the functionf at every vertex of every primitive. Based on these evaluated
values, intersections of the surface and primitive polyhedra are inferred. For
example, the Marching Cubes algorithm [49] uses only the information about
the sign of the evaluated function values and a look-up table to triangulate the
given surface.

The Marching Cubes algorithm offers a straight-forward method for extract-
ing surfaces from volumetric images. Each voxel has simply to be classified
either being inside or outside of the surface of interest, a segmentation of the
image. If image segmentation is performed simply by thresholding intensity
values, the process is sensitive to imaging noise, natural variation of intensity
values across the image, and other image artifacts. Especially, the correct sur-
face topology cannot be enforced. Note, that noise, blur, and other artifacts may
cause the surface interest appear with wrong topological type in the image. An-
other drawback of the marching cubes algorithm is that the number of triangles
in a triangulation is large.

2.3.2 Applications of surface extraction

Applications of surface extraction are various in medical imaging. An obvi-
ous application is the visualization of three-dimensional anatomical structures,
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whose shapes are obviously difficult to conceive directly from volumetric im-
ages. The application that we have already introduced and are mainly concerned
with in this thesis is image segmentation.

There exist also other, maybe not so obvious, applications. For example, the
computation of the thickness of the human cerebral cortex can reveal important
information about different disorders, the issue have been studied in the case
of the Alzheimer’s disease by Lerchet al. [47]. Their thickness computation
depended on the extraction of cortical surfaces from MR images, see [51]. An-
other application of surface extraction is surgery simulation [13, 14] and there
are others.



Chapter 3

Deformable Surface Models

3.1 Introduction

Purely bottom-up approaches for surface extraction, such as the Marching
Cubes algorithm [49], suffer from their inability use information that cannot
be directly inferred from image intensities as explained in the previous Chapter.
This seriously complicates even their supervised use in medical image analy-
sis. Deformable surface models are advanced techniques for surface extraction
that can incorporate soft and hard constraints into the surface extraction prob-
lem. Deformable models and their applications are surveyed for example in
[40, 56, 60, 82].

A deformable surface model consists of a geometric representation of sur-
faces, a template surface, and rules for the evolution of the surface based on
image data. In this chapter we describe a general framework for governing the
evolution of these surfaces. Some possibilities for surface representation are
also mentioned.

3.2 Surface extraction as an energy minimization
problem

Surface extraction is formulated as an energy minimization problem with de-
formable models. That is, to reconstruct a surface from an image we associate
to each (admissible) surface a quantity called energy. The energy of the surface
describes how well that particular surface matches with image data and how
well it suites to our prior expectations of the surface to be extracted. The lower
the energy the better the surface is and we aim to find the surface that has the
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minimal energy. IfS1 is the surface extraction result,S is the set of admissible
surfaces andE(S, I) is the energy of the surfaceS given the imageI, then the
problem is the following

Given the image I, find such S1 ∈ S that S1 = arg min
S∈S

E(S, I). (3.1)

The energyE(S) of the surfaceS is composed of the internal energy
Eint(S) which depends only of the properties of the surfaceS and of the exter-
nal energyEext(S, I), which couplesS with the observed imageI. In symbols,

E(S, I) = Eint(S) + Eext(S, I), (3.2)

whereI is the observed image. Note, that we have two distinct ways of incorpo-
rating image independent information to the process. We can rule out surfaces
by restricting the setS and we can favor some surfaces over the others based on
the internal energy. The internal energy can, for example, quantify smoothness
of surfaces and the setS can be composed of surfaces topologically equivalent
to the sphere.

The energy minimization problem (3.1) should not be viewed in strictly
mathematical sense. In this thesis, we are not concerned if the energy mini-
mization problem has a unique solution. More interesting question is what kind
of solutions we can obtain for the surface extraction problem using the compu-
tational framework offered by Eqs. (3.1) and (3.2).

3.3 Probabilistic rationale

The energy minimization problem (3.1) can be viewed as a maximum a poste-
riori (MAP) estimation problem as presented for example in [56]. For this, we
associate a prior probability

p(S) =
1

Z1

exp(−Eint(S)) (3.3)

for each surface. The likelihood of an imageI givenS is

p(I|S) =
1

Z2(S)
exp(−Eext(S, I)). (3.4)

QuantitiesZ1 andZ2(S) are normalization factors, termed partition functions,
required to make the probabilities proper. Using the Bayes formula we find that
the negative of the logarithm of the posterior probability is

l(S|I)
.
= −log[p(S|I)] = Eint(S)+Eext(S, I)+ log(Z1)+ log(Z2(S)). (3.5)
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The minimization ofl(S|I) then corresponds then to the minimization of the
E(S, I) if and only if Z2 is independent ofS as Figueirdoet al. [22] have
stated. This is not always the case and therefore, in general, the minimization
of the energy is not equivalent to the MAP-estimation.

The problem in the continuous limit is thatZ1 → ∞, and hence our prob-
abilities are not proper. However, this presents no real problem in practise,
because all our computations are based on finite approximations of surfaces
and images, see [61].

3.4 Pattern theory

The interpretation of the energy minimization problem as MAP estimation leads
us to consider deformable surface models as a part of pattern theory. Pattern
theory is a branch of applied mathematics born in late sixties which studiesreg-
ular structuresthat can be found from e.g. anatomy (cf. [28]), linguistics, and
physics. An introductory text about pattern theory is [27] and a more complete
treatment can be found in [26].

A main concept in pattern theory is the notion of a deformable template,
which contains an average model of the particular object being modeled and a
set of transformations that can be applied to the average model. All the other
instances of the object of interest are then obtained by applying these transfor-
mations to the average model. Each transformation is assumed to have a prior
probability and the correspondence of the transformation and the observed data
is modeled by a likelihood of the data given the transformation. This leads
again to the MAP framework for the purpose of data-analysis. Deformable
surface models can be therefore regarded as pattern theoretic deformable tem-
plates. Subsequently, deformable surface models can be defined and seen as a
part of a broader concept. Deformable surface/contour models are not the only
type of deformable templates encountered within image analysis, an overview
of Bayesian methods in image analysis is presented in [61].

3.5 Physics-based rationale

The energy minimization problem in Eq. (3.1) has a physics based analogue.
For this, we place a surface made of some elastic material into a force field.
After a certain amount of time has passed, the surface has assumed a position
in which its energy is minimized. The energy of the surface is composed of the
internal term relating to elasticity and rigidity properties of the material of the
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surface and the external term relating to the potential of the force field derived
from the underlying image. In other words, we once again end up with the
energy minimization problem (3.1).

Deformable models in this physics-based setting were originally conceived
by Terzopoulos and his co-workers [43, 74, 75]. Especially, the snakes algo-
rithm [43] for contour extraction has been a real starting point for the research
and application of deformable models in the image analysis. The motivating
idea was to consider surface/contour extraction as an ill-posed inverse prob-
lem [71]. The well-posedness of the problem is then restored by regularizing
it by internal energy. This process in general setting is referred to asTikhonov
regularization[76].

It is an interesting question to ask what is the forward problem related to the
inverse problem of contour/surface extraction, or more generally, to the inverse
problem of vision. Terzopoulos has suggested that it is computer graphics and
animation, and deformable surface models have been used also in this setting
[73]. In the physics-based setting this is very natural especially if one con-
siders the reasoning behind the numerical schemes used to solve the energy
minimization problem. The computations leading to a solution of the energy
minimization problem utilize forces acting on a surface. In other words, a
dynamic Euler-Lagrange differential equation is derived that corresponds the
energy minimization problem. The solution of the differential equation is also
(a local) minimum of the corresponding energy function. Hence, we have a
numerical scheme for solving the energy minimization problem by solving the
corresponding differential equation. For an elegant treatment of these issues
and for computational considerations, see [12]. The equivalence of certain vari-
ational problems and boundary value problems is a standard result in variational
calculus [41].

3.6 Computational aspects of deformable surface
models

Before any computations can be performed we have to decide how to discretize
the problem. Most importantly surfaces have to be represented in some way that
supports the computations. A taxonomy of deformable models based on surface
representations has been presented in [60]. Surface representations were first
divided into the two main categories: continuous and discrete. With discrete
representations, geometry of surfaces is known only at a finite set of points. Dis-
crete representations include particle systems [70] and surface meshes, which
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are dealt in greater detail in the next Chapter.

Continuous surface representations can be either implicit or explicit. With
explicit representations, surfaces are defined as functionssq : Ω → R

3, where
Ω ⊂ R2. The vectorq contains a finite set of parameters, which completely
specify the functionsq. There are several distinct explicit representations that
have been applied with deformable surface models. For example superquadrics
[72] and finite elements in [12] are considered to belong to this class of surface
representations.

Implicit representations consider surfaces defined as zero level-sets of func-
tions fromR3 to R. An extension of superquadrics, hyperquadrics, belong to
this class [33]. Level-sets, introduced by Malladiet al. [52] and Casselleset al.
[10], are flexible ways to represent surfaces implicitly. The flexibility of repre-
sentation as compared to many others stems from the fact that the topology of
the surface can changed implicitly with the level set formulation of the surface.
This is convenient for many but not for all surface extraction tasks within med-
ical image analysis. For applications of deformable models based on level sets
within medical image analysis, see e.g. [4, 15, 67].

3.7 Related approaches

There exist a number of approaches related to deformable surface models for
medical image segmentation. We briefly consider two examples here, namely
elastic registration and deformable topological models. The aim of elastic reg-
istration [5] is to deform the image domain of an atlas to fit the observed image.
An atlas is a labeled template image that represents idealized (average) image
of the object of interest. The deformation from the atlas to the observed image
is found by minimizing a cost function. The cost function is composed of the
data term (corresponding external energy) and the term reflecting intrinsic costs
of deformations (corresponding internal energy).

