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ABSTRACT. We use the simple, but little-known, result that a uniformly continuous
function on a convex set isε-Lipschitz (as defined below) to extend Piyavskii’s algo-
rithm for Lipschitz global optimization to the larger domain of continuous (not-necessarily-
Lipschitz) global optimization.

———-

1. INTRODUCTION

The problem of optimizing a Lipschitz continuous function (with known Lipschitz con-
stant) over a compact set inRn is an important global optimization problem since it embod-
ies seemingly minimal assumptions and yet it yields to effective algorithms. In this paper,
we give a new characterization of continuous functions on compact, convex domains as
beingε-Lipschitz (to be defined shortly). Using this new characterization, we are able to
extend most, if not all, of the theory of optimization of Lipschitz continuous functions to
the more general class of continuous functions (that are not necessarily Lipschitz).

To focus on the main idea, we assume for most of this paper thatn = 1 and that
the domain is a compact interval [a, b] ⊂ R. We leave to others the interesting task of
applying the main idea to the many and varied algorithms that already exist for Lipschitz
global optimization. These algorithms are surveyed in Hansen, Jaumard & Lu (1992a) and
Pintér (1996).

The problem then is, given a continuous functionf on [a, b], find x∗ that attains the
global maximum:

max
x∈[a,b]

f (x).
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FIGURE 1. Upper and lower bounding function derived from a single
observation aty.

If f is Lipschitz with a known Lipschitz constant (or overestimate thereof), we call the
problem aLipschitz global optimizationproblem.

2. LIPSCHITZ GLOBAL OPTIMIZATION

We begin with a brief description of the main estimate that underlies Lipschitz global
optimization. So in this section, we suppose thatf is Lipschitz with parameterK . Then,
for everyy ∈ [a, b], we have the inequality:

| f (x) − f (y)| ≤ K |x − y|, for all x ∈ [a, b].

Thinking of y as a point at which we’ve sampled the function andx as variable, the Lip-
schitz inequality gives us bounds (both upper and lower) on the values of the functionf at
other points:

f (y)− K |x − y| ≤ f (x) ≤ f (y) + K |x − y|
(see Figure 1). Hence, even after sampling the objective function just once, we have a
(crude) bound on how far the optimal solution is from the observed sample. Further sam-
pling allows us to improve the bound. For example, if we observef at the left and right
end-points of the feasible interval,y = a and y = b, we get the following two upper-
bounding functions:

f (x) ≤ f (a)+ K (x − a)

and

f (x) ≤ f (b)− K (x − b).

Denoting byz the value ofx at which these two bounding functions cross, it is easy to see
that

z = 1
2
(a + b)+ 1

2K
( f (b)− f (a)).

The common value of the two bounds at this point gives an upper bound on the functionf
over the entire interval:

max
x∈[a,b]

f (x) ≤ 1
2

K (b − a)+ 1
2
( f (a)+ f (b)).
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FIGURE 2. Lipschitz continuous objective function and upper bounding
function obtained from observations aty1, y2, . . . , y10.

From this bound, we derive an estimate for the closeness of the maximum off (a) and
f (b) to optimality:

max
x∈[a,b]

f (x) −max{ f (a), f (b)} ≤ 1
2

K (b − a)− 1
2
| f (b)− f (a)|

≤ 1

2
K (b − a).

Of course, bothK andb− a might be quite large. But, by taking further samples, one can
in effect replaceb − a by the length of successively smaller subintervals (see Figure 2).
In this manner, one can develop efficient algorithms for finding a solution that is within a
prespecified tolerance of an optimal solution in just a finite number of iterations.

The papers Hansen, Jaumard & Lu (1991), Hansen et al. (1992a), and Hansen, Jaumard
& Lu (1992b) give an extensive survey of algorithms for Lipschitz global optimization
all of which are based on this idea. Of course, the methods generally assumea priori
knowledge of the parameterK . This can be problematic. But, if the objective function is
differentiable, then any bound on the magnitude of its derivative can be used forK .