Deformable topological models [54, 55] could be characterized as an dig-
ital analogue to the elastic registration framework. An initial labeled image,
or a segmentation in our terminology, is matched to the observed image by
minimizing an energy function. The stochastic minimization process is carried
out by studying only those (local) transformations that respect the pre-defined
topological constraints.
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3.8 Summary of deformable surface models

Methods based on solely image data are not sufficient for reliable and automatic
segmentation of noisy images encountered in medical image analysis. How-
ever, the use of image independent information can remedy the situation and
enable automatic segmentation and surface extraction. Several model-based
techniques, applying image independent information, have been introduced so
far. One example of these is deformable surface models. Deformable surface
models apply geometric prior information in addition to image data for surface
extraction. In practise, the surface extraction problem is converted to an op-
timization problem. In this chapter, we have reviewed interpretations of the
optimization problem and briefly presented possible ways to discretize it.

3.9 Aims of the thesis revisited

At this point, we have not discussed how to solve the optimization problem
(3.1). Indeed, it can be expected that the energy function is multi-modal (i.e.
has several local minima) and minimizing it globally is therefore difficult. It is
the primary objective of this thesis to propose algorithms targeted specifically
to this optimization problem. By applying these global optimization algorithms
for solving (3.1), we wish to reduce common problems with deformable models
related to initialization and parameter sensitivities.

The term initialization sensitivity refers to the problem of the final surface
extraction result depending heavily on the provided initialization. Since auto-
matic means for generating close initializations are difficult design, the problem
of initialization sensitivity obviously limits fully automatic use of deformable
models.

Another common drawback of deformable surface models is that their for-
mulation contains a number of user definable parameters. These parameters
can be model parameters, e.g. parameters that control how much the internal
energy is weighted relative to the external energy. In addition, there can be
parameters related to the optimization procedure. Deformable models are and
need to be sensitive to these parameters allowing of processing dissimilar data.
However, it is problematic if a deformable model is highly sensitive to its pa-
rameter values or the relation between parameter values and the behaviour of
a deformable model is unpredictable. After all, deformable models should be
able to cope with images within a specified application with the same parame-
ter values to be automatic and, as mentioned in Chapter 1, these images can be
rather divergent. Besides trying to answer the initialization sensitivity problem
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with global optimization, we try to confine the parameter sensitivity problem to
its minimum. Our methods for the formulation and optimization of deformable
surface models are free of user definable parameters, but most of these param-
eters are rather easy set based on the properties desired from the deformable
model. Also, it will be demonstrated that dissimilar images can be processed
successfully with the same set of parameter values.



Chapter 4

Deformable Surface Meshes

4.1 Meshes as surface representations

We shall now focus on deformable surfaces build upon a particular surface rep-
resentation, namely surface meshes. Intuitively, a surface mesh is a collection
of polygons (inR3) glued together to form a piecewise linear surface. A partic-
ular type of the surface meshes are triangulations which were defined already in
Chapter 2. We will refer to triangulations as triangular meshes when using them
with deformable models. Another type of surface meshes are simplex meshes
introduced by Delingette [16, 17]. There are other types of surface meshes as
well, but abovementioned ones are the most popular within deformable surface
models. One reason for this probably is that they can represent surfaces of any
genus.

4.1.1 Triangular meshes

Recall that triangular meshes are triangulations of surfaces. In what follows, it
will be useful to distinguish between the connectivity of the mesh and the ge-
ometry of it. The connectivity refers to the way the elements of the mesh relate
to each other and the geometry refers to the vertex positions of the triangular
mesh. Two vertices are said to beneighboursif they belong to the same edge of
the mesh. Similarly, two edges are neighbours if their intersection is not empty.
Two triangles of the mesh are neighbours if they share an edge. These connec-
tivity, or adjacency, relations can be modeled by graphs. If we take as a fact that
a triangular mesh is a valid simplicial complex approximating a surface of the
known topology, it is sufficient to consider only the information derived from
the vertex-adjacency graph of the mesh. The vertex adjacency graphG related
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to the meshK is called thegraph of the mesh. Moreover, we writeK as a pair
(W,G), whereW is the set of vertex positions, ormexels. Note, that required
facts about the connectivity of the mesh cannot necessarily be deducted quickly
from the graph of the mesh. Therefore, this conceptually simple representation
of the connectivity does not support efficient implementation.

4.1.2 Simplex meshes

The formal (geometric) definition for the simplex mesh is given in [17] and it
is based on the definition ofq-cells. A 0-cell is a point ofRd and a 1-cell is an
edge ofRd. Then,q-cellC is an union of(q − 1)-cells such that

1. Every vertex belonging toC belongs toq distinct(q − 1)-cells.

2. The intersection of two(q − 1)-cells is either empty or a(q − 2) cell.

A k-simplex mesh ofRd is then a(k + 1)-cell of Rd. Our interest here is
on 2-simplex meshes ofR3, and by a simplex mesh we refer particularly to 2
-simplex meshes ofR3. Furthermore, 2-cells of a simplex mesh are called faces
of the mesh.

Again, we define two mexels to be neighbours if there exists an edge con-
necting them. As with triangular meshes, we can represent a simplex mesh as
a pair (W,G), whereW = {w1, . . . ,wN} is the set of mexel positions and
G is the graph of the mesh. Each mexel in a simplex mesh has exactly three
neighbours and therefore graphs of simplex meshes are 3-regular or trivalent.
We writewij , j = 1, 2, 3 for the three neighbours of the mexelwi.

For each simplex mesh there exists a triangular mesh whose graph is the
dual graph (cf. [8] Chapter 4) of the graph of the simplex mesh. The inverse
property holds also, namely for each triangular mesh there exists a simplex
mesh whose graph is the dual graph of the graph of the triangular mesh. This
property is entirely of topological nature, there does not exist a geometrical
duality between simplex and triangular meshes [16]. The (topological) duality
between simplex meshes and triangular meshes gives means for constructing a
simplex mesh from a triangular one, the procedure is outlined in detail in [81].
Constructing a triangular mesh from a simplex mesh based on the duality is
possible, but in practise it is instead preferable to triangulate each face of the
simplex mesh. Examples of a triangular mesh, the dual simplex mesh, the dual
of the simplex mesh, and the triangulated simplex mesh are shown in Fig. 4.1.

Simplex meshes have many favorable properties compared to triangular
meshes that follow from the constant vertex connectivity, cf. [16]. On the
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a) b)

c) d)

Figure 4.1: Example meshes. a) A triangular mesh of a torus. b) A dual simplex mesh of the
mesh in a). c) A dual triangular mesh of the simplex mesh in b), note that meshes in a) and c)
are clearly different although they share the connectivity. d) The triangulation of the simplex
mesh in b). This triangular mesh does not have the same connectivity as meshes in a) and c).
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other hand, simplex meshes have to be converted to triangular ones for area
calculation or visualization.

We consider only simplex meshes from now on if not otherwise mentioned.
However, optimization algorithms to be described in the next Chapter can be
converted in a straight forward manner for the use with triangular meshes in-
stead of simplex meshes.

4.2 Topology adaptation

Deformations of the template mesh can be of topological nature or of geomet-
ric nature. Geometric operations alter the mexel positioning and affect only the
set of mexels. Topological operations are such that they modify the adjacency
graph. They divide into two subgroups. The first subgroup consists of the op-
erations which change the genus of the underlying surface. The second kind
of operations modify the adjacency graph but do not change the genus of the
underlying surface. These operations include vertex addition to produce denser
mesh and vertex removal to reduce the mesh resolution. Because removing ver-
tices diminishes the required storage for the mesh, it is often termed as surface
simplification.

Operations to adapt the topology of simplex meshes are defined in [17, 16].
We shall later on useT 2

2 operation meant for increasing the mesh resolution.
The operation is depicted in Fig. 4.2. As can be seen from the figure, the
operation basically adds an edge to a simplex mesh.

Figure 4.2: T 2
2 -operation. On left a face of a simplex mesh before the operation is depicted.

On right two new faces of a simplex mesh resulting from the operation are shown.

Ways to adapt the connectivity of triangular meshes have been studied more
extensively, especially for the purpose of surface simplification, cf. Chapter 4 in
[19]. For deformable triangular meshes, Lachaud and Montranvert define a full
set of topology adaptation operations including Eulerian operations of vertex
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addition and removal as well as non-Eulerian operations to adapt the genus of
the underlying surfaces [44].

McInerney and Terzopoulos suggest complete re-parameterization of the
mesh instead of local, mesh-based operations for topology adaptation [57].
They decompose image domain into tetrahedral cells usually larger than the
voxels of the image. The mesh topology is then re-created by using an iso-
surface algorithm (cf. Chapter 2.3.1) based on a tetrahedral decomposition.
The required signs of the function defining the implicit surface at every vertex
of every tetrahedron are computed based on the original mesh.

4.3 Adaptation of the geometry

Geometric operations alter mexels positions without changing adjacency re-
lations between them. Because they leave the connectivity of the mesh un-
changed, we use symbolW for the whole mesh and assume that the graph of
the mesh is known. The adaptation of the mesh geometry can be controlled
in two differing ways. We call these the force based approach and the energy
based approach. The force based approach stems from the physics based inter-
pretation of deformable models (Chapter 3.5) and the energy based approach
stems directly from the energy minimization framework described in Chapter
3.2. The two approaches can be considered as truly different in the sense that
the traditional dualism (derived from variational calculus) between the energy
and forces does not necessarily hold. That is, some force-based methods do not
have an energy minimization interpretation and correspondingly some energy
minimization algorithms cannot be implemented as force-based methods.

4.3.1 Force based approach

The evolution of the mesh is controlled by assigning an equation of motion to
each mexel. In the general case the equation of motion is Newtonian:

mẅi(t) + γẇi(t) = λFint(wi(t)) + βFext(wi(t)), (4.1)

whereλ, β, γ,m ∈ R andt is time. The purpose of the internal forceFint :
R

3 → R
3 is to impose image independent soft constraints on the shape of the

mesh to guarantee, for example, the smoothness of the resulting surface mesh.
The external forceFext : R3 → R

3 draws the mesh towards salient image
features. Discretizing Eq. (4.1) with respect to time yields (assumingm = 1)

wt+1
i = wt

i + (1− γ)(wt
i − vt−1

i ) + λFint(w
t
i) + βFext(w

t
i), (4.2)
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with the initial mesh when timet = 0 given. Whenγ = 1, Eq. (4.2) reduces
to a Lagrangian equation of motion. A more general equation of motion results
when global forces acting on mexels are also considered. The force fields relat-
ing to the global forces are parameterized with only a few parameters and the
framework is described in [59].

A simple internal force is defined as

Fint(wi) =
1

3

3∑
j=1

(wij −wi). (4.3)

The internal force (4.3) causes surface to shrink to a point if no external force
is present. This is sometimes useful, because it reduces sensitivity to the initial-
ization provided that initial meshes are set outside the surface of interest. Other
choices for internal forces can be found in [17].

The construction of external force fields based on image data is challenging
because external forces should guide the initial surface mesh to a good repre-
sentation of the surface of interest. Advanced methods for constructing external
force fields have been studied e.g. in [17, 83, 84]. These three methods are also
summarized in [Publication III].

4.3.2 Energy based approach

In the energy based approach one minimizes the energy of the deformable mesh.
The energy function is defined for every mesh in the set of admissible meshes
and the resulting surface mesh is the minimum argument of this function. How-
ever, before defining the energy function, we consider simplex meshes with a
global position parameter introduced in [Publication I].

4.4 Simplex meshes with a global position param-
eter

We consider simplex meshesW whose coordinate system is different from that
of the image. Our motivation is to derive a common framework for several
variants of an optimization algorithm to be introduced in the next Chapter.

Mexelswi of W are set relative toa reference pointgW ∈ R3. Actual
positions of mexels in an image arêwi = wi + gW . A surface mesh is then
represented as a pair(W,gW ), whereW is referred to as thesurface centered
mesh. The setŴ = {ŵ1, . . . , ŵN} is the unique (image centered)actual mesh
induced by(W,gW ). Note that different pairs consisting of a surface centered
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mesh and an associated reference point may induce exactly the same actual
mesh.

We allow three distinct interpretations for reference points:

• We consider meshes only with a certain fixed reference points. In this
case, we say that reference points arefixed. Setting the fixed reference
pointg = 0 yields standard simplex meshes.

• We consider meshes with all the possible reference points, i.e. we treat
the reference point as a variable independent of the accompanying surface
centered mesh. In this case, reference points arefloating.

• Given an actual mesĥW, the reference pointgW can be a function of̂W.
Here, we consider only reference points defined as

gW =
1

N

N∑
i=1

ŵi (4.4)

and we say that reference points areconstrained.

4.5 Energy functions

The energy of the deformable mesh(W,gW ) is now given by

E(W,gW ) = λEint(W) + (1− λ)Eext(Ŵ) (4.5)

=
1

N

N∑
i=1

[λEi
int(wi|wi1 ,wi2 ,wi3) + (1− λ)Ei

ext(wi + gW )],

whereEint(·) is the internal energy,Eext(·) is the external energy, andλ ∈
[0, 1] is the regularization parameter. The internal energy controls the shape of
W. The external energy couples the actual surface meshŴ with salient image
features. The parameterλ controls the trade-off between the external energy
and the internal energy in such a way that incrementing the value ofλ results in
more weight to the internal energy.

4.5.1 Internal energy

The internal energy for the mexelwi is

Ei
int(wi|wi1 ,wi2 ,wi3) =

||
∑3

j=1 αijwij −wi||2

A(W)
, (4.6)
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whereαij ∈ R are shape parameters andA(W) is the area of the meshW. The
area of the simplex mesh is computed by triangulating its faces.

The shape parameters describe the expected shape, or the reference shape,
for deformable surface meshes. The shape parameters can be acquired from a
given example mesh similarly as they were generated from example contours
in the 2-D case [46]. However, as the construction of example meshes of the
pre-defined quality is significantly harder than the construction of example con-
tours, this might be cumbersome in the 3-D case. Instead, it is possible to an-
alytically estimate the shape parameters of relatively simple reference shapes.
The estimation is based on local properties of reference shapes and a surface
mesh satisfying exactly these properties does not necessarily even exist. This
relates to Mallet’sDiscrete Smooth Approximation(DSA) [53]. The mesh of
the minimum internal energy is such that from the existing meshes its local
properties best match to those which are posed by the shape parameters.

In [Publication I], two kinds of the analytically derived shape parameters
were introduced. The simpler, thin-plate shape parameters are

αij =
1

3
, (4.7)

for all i, j. These parameters state that the optimum position for each mexel is
in the mass-centre of its neighbours. More complex, sphere shape parameters,
are

αij =
1

3 cos(2 arctan
2
√
π
√

3

3
√
N

)
, (4.8)

for all i, j, whereN is the number of mexels. Roughly speaking, these pa-
rameters set the optimal shape of the deformable mesh to be the sphere. For
derivation and more detailed interpretation of the sphere shape parameters, see
[Publication I].

The internal energy is scale invariant due to the normalization by the area
of the mesh and it is straight-forward to see that the internal energy is invariant
to the rotations of the mesh. However, the internal energy of a surface centered
mesh is translation invariant only if

3∑
j=1

αij = 1,

for all i = 1, . . . , N . This is the case with the thin-plate shape parameters
but not with the sphere shape parameters. However, when interpreted in the
terms of actual meshes and when reference points are floating or constrained,
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the internal energy is translation invariant also for the sphere shape parameters.
Here lies the usefulness of constrained reference points. Floating reference
points can also be used for incorporating the possibility to study translations of
the mesh during the optimization of its geometry.

4.5.2 External energy

The input for the deformable mesh, an imageI, is a preprocessed version of
the image to be analyzed. Image to be analyzed is denoted byI∗. In I, voxels
are given an intensity value based on their saliency inferred from local charac-
teristics ofI∗. We also normalizeI to have intensity values from 0 to 1 with
the voxel of the greatest saliency having the intensity value of 1. Based on the
input imageI, the mexel-wise external energy is defined simply as

Ei
ext(wi) = 1− I(wi). (4.9)

As relation betweenI and the external energy is simple, the input imageI can
be calledthe energy imageas in [Publication IV] and in [Publication V].

Preprocessing is always an application specific task. If one is interested in
locating surfaces defined by edges, a simple choice for the input image is

I = ||∇I∗||, (4.10)

where the gradient can be computed by the three-dimensional Sobel operator
[86].

Several other choices for the external energy function have been presented
in the literature. For example, if the input imageI is binary valued, one can set

Ei
ext(wi) =

1

D
||wi − ci||2,

whereci are the coordinates of the voxel centre nearest towi such thatI(ci) =
1. The constantD ∈ R is used for normalizing the range of the external en-
ergy. The binary input imageI can be obtained by applying an edge-detection
algorithm toI∗ [9, 58].

4.6 Comparing energies of meshes with different
connectivity

Comparing energies of meshes with different number of mexels is not neces-
sarily reasonable. This can be seen e.g. from [Publication II] where the energy
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values of some meshes with different resolutions are printed. These show that
the energy tends to increase with the mesh resolution. The reason is not due to
neglecting the normalization factorZ2(·) as in Eq. (3.5). Indeed, take a mesh
WN with N mexels and denoteI(wi) by xi. For simplicity, further assume
that no voxel contains more than one mexel. Then, by combining Eqs. (4.9)
and (3.4), we obtain an expression for the partition function

Z2(WN) =

∫
p(I|WN)dI (4.11)

=

∫ 1

0

· · ·
∫ 1

0

e(−(1/N)(
∑

(1−xi)))dx1 · · · dxN (4.12)

= (N(1− e−1/N))N . (4.13)

The value of the partition function depends onWN only viaN and we write
Z2(WN)

.
= Z2(N). Furthermore, ignoring the partition function from com-

putations do not lead to trouble. This can be seen from Fig. 4.3 where the
logarithm ofZ2(N) is plotted against different values ofN .

Figure 4.3: logZ2(N) for values ofN from 500 to 100000.

The problem is more fundamental. The external energy defined by Eq. (4.9)
takes only a part of the image into account, namely those voxels in which mex-
els are situated. Obviously, we should take somehow the whole image into
account to be able compare meshes discretized with different resolutions based
on their energy. If it was possible to specify the parametric forms of the pdfs for
intensity values of voxels belonging to the background and of voxels belonging



4.6. MESHES WITH DIFFERENT CONNECTIVITY 29

the object of interest, the use of regional information could remedy the problem
[11, 22]. However, often it is not a trivial task to specify the required paramet-
ric forms of the pdfs. This is because all the intensity values relating to the
object of interest (or the background) are not necessarily drawn from the same
distribution. Our formulation of the external energy, Eq. (4.9), is more flex-
ible as regarding to this issue. Particularly, we do not need knowledge about
the parametric forms of the pdfs describing intensity values in images when
constructing the input image for the deformable model.

To summarize this section, comparison of the quality of meshes with differ-
ent number of mexels is not reasonable based on the energy functions defined
in this thesis. This is why the global optimization approach and algorithms to
be presented are not suitable for deciding the optimal resolution for extracted
meshes. However in many medical imaging applications, especially in the ones
we consider in this thesis, the number of mexels in extracted surfaces can be
seta -priori. Hence, restricting the admissible set for the optimization algo-
rithms to consist only of meshes of a fixed resolution does not present a serious
problem.