3. A CHARACTERIZATION OF UNIFORM CONTINUITY

The following result will allow us to extend the idea behind Lipschitz global optimiza-
tion to continuous global optimization:

Theorem 1. A real-valued functionf defined on a convex domainD ⊂ Rn is uniformly
continuous if and only if, for everyε > 0, there exists aK <∞ such that| f (x)− f (y)| ≤
K‖x − y‖ + ε for all x, y ∈ D.

This theorem was proved in the unpublished technical report (Vanderbei 1991). For
completeness, we repeat the proof here.

Proof. Suppose thatf is uniformly continuous onD and fixε > 0. Then, there exists a
δ > 0 such that| f (z)− f (z′)| < ε whenever‖z − z′‖ < δ. Fix x andy in D and let

zk = y + k
δ

2

x − y

‖x − y‖ for k = 0, 1, 2, . . . , N

where

N =
⌊‖x − y‖

δ/2

⌋
,
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FIGURE 3. Upper and lower bounding function derived from a single
observation aty

andb·c denotes the greatest-integer function. From the convexity ofD, we see that each
zk belongs toD. Also,

z0 = y,

‖zk − zk−1‖ = δ/2,
and

‖x − zN‖ < δ/2.
Hence,

| f (x) − f (y)| ≤
N∑

k=1

| f (zk)− f (zk−1)| + | f (x) − f (zN )|

< (N + 1)ε

≤ 2ε

δ
‖x − y‖ + ε.

PickingK = 2ε/δ establishes the “only if” direction.
For the “if” part, suppose thatf satisfies the condition given in the theorem. Fixε > 0

and chooseK so that
| f (x) − f (y)| ≤ K‖x − y‖ + ε/2

for all x, y ∈ D. Putδ = ε/2K . If ‖x − y‖ < δ, then we see that

| f (x) − f (y)| < ε.
Hence, f is uniformly continuous.

Since a continuous function on a compact set is uniformly continuous, we can apply
Theorem 1 to our optimization problem. Indeed, assuming that a fixed pair(ε, K ) is
known, one can proceed along the same lines as before and derive the followingbounds on
the values off based on a single observation at a pointx :

f (y)− K |x − y| − ε ≤ f (x) ≤ f (y) + K |x − y| + ε
(see Figure 3). And as before, by judicious choice of subsequent sample points, one can
sequentially refine this estimate (see Figure 4). Hence, it is possible to extend essentially
every algorithm for Lipschitz global optimization to continuous global optimization. We
carry out this program for one such algorithm in the next section.
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FIGURE 4. Continuous, non-Lipschitz, objective function and upper
bounding function obtained from observations aty1, y2, . . . , y6.

4. EXTENSION OFPIYAVSKII ’ S ALGORITHM

The first algorithm for Lipschitz global optimization was published in Piyavskii (1967)
(see also Piyavskii (1972)) and was independently rediscovered by Shubert (1972) and Ti-
monov (1977). Recently, Gourdin, Jaumard & Ellaia (1997) gave an extension of Piyavskii’s
algorithm to Hölder continuous functions. In this section, we present a different (in fact,
simpler) extension of Piyavskii’s algorithm to an even larger problem domain, namely, the
domain of continuous optimization (there are, of course, continuous functions that are not
Hölder continuous, e.g., 1/ log(|x|) in a neighborhood of 0).

We begin by introducing some notation. We shall letY denote the set of points at which
f has been sampled at a particular stage of the algorithm. The first two sample points will
be the endpoints of the interval. Hence, we always assume thata andb belong toY. Next,
we shall letP denote the set of open intervals the union of which is the set of points not
yet sampled. That is,

∪(yl,yr )∈P(yl , yr ) = [a, b] − Y.
At each stage, we shall denote byy∗ the best point of those sampled so far. That is,

y∗ = argmax{ f (y) : y ∈ Y}.
We shall refer toy∗ as theincumbent solution. Given an interval, say(yl , yr ), let u(yl , yr )

denote the upper bound onf obtained by samplingf at the two endpoints of the interval
and using the fact thatf is (ε, K )-Lipschitz. That is,

u(yl , yr ) = 1

2
K (yr − yl)+ 1

2
( f (yl )+ f (yr ))+ ε.