Chapter 5

Algorithms for Energy
Minimization

5.1 Global optimization approach

Minimization of the energy defined in Eq. (4.5) is not a simple task. Because
images are assumed to be noisy, the external energy term is most probably
multi-modal. Hence, algorithms aimed for local optimization (e.g. gradient
descent methods) have as such little use within deformable surface meshes.
The problem with them is that the surface extraction result depends too heavily
on the provided initialization. In fact, the initialization sensitivity is a major
problem also with the force based approach to control deformable meshes and
with deformable surface models altogether as explained in Chapter 3.9.

Several ways to deal with the initialization problem have been proposed.
The conceptually simplest way is perhaps trying to provide an initial mesh
which is already in a close vicinity of the surface of interest. However, while
this may be possible for some applications, it does not provide a general so-
lution to the problem due to the difficulty of the initialization itself. Another
possible solution to the problem is to apply such an internal force/energy that
results in shrinking surfaces as in Eq. 4.3. However, this leads easily to high
sensitivity to parameter values. In other words, the same value of the regu-
larization parameterλ is not necessarily applicable with every image within a
specific application. This can prevent unsupervised use of methods relying on
a shrinking behaviour.
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A solution to the abovementioned problems can be achieved via global min-
imization of the energy1. The strategy has received relatively little attention
with deformable surfaces unlike with deformable contours. One reason for
this could be that algorithms based on dynamical programming, introduced by
Amini et al. [2] for deformable contours, are not applicable with deformable
surface meshes. This is because it is not possible to create a total order (cf. [29,
page 374]) of mexels such that the internal energy of a single mexel would de-
pend only on itself and immediate predecessors and successors of it. Dynamical
programming for deformable contours has the pleasing property that it is able
to find the global energy minimizer among a finite set of candidate contours
in a polynomial time. Such strong convergence results rarely exist for other
global optimization algorithms applied in practise [77]. In this thesis a global
optimization algorithm is understood as an optimization algorithm capable to
overcome local minima.

5.2 Coarse-to-fine minimization

Advanced methods for minimization of the energy of deformable meshes ex-
isting in the literature are often based on a multi-resolution or a coarse-to-fine
scheme. The basic form of the scheme is depicted in Fig. 5.1. A similar coarse-
to-fine approach can be applied also with force-based deformable meshes, see
e.g. [44]. Note, that energies of meshes with different resolutions are not com-
pared and the resolution of the final mesh is given as an input to the algorithm,
cf. Chapter 4.6.

MacDonaldet al. have applied deformable surface models with the basic
multi-resolution scheme to extract cortical surfaces from MR-images [51]. In
[50] the deformable surface meshes were combined with an elastic registration
framework. The deformation of surface meshes was achieved by deforming
underlying regular three-dimensional grid by minimizing an energy function
in a coarse-to-fine manner. The method was demonstrated by segmenting MR-
images of the thorax and head. Note, that both abovementioned methods expect
their input images to be binary valued.

Yet another type of coarse-to-fine method was presented in [68]. There seg-
ments of the surface mesh underwent a deformation which locally minimized
the energy of the segment. The iterative deformation was carried out in a hier-

1The unconstrained global minimum of the energy (4.5) is achieved by finding the voxel of
highest intensity value and placing the mesh inside this voxel. That would obviously be unde-
sired. Hence, meshes with area and/or volume lower than some threshold are not considered,
although this is not necessarily mentioned explicitly.
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Figure 5.1: The basic multiresolution scheme. The abbreviation LMA stands for local mini-
mization algorithm.

archical manner where the surface segments considered became smaller as the
process advanced. The deformable mesh was applied particularly for extracting
certain brain structures (ventricles and nuclei) from MR images.

All the optimization methods reviewed above are closely tied to a particular
application [51] or a particular shape model requiring hand-crafted examples of
surfaces to be generated [50, 68]. Although these methods do well with appli-
cations they are crafted for, generalizing these methods for other applications
could be laborious.

5.3 Dual surface minimization

An algorithm for global optimization of deformable meshes calledDual sur-
face minimization(DSM) was introduced in [Publication I]. The algorithm was
inspired by the dual contour method by Gunn and Nixon [31, 32]. Several vari-
ants of the DSM algorithm were developed. These variants were formulated
based on different interpretations of the reference points that were introduced
in the previous Chapter.

Here we present first the standard DSM algorithm for fixed reference points.
Thereafter, we briefly explain modifications required if reference points are as-
sumed to be floating. Lastly, a variant called DSM-OS (DSM-Outer surface)
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is introduced. This modification has proven to be useful when extracting brain
surfaces from PET images. The constrained reference point version of the al-
gorithm is not described here, see [Publication I] for it.

5.3.1 Standard DSM algorithm

The algorithm is initialized with two surface meshes, one placed inside of the
surface of interest and the other placed outside of surface of interest. We call
these meshes, respectively, the inner mesh and the outer mesh. Both surface
centered meshes have the same reference point that is located in the mass centre
of the actual meshes. The reference point is fixed, it does not change position
during the optimization.

The meshes for the next iteration are the mesh of the lower energy and the
one obtained by locally minimizing the energy function starting from the mesh
of the higher energy. The local and discrete minimization is performed by a
greedy algorithm adapted from [80]. For each mexel, the greedy algorithm
studies a set of new candidate positions (including the current mexel position)
and selects the position that yields the lowest mexel-wise energy. The set of
candidate positions is calledthe search space. The search space is constrained
in such a way that the outer (resp. inner) mesh shrinks (resp. expands). The
search space for greedy algorithm is ‘directed’ towards the reference point in the
case of the outer mesh, or away from the reference point in the case of the inner
mesh. Check for Fig. 5.2 for a depiction of the search space and [Publication
I] for the exact definition of the search space. Directing the search space based
on the reference point instead of local normals of the surface helps to avoid
surface self-intersections. After the greedy algorithm has updated positions of
all the mexels, the energies of the meshes are compared again and the greedy
algorithm is initiated from the mesh of the higher energy. The DSM algorithm
is iterated until the volume of the inner mesh has exceeded the volume of the
outer mesh. At this point, the mesh with the lower energy is returned as the
result of the algorithm. Obviously, this mesh has the lowest energy of those
encountered during the algorithm.

The greedy algorithm, due to its local nature, can produce its initialization
also as its result. In this case, the DSM algorithm is trapped in a local minimum
and it has to be helped to escape from the minimum. The energy function of the
mesh of the higher energy is then modified by adding a penalty for the current
mexel positions to enable the escape from the local minimum. The penalty is
increased gradually in small steps until the mesh has been forced out of the
local energy minimum.

We are unable to prove that the DSM algorithm or variants would converge
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a) b)

Figure 5.2: Depiction of the search space for the greedy algorithm optimizing the inner mesh.
In a) a close-up from a global view in b) is shown. The position of the mexel marked by a
star (∗) is to be optimized. The positions marked by a plus sign (+) belong to the search space
in addition to the current mexel position. The neighbours of the mexel marked by a star are
marked by a circle (◦).

to the (constrained) global minimum and for deformable mesh optimization, it
is probably more important that the algorithm can overcome local energy min-
ima. In the Appendix, we show that the algorithm will terminate when certain
restricting assumptions are made. Experimentally, the algorithm is found to
stop also when these assumptions are not made.

5.3.2 Floating reference point algorithm

The floating reference point (DSM-FRP) algorithm differs from the standard
DSM algorithm in two aspects. Firstly, and more importantly, we consider sur-
face centered deformable meshes with several possible reference points. Fur-
thermore, these are not tied to the actual surface meshes. Secondly, the method
to drive meshes out of local energy minima is different.

The algorithm works just as the standard algorithm expect that in each iter-
ation several greedy algorithms are initiated. These all are initialized with the
current surface centered mesh, but with different reference points. These refer-
ence points are selected from the neighborhood of the current reference point.
Then, the mesh with the lowest energy resulting from greedy algorithms is se-
lected as the result of that iteration of DSM-FRP algorithm. Note that the inner
mesh and the outer mesh may have different reference points.
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The DSM-FRP algorithm is in a local energy minimum if after an iteration
both the surface centered mesh and the reference point are same than at the
previous iteration. If a mesh is trapped in a local energy minimum, the surface
mesh with the higher energy is simply shrank (outer mesh) or expanded (inner
mesh). Shrinking or expansion of a mesh is realized by multiplying a mexels of
the surface centered mesh with a suitable constant.

The DSM-FRP modification outperforms the standard DSM-algorithm when
the images are very noisy. It is helpful for DSM-FRP if the shapes of the initial
surface meshes remind the shape of the surfaces of interest, e.g. all of them are
spheres.

5.3.3 Single surface modification, DSM-OS

Recall that reference points were applied to generate search spaces that guar-
antee shrinkage of the outer surface mesh and expansion of the inner surface
mesh. Therefore, it is not necessary to apply two surface meshes with the DSM-
algorithm as it was with the dual contour method. This property of the DSM
algorithm leads to another modification of it, which we call theouter surface
modificationand abbreviate as DSM-OS. In DSM-OS, only one of the surfaces,
the outer, is allowed to move. The other (inner) surface is just for deciding
whether to terminate the algorithm and only the knowledge about its volume is
required. The DSM-OS algorithm works just as the standard DSM-algorithm
except obviously it has to store the surface mesh with the lowest energy en-
countered so far. It returns the mesh of the lowest energy of those encountered
during the iterative algorithm. In a similar fashion, the inner surface modifica-
tion of the algorithm, where only the inner surface would be allowed to change
position, could be created.

The rationale for the DSM-OS modification is that sometimes it is known
that approaching surface of interest from a certain direction (inside or outside)
is favorable. For example, when extracting brain surfaces from PET images, it
is better to approach the surface of interest from outside because noise levels
are lower there (see Chapter 7 and [Publication I]).

However, since the DSM-OS algorithm has to force the mesh out of the
‘global’ minimum, it often requires more iterations to converge than the stan-
dard DSM algorithm. Thus, the standard algorithm can be considered to be
more efficient. The standard DSM algorithm is also a better choice when no
substantiated knowledge about the favorable direction of approach exists.
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5.3.4 Demonstration

We illustrate the results obtainable with the DSM algorithm by extracting a
surface from a noisy synthetic image with dimensions of64 × 64 × 64. Some
cross-sections of the synthetic input image are shown in Fig. 5.4 (a). The
initialization for the DSM algorithm is depicted in Fig. 5.4 (b) and differences
between extracted surface and the true surface of interest are depicted in Fig.
5.4 (c). Three-dimensional visualizations of the true surface and the surface
extracted from the noisy input image are shown in Fig. 5.5. The energy function
minimized by the standard DSM algorithm consisted of the external energy as
in Eq. (4.9) and the internal energy as Eq. (4.6) with the thin-plate shape
parameters. The regularization parameterλ was set to 0.3. Values of the energy
function of inner and outer meshes during the iteration of the standard DSM
algorithm are shown in Fig. 5.3.

Figure 5.3: Energies of inner and outer meshes in each iteration of the DSM algorithm. Solid
line represents the energy of the outer mesh and the dashed line represents the energy of the
inner mesh.

5.4 Hybrid of a GA and a greedy algorithm, GAGR

5.4.1 Description of the algorithm

A hybrid of a genetic algorithm (GA) and a greedy algorithm for deformable
mesh optimization was presented in [Publication II]. Genetic algorithms [25]
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(a) (b) (c)

Figure 5.4: The input image (a), the dual initialization (b), and the extraction result using the
DSM-algorithm (c). From top, the central cross-sections inxy, xz andyz planes are shown. In
(b), cross-sections of the true surface of interest are shown in gray and cross-sections of initial
surfaces for the DSM are shown in white. In (c), the true surface of interest is in gray and the
extraction result is in white.
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(a) (b)

Figure 5.5: The extraction result. (a) the true surface and (b) the extracted surface from the
noisy input image shown in Fig. 5.4. Note that the true surface is visualized based on the
continuous expression of it while surface extraction was performed based on discrete data.

have been successfully applied to many challenging optimization problems.
GAs are based on the genetic processes of biological organisms. Mimicking
the natural selection and reproduction an initial population evolves to the so-
lution of the problem at the hand. The basic structure of a GA is presented in
Algorithm 1.

Algorithm 1

t← 0
initialize a populationP (t) of surface meshes
evaluateP (t) by computing the energy of each individual in it
while NOT termination conditiondo
t← t+ 1
selectP (t) from P (t− 1)
recombineP (t)
evaluateP (t)

end while

We applied a GA as the first step of the optimization algorithm comprised
of four steps:

1. Global minimization of the energy (Eq. 4.5) of the mesh by a GA;

2. Local minimization of the energy (4.5) by a greedy algorithm [80] start-
ing from the mesh obtained from first step;
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3. Adaptation of the resolution of the mesh byT 2
2 -operator (cf. Chap. 4.2);

4. Minimization of the energy by the greedy algorithm starting from the
mesh of the adapted resolution;

The method is abbreviated as GAGR later on. Note that only the standard
simplex meshes, i.e. simplex meshes with the fixed reference pointg = 0, are
considered.

For the first step, we applied a real coded genetic algorithm (RCGA) with
the BLX-α crossover-operator [20, 35]. RCGAs represent variables (meshes
in this case) with vectors consisting of floating point numbers. On the other
hand, with traditional binary coded GAs variables are represented with binary
strings. RCGAs are favored here because they can be more efficiently adapted
to the particular problem domain, indeed we expect mexel positions to be real
valued. The RCGA applied was terminated when 100 generations, each com-
prising of 4000 meshes, were evaluated. The early termination of the RCGA
was for efficiency, usually GAs evolve for greater number of generations than
100. Early termination was reflected in the selection of the value for the param-
eterα, which was set to 0.3. Herreraet al. recommended settingα to 0.5 to
avoid premature convergence [35]. By using the valueα = 0.3, convergence
to a good initialization for the greedy algorithm was obtained during only 100
generations of RCGA.

See [Publication II] for a more detailed description of the algorithm. As
with the coarse-to-fine scheme described in Chapter 5.2, energies of meshes
with different resolutions are not compared in the GAGR algorithm either.

5.4.2 Demonstration

We illustrate the GAGR algorithm by applying it for the same surface extraction
problem as the DSM algorithm was applied for in Chapter 5.3. The energy
function to be minimized was exactly the same than in the case of the DSM
algorithm. Meshes after each intermediate step of GAGR are shown Fig. 5.6.
The extracted surface is compared to the true surface in Fig. 5.7. The values
of the energy function after each intermediate step are listed in Table 5.1. Note
that increment of the mesh resolution had the effect of increasing the energy of
the mesh. The reasons behind this were briefly discussed in Chapter 4.5.



40 CHAPTER 5. ALGORITHMS FOR ENERGY MINIMIZATION

Step 1 Step 2

Step 3 Step 4

Figure 5.6: Meshes after each step of GAGR. Simplex meshes have been triangulated for the
visualization.

Figure 5.7: Cross-sections of the extracted surface using GAGR. Top row: The input image
for the deformable model. Bottom row: The extraction result, the true surface of interest is in
gray and the extraction result is in white. From left, the central cross-sections inxy, xz andyz
planes are shown.
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Table 5.1: The energies after each intermediate step of the GAGR algorithm. The energy after
the step 0 is the lowest of energies of initial randomly generated sphere meshes.

Step 0 1 2 3 4
Energy 0.3642 0.2180 0.1680 0.2734 0.1961



Chapter 6

Comparison with the Force Based
Approach

6.1 Objectives and methodology

A comparative study between the standard DSM algorithm, the GAGR algo-
rithm, and a few recent force based methods [17, 83, 84] to control the mesh
deformation was presented in [Publication III]. The purpose of the study was
to find some characteristics of the methods as compared to others and to find
out whether energy and force based schemes differed in any general way. Of
course, ranking rather differing deformable models is not reasonable with an
possible exception of a highly specialized application, and this was not the pur-
pose of the study.

The construction of the external force field with force based deformable
meshes can be regarded as an equivalent task to optimization with energy based
deformable meshes. Hence, only these aspects were compared while other fea-
tures (like the internal energy) of the applied deformable models were kept as
simple as possible.

The approach of the study was to supply an image containing the surface of
interest and a reasonable initialization for deformable models and see how well
the surface of interest was captured by different methods. The internal force for
each force based method was the same, only values of the model parameters
and ways to construct the external force field based on image data were varied.
Similarly, for the energy based methods, energy functions (besides the value of
the regularization parameter) were same and only methods to minimize them
were varied. The internal energy was as in Eq. (4.6) with the thin plate shape
parameters (4.7). The internal force was as in Eq. (4.3) and it can be regarded
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a) b) c) d)

Figure 6.1: Examples of cross-sections of test images. a) The first image set consisted of
surfaces degraded with white Gaussian noise of varying variances which were then blurred with
a Gaussian filter. b) The second image set contained images where, in addition to the correct
surface (drawn with intensity value of 1.0), were some false surfaces (drawn with the intensity
value of 0.5). c) and d) PET-images form where the brain surfaces were to be extracted, in
c) a transaxial cross-section of a PET image is shown and d) the corresponding input image
computed by using Eq. (4.10) is shown.

as the counterpart of the applied internal energy function.
The DSM algorithm featured in the comparative study did not have all

the properties described in [Publication I]. Namely, the oscillation control was
missing. Embedding the oscillation control in the DSM algorithm removed
some problems of the algorithm and improved its results in some cases, cf.
[Publication I].

6.2 Material

The test material was composed of three image sets. Two image sets con-
tained synthetic images and the third one contained FDG-PET brain images.
The brain surface was to be extracted from PET images. Examples of image
cross-sections are shown in Fig. 6.1, for details on the image sets cf. [Publica-
tion III].

With synthetic images, two criteria were used for quantitative evaluation of
extraction results. The set of voxels belonging to true (digital) surface is de-
noted byTS and the set of voxels belonging to the extracted surface is denoted
byES. Furthermore, let the set of voxels inside the true surface beTV and the
set of voxels inside the extracted digital surface beEV . Then,

ε1 = 1− |TV ∩ EV |
|TV ∪ EV |

, (6.1)

ε2 = max
X∈TS

min
Y ∈ES

dist(X, Y ), (6.2)
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where distance between voxelsX andY (dist(X, Y )) is the Euclidean distance
between their integer coordinates. The first error measure (6.1) captures well
the goodness of overall result. The quantity1 − ε1 is known as the Tanimoto
coefficient, which is a criterion that is often applied for the evaluation of seg-
mentation results. The second criterion (6.2) reacts also to very local errors in
surface reconstruction. This makes it useful in determining if high curvature
parts of a surface are extracted well. However, the criterion (6.1) is perhaps
more informative than (6.2) when extracted surfaces are applied for segmenta-
tion purposes.

6.3 Results

The quantitative results using the criteria defined above were presented in [Pub-
lication III] and they are not repeated here.

The GAGR algorithm performed well with the first set of images. Quan-
titative results obtained with it were similar to those obtained with the best of
the force based methods (generalized gradient vector flow (GGVF) [83]). The
standard DSM algorithm was as accurate as GGVF or GAGR when the noise
level in the images was low. When the level of noise was increased , the quality
of results obtained with DSM however degraded more than the quality of those
obtained with GAGR and GGVF.

With the second set of images GAGR performed only slightly worse than
the best force-based method, which this time was gradient vector flow GVF
[84]. (GGVF did not perform well this time). The standard DSM algorithm ex-
perienced problems with some images. However, these problems turned out to
be avoidable by adding a mechanism called oscillation control to the algorithm.
When the oscillation control was designed and implemented, DSM performed
well with the second image set as can be seen from results listed in [Publication
I].