Finally, let z(yl , yr ) denote the point at which the upper bounding function attains this
bound:

z(yl , yr ) = 1

2
(yr + yl )+ 1

2K
( f (yl )− f (yr )).

With these notations, Piyavskii’s algorithm is easy to state. First, one must pick two
parameters 0≤ ε < ε′ and then a value forK in accordance with Theorem 1. The
algorithm starts with

Y = {a, b}
P = {(a, b)}
y∗ =

{
a if f (a) > f (b)
b else.
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Then it loops through the following sequence of steps:

(1) Pick(yl , yr ) = argmax{u(yl , yr ) : (yl , yr ) ∈ P}.
(2) If u(yl , yr )− f (y∗) < ε′, then stop, the incumbent solutiony∗ is ε′-optimal.
(3) Puty = z(yl , yr ).
(4) Add y toY.
(5) Remove(yl , yr ) fromP and add(yl , y) and(y, yr ) toP.
(6) If f (y) > f (y∗), then reset the incumbent toy. That is,y∗ ← y.

If f is Lipschitz with parameterK , then one can chooseε = 0. The algorithm then reduces
exactly to Piyavskii’s algorithm for Lipschitz global optimization.

The analysis of the extended Piyavskii algorithm is essentially the same as the usual
analysis of Piyavskii’s algorithm in the Lipschitz case. We refer the reader to Hansen et al.
(1991) for details for that case.

Of course, to implement Piyavskii’s algorithm it must be possible to find an(ε, K )-pair.
Finding such a pair is very much analogous to finding theK for a Lipschitz continuous
function. Indeed, for functions that are differentiable except at a few singular points, find-
ing an (ε, K )-pair amounts to analyzing the function at the singular points. This is the
topic of the next section.

5. ESTIMATING K

The subject of Lipschitz global optimization is reasonable because an estimate for the
Lipschitz constant can often be found. For example, iff is differentiable, then‖ f ′‖∞ can
be used as the Lipschitz constant. (Here, the prime denotes differentiation and the norm
is the uniform norm.) Since there are specific formulas for computing derivatives (i.e.,
linearity of differentiation, the product rule, the chain rule, and formulas for the derivatives
of specific elementary functions) and bounding them, it is then easy to derive an (upper)
estimate forK . In this section, we describe how to carry out the analogous program for
continuous functions. Throughout we assume that all functions have compact domains so
that no distinction need be made between continuous and uniformly continuous functions.

The assertion that “for everyε > 0 there exists aK < ∞” in Theorem 1 is equivalent
to the assertion that there exists a real-valued functionK (ε) defined on the set of positive
reals. Of course, such a function is not unique. The set of such functions is closed un-
der pointwise minimization and hence there exists a smallest such function. Denote this
smallest function byκ. The following statements are easy to verify:

Theorem 2. (a)

κ(ε) = sup
x,y∈dom( f )

| f (x) − f (y)| − ε
|x − y|

(b) κ is a decreasing function and therefore its domain of definition can be extended to
include0:

κ(0) = lim
ε→0

κ(ε).

(c) If f is Lipschitz with parameterL, thenκ(0) ≤ L.
(d) If f is continuously differentiable, thenκ(0) = ‖ f ′‖∞.

To emphasize the dependence ofκ on the functionf , we shall sometimes writeκ f .
The following theorem provides results analogous to the linearity of differentiation and
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analogous to the product and chain rules. Some of the formulas involveinfimal convolution
operator⊕, which is defined by

κ1⊕ κ2(ε) = inf
0≤δ≤ε

(κ1(δ)+ κ2(ε − δ)) .
Of course, in practice one does not need to compute the infimal convolution but rather one
simply picks someδ between 0 andε to get a suitable upper bound.

Theorem 3. Let f andg be continuous functions and letα be a real number. The follow-
ing computational identities hold:

(a) κα f (ε) = |α|κ f (ε/|α|).
(b) κ f+g ≤ κ f ⊕ κg.