Extracted brain surfaces from PET images were of excellent quality in vi-
sual inspection when DSM or GGVF was applied. Accurate surface extractions
with GGVF required a little bit more parameter tuning than with DSM, other-
wise there were only minor differences between the methods. GAGR produced
rather good results, however they were clearly less accurate than those with
DSM or GGVF. With the other force based methods than GGVF, reliable brain
surface extraction was not achieved.

The main advantage of the energy-based scheme over the force-based one
seemed to be their reduced sensitivity to parameter values. Indeed, all the re-
sults of energy-based methods were obtained with the same parameter set al-
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though analyzed images were quite divergent. This was not the case with force-
based methods that required parameter tuning in between the experiments. Ini-
tialization sensitivity was a big problem only in few cases, like for the GGVF
method with the second set of images. However, none of the methods was com-
pletely insensitive to its initialization. In other words, different initializations
led usually to different results. These results were nevertheless of a similar
quality in most cases.



Chapter 7

Deformable Meshes for Analysis of
PET Brain Images

7.1 Positron emission tomography

Positron Emission Tomography (PET) is an imaging method to study physio-
logical processes in living organs [63, 69]. In PET, tracer molecules are ad-
ministered to the subject. A tracer is recognized by the body and it takes part
in metabolic processes. It is also labeled by an unstable radionuclide. Unsta-
ble label nuclides emit positrons in order to achieve stability. These emissions
are then detected through the annihilation process by a PET scanner. The rate
of these emissions coming from a certain part of the body then relate to the
concentration of the tracer molecule within that part of the body. Moreover,
positron emitting compounds are produced in cyclotrons and they do not exist
as such in nature. This removes the problems related to background radiation
and allows gathering quantitative information about subject’s physiology. Ob-
viously, information that can be obtained depends on the applied tracer. For
example, FDG (fluoro-2-deoxy-D-glucose) emulates glucose and hence FDG-
PET images offer information about the glucose consumption. The FDG tracer
has uptake all over the brain volume and the highest uptake of it is in cortical
region of the brain. Besides tracers describing metabolic functions, there exist
receptor type tracers. These have uptake mainly in the structures having highest
density of the corresponding receptors. The receptor type tracer of interest here
is 11C labeled Raclopride (later on just Raclopride). Its uptake is mainly in the
striatum.
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7.2 Automatic surface extraction from PET brain
images

7.2.1 Introduction

Increasing use of PET has created a need to develop automatic means for anal-
ysis and processing of PET images. In brain imaging, a PET image can be
registered (rigidly) with the MR image of the same subject to allow gathering
of physiological information corresponding to anatomical structures [39]. If
the segmentation of MR image and image-registration are carried out in an au-
tomatic manner, this provides a way to automate the analysis of PET images.
Other approach for analyzing PET images is to compare images from patient
groups statistically, like instatistical parametric mapping[23].

However, it could be useful to extract surfaces from individual PET images
without relying on the corresponding anatomical image as explained in [66] and
in [Publication V]. This could be helpful for image registration and compensa-
tion for patient movement during a dynamic PET study. Reliable extraction of
functional structures1 directly from PET images could be useful also for quan-
titative analysis of PET images. However, as it is still rather unclear how this
kind of analysis should be carried out and what are its possible applications and
limitations, this is not speculated further in this thesis.

7.2.2 Challenges in PET image segmentation

As PET images are noisy, automatic surface extraction from them is difficult.
Although advances in image reconstruction methods for PET have somewhat
simplified the problem (cf. [1]) the images still have quite poor contrast to noise
ratio and automating even simple segmentation tasks, such as the extraction of
the brain surface, remains challenging.

Other challenge in processing of PET images follows from the fact that
images acquired with different tracers are indeed quite divergent. For example,
by comparing the FDG-PET image in Fig. 7.1 (a) to the Raclopride PET image
shown in Fig. 7.2 (a) and (b) it can be seen that exactly the same procedure for
brain surface extraction would not probably work for both tracers. However,
saying this does not exclude the possibility that similar general principles could
be used for processing PET images acquired with different tracers.

1A functional structure is a sub-volume in a PET image which has distinguishable uptake
(i.e. image intensity) from its surroundings and some biological meaning
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In [Publication IV] and [Publication V] we have studied the extraction of
brain surfaces using the deformable model based on the DSM algorithm. In
[Publication V] the surface extraction procedure for FDG-PET images intro-
duced in [Publication IV] was generalized also for Raclopride PET images. As-
tonishingly, exactly the same surface extraction routine besides the generation
of the input images for the deformable model was adequate for both tracers. In
[Publication V], we further determined the mid-sagittal plane from PET images
by applying the automatically extracted brain surface. The mid-sagittal plane
coarsely divides the brain into the left and the right hemispheres. Hence, the
determination of the mid-sagittal plane makes it possible to study functional
differences between the hemispheres. We also studied the extraction of the
boundary between uptake levels in white matter and gray matter visible in FDG
images using the deformable model. This white matter surface together with
the brain surface delineates a volume that could be called functional cortex. In
the next section, an overview of the methods and results of the PET applications
of the deformable model based on the DSM algorithm is presented.

(a) (b) (c)

Figure 7.1: FDG-PET images. (a) Example cross-sections from a FDG-PET image. (b) The
input image for the deformable model generated from the image presented in (a). (c) The
extracted brain surface and the white matter surface from the image shown in (a), cf. Sect.
7.3.2 for information about the generation of the input image and about the surface extraction
procedure. From top transaxial, coronal, and sagittal cross-sections are shown.
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7.2.3 Methods and results

Material

The material for the study consisted of a FDG-filled Hoffman brain phantom
(JB003, Nuclemed N.V./S.A., Roeselare, Belgium) and 17 FDG and four Raclo-
pride brain images of healthy volunteers. Structures corresponding to cerebel-
lum, cortex, basal ganglia and ventricles are represented in the phantom. All the
PET acquisitions were made with GE Advance scanner (GE, Milwaukee, USA).
The FDG-PET images were reconstructed with the iterative MRP method to the
image cross-section size of 128 by 128 [1]. The Raclopride PET images were
reconstructed with the FBP method to the image cross-section size of 128 by
128. Both types of images consisted of 35 transaxial cross-sections. The pixel
by pixel Patlak model [65] was applied to the FDG sinograms to produce para-
metric images to be used for structure extraction. The Raclopride images were
calculated to parametric images showing the Raclopride binding with a simpli-
fied reference model [30].

Definitions of input images

As mentioned in Chapter 4.5.2, image processing operations required for cre-
ating an input image for the deformable model are always application specific.
Intensities in the input image should ideally be high at the voxels belonging
to surface of interest and low elsewhere in the image. With FDG-PET images,
edges in the original images seem to be a good and simple feature characterizing
the surfaces of interest. We define the input image for FDG as

IFDG = ||∇I∗P ||, (7.1)

whereI∗P is a median filtered version of the original PET image to be processed.
The gradient is computed by the three-dimensional Sobel operator [86]. In
practise, the input imageIFDG can contain few aberrantly large intensity val-
ues, which reduce the contrast in other parts of the input image. Therefore, to
improve the contrast, a certain (small) percentage of largest intensity values all
receive the intensity value 1 in the normalized version of the input image. See
Fig. 7.1 (b) for an example of the input image for the deformable model.

The pre-processing stage for Raclopride images is more complicated than
for FDG images, see [Publication V] for it. After the preprocessing steps, vox-
els just outside the brain volume typically have low intensity values in images.
Moreover, their values in the gradient magnitude image are expected to be rel-
atively high. Hence, to extract the brain surface from Raclopride images, we
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set
IRaclopride(x) = ||∇I∗P (x)||(1− I∗P (x)) (7.2)

whereIRaclopride is the input image andI∗P is the image after the pre-processing
steps. The normalization of input images is nonlinear just as in the case of FDG.
See Fig. 7.2 (b) for an example of the input image.

Brain surface extraction

Brain surface extraction was accomplished by using the deformable mesh with
the internal energy with the thin-plate shape parameters and the external en-
ergy (4.9) calculated from the input images defined in Eqs. (7.1) and (7.2).
The regularization parameterλ was 0.3. The DSM-OS algorithm was used for
optimization and the initialization for it was created automatically. Same pa-
rameters for the deformable mesh were applied with all the images, FDG or
Raclopride. Also, the initialization procedure was same for both tracers.

In visual inspection, the extracted brain surfaces from FDG images were
accurate in all cases, cf. Fig 7.1 (c) for a typical example. The extracted brain
surfaces from Raclopride PET images were also found reliably, cf. Fig. 7.2 (c)
for an example. In one case, accuracy of the extracted brain surface could have
been better at the lower and upper parts of the brain.

Mid-sagittal plane determination

The mid-sagittal plane of a brain image can be defined as a virtual geometric
plane about which the (anatomical) brain in the image presents maximum bi-
lateral symmetry [48]. We do not have knowledge about the exact anatomy of
the studied subjects at our disposal but we can assume that the extracted brain
surface from functional images is approximately the same as the correspond-
ing anatomical brain surface. Hence, we can determine the mid-sagittal plane
based on the extracted brain surface. We do this by adapting a procedure from
[48]. Details of our implementation of the procedure and analysis of results can
be found in [Publication V]. Examples of the brain surface and the mid-sagittal
plane extracted from a FDG-PET and from a Raclopride PET image are shown
in Fig. 7.3. All the other results were of approximately same quality, especially
the mid-sagittal plane was successfully extracted from all the studied images.

Extraction of functional cortex

In FDG-PET images, the boundary between tracer uptake levels in the gray
matter and the white matter is visible. This boundary, called white matter sur-
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(a)

(b)

Figure 7.3: An extracted brain surface from a FDG-PET image (a) and from a Raclopride-PET
image (b) and the mid-sagittal planes determined based on these brain surfaces.
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face, together with the brain surface define what we call the functional cor-
tex. In [Publication IV] and [Publication V] we have studied the extraction of
the white matter surface from FDG-PET images. This was done with the de-
formable mesh based on the standard DSM algorithm. The energy function was
the same as for brain surface extraction except the sphere shape parameters, Eq.
(4.8), were applied for the internal energy and the value ofλ was 0.2. Initial
surfaces were generated automatically based on the extracted brain surface. The
optimization was constrained in such a way that the strong energy minimum at
the brain surface could not interfere with the optimization process. Example re-
sults can be seen in Fig. 7.1. Again for further explanation of the methodology
and analysis of results we refer to [Publication IV] and [Publication V].



Chapter 8

Discussion

8.1 Summary of publications

In this section, we shall present a summary of the most important research con-
tributions from each publication featured in this thesis. The methodological
ones are then discussed in more depth in the succeeding sections.

In [Publication I], theDual surface minimizationalgorithm for global opti-
mization of deformable mesh geometry was introduced. Three variants of the
standard DSM algorithm applicable in differing situations were also derived
in the paper. The standard algorithm is an extension and generalization of the
dual contour methodpresented in [32]. However, there are several differences
between the dual contour method and the DSM algorithm as explained in [Pub-
lication I]. The shape modeling scheme due to Lai and Chin [46] was extended
to three-dimensional shapes and the sphere prior shape for surfaces was ana-
lytically derived in [Publication I]. Experiments with synthetic as well as with
PET images were reported.

In [Publication II] a new global optimization algorithm for deformable
meshes (GAGR) was presented. It was tested with synthetic data. The superi-
ority of the algorithm compared to a simple multi-start optimization algorithm
was also demonstrated.

In [Publication III] a comparison between some recent methods to opti-
mize the deformable mesh geometry was reported. Although comparison of the
methods is a difficult task and results are open to various interpretations, ob-
servations about the strengths and weaknesses of different methods were made
and reported in the study.

In [Publication IV] and [Publication V] an application of the deformable
model from [Publication I] to the analysis of PET brain images was presented.
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Segmentation results of PET images were excellent, taking into account the
poor contrast to noise ratio of the images and the novelty of the task. Fur-
thermore, the segmentation procedure was fully automatic. We were able to
extract brain surfaces from images acquired using two fairly different tracers
without any changes in the procedure except for pre-processing of the images.
This demonstrates the capability of the deformable model to adapt to different
kinds of data. The two studied tracers were FDG and Raclopride. The extracted
brain surface from PET images was used for determination of the mid-sagittal
plane. Basing this task only on the intensity values in the images could prove
challenging at least for the Raclopride tracer.

8.2 Global minimization approach to deformable
surfaces

In this study, the energy of deformable meshes has been minimized globally
in order to avoid the requirement for a close initialization. A large body of
work has been devoted for reducing initialization sensitivity of deformable sur-
face models. Combination of local and global deformations as in [59, 72] and
advanced construction of external force fields as in [84, 83] are instances of
techniques that address this problem. However, techniques that are applied to
the reduction of initialization sensitivity often come with an extra set of param-
eters and it might not be obvious how to set parameter values within a particular
application. This easily leads to the problem of excessive parameter sensitivity,
i.e. the difficulty of finding suitable parameter values for processing a large set
of images. The parameter sensitivity problem is less addressed in the literature
than the initialization problem.

Deformable meshes based on global optimization also come with an ex-
tra set of parameters for the user to tune. However, there are possibilities to
tune them based on some rather profound principles instead of the trial and er-
ror method. The energy function itself should provide a description of surface
properties that are desirable. It is often quite easy to quantify these properties
via cost functions. Therefore, designing an energy function based on solid prin-
ciples for a particular application is quite possible without an arduous trial and
error cycle. The parameters for the minimization algorithms themselves relate
only to them. Hence, tests for finding a good set of parameters for minimizing
a particular energy function are easy to design. Some parameters related to the
optimization algorithms can be derivable from the (internal) energy function
with simple calculations. For example, the selection of good values for search
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space parameters for the DSM algorithm is closely related to the internal en-
ergy function. Finally, we note that there have been some efforts [21, 22, 45]
for automating parameter selection with 2-D active contours.

One disadvantage of the global optimization approach to deformable meshes
is that the number of mexels in the surface mesh has to be fixed. This is because
the external energies of meshes of differing resolutions are not comparable in a
meaningful way (as explained in Chapter 4.5). However, the number of mexels
can often be set based on neuroanatomical knowledge for applications in analy-
sis of brain images. Therefore, this drawback of the approach concerning these
applications is a minor one.

Global optimization approach to deformable surfaces requires such an ex-
ternal energy function to be found that characterizes globally surface of interest.
Practically speaking this means that voxels of surface of interest should feature
high intensity values in the input image compared to those voxels belonging to
the background. It may not be obvious how to design such an external energy
function for a given application and this may be claimed as a disadvantage of
the approach. However, basically the same disadvantage holds for all methods
trying to solve the initialization sensitivity problem. Also the global character-
ization of the surface of interest is only required within the set of admissible
meshes. A practical example on the simplifying effect of the restricting the
set of admissible meshes on the design of the external energy function is white
matter surface extraction from PET images [Publication IV], [Publication V].
There, by constraining the set of admissible meshes, exactly the same external
energy function could be used for extraction of the white matter surface and the
brain surface, although intensities in the input image were much higher for the
voxels of the brain surface. Implementation of these kind of constraints is easy,
just placing a low (zero) value in the input image to the voxels that are known
to belong to the background.

In some applications, it may be practical to search for ‘the local minimum
closest to the initialization’ instead of the global minimum. Obviously, then
a close initialization is required. The fundamental problem with this strategy,
in addition to the requirement for a good initialization, is that the closest local
minimum is only definable with respect to a particular optimization algorithm,
it is the minimum to which the algorithm converges to. Further, it is usually not
obvious which is the closest local minimum for a given initialization and a local
minimization algorithm. Indeed, fractal-like images of the basins of attraction
of Newton’s method and other nonlinear minimization algorithms are famous
examples of unstability of dynamical systems with respect to their initialization
[24, 64].
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8.3 Dual surface minimization

We have introduced variants of the Dual surface minimization algorithm for
deformable mesh optimization in [Publication I]. The standard DSM algorithm
yielded good results in the experiments where the noise level in the images was
moderate. For more demanding conditions, we introduced the DSM-FRP mod-
ification. For using the sphere shape parameters (Eq. (4.8)) without compro-
mising the translation invariance of the internal energy, the DSM-CRP (DSM-
Constrained reference point) variant must to be used instead of the standard al-
gorithm. Moreover, for specialized situations where the surface of interest is
more favorably approached from outside we introduced the DSM-OS modifi-
cation. By generalizing the idea of reference points from [46], it was possible
to derive these variants of the DSM algorithm in the common framework.

These algorithms were inspired by the Dual contour method of Gunn and
Nixon [32], but there are important differences between the dual contour
method and the DSM algorithm. An obvious difference is the extension from
2-D to 3-D, but there also are other dissimilarities which were detailed in [Pub-
lication I]. We shall now summarize these briefly. In the direct generalization
of the dual contour method, each mexel in the mesh of the greater energy would
be pushed towards the corresponding mexel in the other surface mesh instead of
pushing it towards (or away from) the reference point. This would necessitate
the use of two surfaces and make the DSM-OS modification impossible and
complicate the DSM-FRP modification. As both of these modifications were
found useful, the change in the algorithm is well-grounded. In the dual contour
method the contour of the greater energy was updated based on the evolution
equation similar to ones used with force-based deformable meshes during each
iteration. Instead with DSM, we applied a greedy local search for updating
the meshes, mainly to make the DSM-FRP modification easier. However, as
speculated in [Publication I], applying the greedy local search enables us to set
constraints to local optimizations and hence reduces the parameter sensitivity.

The DSM algorithm is not suitable for all surface extraction tasks. For
example, the extraction of curved tube-like structures could be difficult with
it. This is due to the construction of search spaces which are directed towards
(or away from) the reference point. The problem could remedied by directing
the search in the direction of the normal of the surface at a particular mexel.
However, as reported in the literature (e.g. [57]), this can easily lead to surface
self-intersections that are undesirable.

No special attention has been given to computational efficiency while imple-
menting the algorithm. Our current implementation is based on Matlab (Math-
works, Natick, MA, US) code compiled to C with the Matlab Compiler version
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1.2. One iteration of the fixed reference point algorithm with standard parame-
ter values and meshes of 1280 mexels lasts approximately 0.5 seconds on a 533
MHz processor (AlphaServer 4100 with 21164A (EV5.6) processors). With
synthetic image experiments in [Publication I], the required number of itera-
tions was typically 1000 and total computation time was 8 - 9 minutes. How-
ever, we are currently programming a faster implementation in C++, which
should yield a considerable speed up for the algorithm.

8.4 GAGR-algorithm

In this study, we also examined the applicability of real coded genetic algo-
rithms for the optimization task. The studied algorithm was a hybrid of a RCGA
and a greedy algorithm. The hybridization with a greedy algorithm was per-
formed for easing the computational burden of the RCGA. In addition, the se-
lected BLX-α crossover operator tends to produce meshes that are not smooth.
These are then smoothed by the subsequent application of the greedy algorithm
for optimizing the mesh. Therefore, combining the particular crossover oper-
ator with the greedy algorithm seems to be a favorable choice. However, as
noted in [Publication II], the crossover operator is not optimal, since a lot of
computation time is wasted for evaluating meshes that are of irregular shape
and therefore have high energy values. Representing surfaces with meshes is
probably not an optimal choice with RCGA. With some other surface descrip-
tions such as hyperquadrics [33], it might be easier to design a crossover opera-
tion that would confine the number of evaluated meshes of shapes too irregular
to the minimum. Furthermore, the applied simple energy function cannot uti-
lize the full power of RCGA, which could be used for optimizing much more
complicated functions.