(c) κ f g ≤ κ‖g‖∞ f ⊕ κ‖ f ‖∞g.

(d) κ f ◦g(ε) ≤ κ f (ε)κg (0).

Proof. (a) Let f be a continuous function and letα be a real number. Then,

κα f (ε) = sup
x,y

|α f (x)− α f (y)| − ε
|x − y|

= |α| sup
x,y

| f (x) − f (y)| − ε/|α|
|x − y|

= |α|κ f (ε/|α|).
(b) Let f andg be continuous functions defined on the same domain. Then, for any

0≤ δ ≤ ε, we have

κ f+g(ε) = sup
x,y

| f (x) + g(x)− f (y)− g(y)| − ε
|x − y|

≤ sup
x,y

| f (x) − f (y)| + |g(x)− g(y)| − ε
|x − y|

≤ sup
x,y

| f (x) − f (y)| − δ
|x − y| + sup

x,y

|g(x)− g(y)| − (ε − δ)
|x − y|

= κ f (δ)+ κ f (ε − δ).
Now taking the infimum over allδ, we get

κ f+g(ε) ≤ inf
0≤δ≤ε

(
κ f (δ)+ κg(ε − δ)

)
= κ f ⊕ κg(ε).

(c) Let f andg be continuous functions defined on the same domain. Then

κ f g(ε) = sup
x,y

| f (x)g(x) − f (y)g(y)| − ε
|x − y|

≤ sup
x,y

| f (x)− f (y)||g(x)| + |g(x)− g(y)|| f (x)| − ε
|x − y|

≤ sup
x,y

| f (x)− f (y)|‖g‖∞ − δ
|x − y| + sup

x,y

|g(x)− g(y)|‖ f ‖∞ − (ε − δ)
|x − y|

= κ‖g‖∞ f (δ)+ κ‖ f ‖∞g(ε − δ).
Now taking the infimum over allδ, we get

κ f g(ε) ≤ inf
0≤δ≤ε

(
κ‖g‖∞ f (δ)+ κ‖ f ‖∞g(ε − δ)

)
= κ‖g‖∞ f ⊕ κ‖ f ‖∞g(ε).
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(d) Let f and g be continuous functions such that the range ofg is contained in the
domain of f . Then

κ f ◦g(ε) = sup
x,y

| f (g(x))− f (g(y))| − ε
|x − y|

= sup
x,y

( | f (g(x))− f (g(y))| − ε
|g(x)− g(y)| · |g(x)− g(y)|

|x − y|
)

≤ sup
ξ,η

( | f (ξ )− f (η)| − ε
|ξ − η|

)
sup
x,y

( |g(x)− g(y)|
|x − y|

)
= κ f (ε)κg (0).

Finally, it is easy to computeκ for most elementary functions. For example, if

f (x) = xα, x ∈ [0, b],

where 0< α < 1, then an easy calculation shows that

κ(ε) = α
(

1− α
ε

) 1−α
α

.

Also, if

f (x) = 1/ logx, x ∈ [0, a],

wherea is a small positive number, then

κ(ε) =
(

2ε

1+√1− 4ε

)2

exp

(
1+√1− 4ε

2ε

)
≈ ε2e1/ε .

6. EXTENSION TO HIGHER DIMENSIONS

To extend Piyavskii’s algorithm to higher dimensions, the main difficulty is to be able
to evaluate the location and value of the maximum of a lower envelope of functions whose
graphs are lower envelopes of cones and whose vertices are at the corners of a multidimen-
sional rectangle. This maximization is difficult if the cones correspond to the Euclidean
norm; i.e., if the functions are of the form:

φ(x) = f (y)+ K‖x − y‖2.
But, we are free to choose any norm. The above optimization is much easier if the norm is
thel1 norm instead of thel2 norm. And since in finite dimensions all norms are equivalent,
the choice of norm has no effect on the class of functions covered by the theory except
that the value ofK will vary. Furthermore, in low dimensions evenK won’t change very
much. Hence, it is natural to construct higher dimensional variants of the algorithm using
thel1 norm. Again, we leave the details to the interested reader.
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