Nevertheless, the GAGR algorithm did remarkably well in the comparative
study [Publication III]. On the average, it yielded the best experimental results
of the five methods compared. Also, as mentioned in [Publication II], it was su-
perior to a simple multi-start algorithm in the experiments performed. However,
the computational cost of the algorithm is still high regardless of the hybrid na-
ture and early termination of RCGA. For example, the DSM-algorithm with
meshes of 1280 mexels typically took slightly over 1000 iterations to converge
in the experiments reported in [Publication I]. It can be roughly (over)estimated
that the energies of 32 meshes were calculated during each iteration of the DSM
algorithm. Hence, the total count of meshes that were evaluated becomes ap-
proximately 32000. In the RCGA step of the GAGR algorithm, 100 populations
of 4000 meshes were evaluated. This totals 400000 evaluated meshes. The total
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computation time required by the GAGR algorithm is approximately 7 hours on
a 533 MHz Alpha 21164A processor with a similar Matlab-based implementa-
tion than described for the DSM algorithm. As with the DSM algorithm, a
considerable speed up could be expected from an implementation in optimized
C code. Besides, also algorithmic ways to speed up the algorithm are possi-
ble. Nevertheless, for the deformable mesh optimization the GAGR algorithm
is still very slow that decreases its attractiveness for the task.

There exists few applications of GAs in the framework of deformable
models in literature. In [6], gray-coded1 GAs were used to optimize two-
dimensional active contours. There, hundreds of thousands of populations of
contours were evaluated, which suggests very high demands for the machinery
used for computation. Joshiet al. have used GAs for initializing deformable
surfaces [42].

8.5 Shape modeling and internal energy

We extended a shape modeling scheme by Lai and Chin [46] to create shape
models for surfaces. The difficulty in the 3-D case as compared to the case of
shape modeling for (discrete) contours is that it is problematic building a mesh
of pre-defined quality that represents the desired surface. Indeed, construct-
ing a triangulation whose triangles would be even approximately equilateral is
very challenging. Therefore, building a good shape model based on example
meshes, or exemplars, is not straight-forward, although it has been explored
in the literature [17, 50, 68, 78]. Other, more complicated representations of
surfaces such asm-reps[42] could be more amenable to shape modeling than
discrete surface meshes.

Our approach to shape modeling was somewhat different than the approach
in [46]. Instead of considering exemplars, we constructed models for simple
shapes by analyzing favorable local properties the mesh should posses. Ob-
viously, very specialized models for the shapes of surfaces are impossible to
construct in this way. Nevertheless, even using the simple sphere shape model,
Eq. (4.8), instead of the thin-plate shape model, Eq. (4.7), improved the sur-
face extraction results, cf. results Section in [Publication I]. More complicated
shape models could be constructed by combining several sphere shape models.
Another possibility would be to describe the shapes in terms ofsimplex angles
studied in [16]. However, we shall not pursue these ideas further in this thesis.

1Gray codes are a form of binary codes.



Appendix A

Convergence of the DSM algorithm

A proof of the convergence of the DSM algorithm in a simplified case is pre-
sented in this Appendix. After the presentation of the proof, we shall consider
how to extend the guaranteed convergence to more general cases. Only the
fixed reference point algorithm is considered and convergence is only proved
in the meaningthe algorithm will stop. Notation used in this Appendix will be
as in Chapter 4 and in [Publication I], particularly the surface centered mesh
in the iterationt is Wt = {wt

i}. In the each iteration there are two meshes,
the inner and the outer mesh, but in order to avoid clutter we include this infor-
mation in notation only when absolutely necessary. The fixed reference point
is denoted byg. Important definitions for the convergence proof are repeated
from [Publication I] in a brief manner to make the Appendix easier to read.

In the each iteration of the DSM algorithm, we sequentially update all mex-
elswt

1, . . . ,w
t
N according to

wt+1
i = arg min

w∈S(wt
i)
Ei(w,g|wt∗

i1
,wt∗

i2
,wt∗

i3
), (A.1)

wheret∗ is t if ij > i andt+ 1 otherwise.
The search spaceS(·) is defined differently in the case of the inner mesh

and the outer mesh. For the inner mesh

S(wi) = S1(wi) ∪ S2(wi) (A.2)

= {(1 +
jL

||wi||
)wi : j = 0, . . . , J}

∪ {(1 +
jL

||wi||
)[(1− 2kD)wi + kD(wia + wib)]

: (j = 1, . . . , J), (k = 1, . . . , K), (a, b = 1, 2, 3), (a 6= b)},
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whereL, J,K,D are user definable constants. And for the outer mesh

S(wi) = S1(wi) ∪ S2(wi) (A.3)

= {(1− jL

||wi||
)wi : j = 0, . . . , J}

∪ {(1− jL

||wi||
)[(1− 2kD)wi + kD(wia + wib)]

: (j = 1, . . . , J), (k = 1, . . . , K), (a, b = 1, 2, 3), (a 6= b)}.

In both cases we assume that the integerK is positive and the integerJ is
strictly positive. Also, we assume thatL > 0 andD > 0. If K is set to
zero,S(·) = S1(·) and we say that the algorithm issimple. If K > 0 then the
algorithm is said to begeneral.

The algorithm is terminated when the volume inside of the inner mesh ex-
ceeds the volume inside of the outer mesh. The volume of the mesh is defined
approximately as

V (W) =
4

3
π ·

(∑N
i=1 ||wi||
N

)3

. (A.4)

There are two reasons for the approximation, 1) it reduces the computation time
for the algorithm and 2) it enables to prove the convergence of the algorithm
with the search space definitions given in Eqs. (A.2) and (A.3). Note that the
volume of the mesh is in one-to-one correspondence with the sum of the lengths
of the mexels. Moreover, the bijection in question is an order-isomorphism, i.e.

V (W1) ≤ V (W2)⇔
N∑
i=1

||w1
i || ≤

N∑
i=1

||w2
i ||

We use the symbol∼= to denote this. Now we are ready to present a convergence
result for the simple algorithm.

Proposition 1 Provided thatK = 0 andJL < ||wt
i||/2 for all i, V (Wt) ≥

V (Wt+1) for the outer mesh andV (Wt) ≤ V (Wt+1) for the inner mesh.

Proof. We will present the proof in the case of the outer mesh, the proof for the
inner mesh is similar.

First, usingK = 0,

max
w∈S(wt

i)
||w|| = max{||(1− jL

||wt
i||

)wt
i|| : j = 0, . . . , J} ≤ ||wt

i|| (A.5)
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for all i. The last inequality holds becausej ≥ 0, L > 0, jL < ||wt
i||/2 and

hence|1 − jL
||wt

i ||
| ≤ 1 for j = 0, . . . , J . From (A.5), it follows that||wt

i|| ≥
||wt+1

i || for all i. Hence,
∑N

i=1 ||wt
i|| ≥

∑N
i=1 ||w

t+1
i ||. Since the volumes

V (Wt+1) ∼=
N∑
i=1

||wt+1
i ||, V (Wt) ∼=

N∑
i=1

||wt
i||, (A.6)

we obtainV (Wt) ≥ V (Wt+1).

Note that in the above proof the condition thatJL < ||wt
i||/2 is required for

the outer mesh only. In practise, this condition prohibits oscillating behaviour
that can occur if the mexels of the outer mesh come too close to the reference
point. If the condition is still made stronger, we obtain the following lemma
which is presented without its straightforward proof.

Lemma 1 LetK = 0 andJL < ||wt
i|| for all i. Then for both inner and outer

mesh, ifV (Wt+1) 6= V (Wt),

|V (Wt+1)− V (Wt)| ≥ π
L3

N3
.

As mentioned, the greedy algorithm can produce its initialization as a result
in which case we said that the algorithm is in a local energy minimum. In that
case, the energy function to be minimized was modified in order to help the
mesh escape from the local minimum. The modified energy function is written
as

Ei
modified(w,g|·) = Ei(w,g|·) + rγδ(w −wt), (A.7)

whereδ(·) is the Discrete Delta Function. The integerr = 0, 1, 2 . . . is gradu-
ally incremented until the result of the greedy algorithm differs from its starting
mesh. The parameterγ determines the amount of the penalty added at a time.

Instantly from Eq. (A.7) it follows that ifEi(w,g|·) is bounded for alli
andγ > 0 is not arbitrarily small, the mesh is forced to escape from a local
minimum in a finite number of iterations. Particularly, all the energy functions
considered in this thesis are bounded. Combining this remark with the Proposi-
tion 1 and the Lemma 1 and assuming reasonable values for all parameters, we
obtain

Proposition 2 The simple DSM-algorithm converges in a finite number of iter-
ations.
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In this thesis, we will not extend formal considerations to cover general
DSM algorithms. Instead, we consider the convergence of general DSM algo-
rithms based on heuristic and experimental arguments. Particularly, it is clear
based on experiments that for the convergence, the mechanism of the oscillation
control has to be implemented, cf. [Publication I], [Publication III]. The oscil-
lation control means just reducing a badly behaving general DSM algorithm to
a simple one until the normal behaviour of the algorithm can be assumed to
be restored. The bad behaviour is easily detected by studying the volumes of
the meshes. The more problematic part is when it is reasonable to switch back
from the simple algorithm to the general one. In our experiments with the gen-
eral algorithm equipped with the oscillation control, we have never run into the
problems with convergence of the algorithm. The formal consideration of the
issue could point out how to implement the mechanism more efficiently. How-
ever, a convergence proof would probably require some assumptions, which
might be lengthy to explain and might not be particularly interesting.

The reason for applying general algorithms is that with the simple algorithm
the set of admissible meshes becomes too restricted. This means that meshes
resulting from the simple algorithm often suffer e.g. unequal spacing of the
mexels.
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