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ABSTRACT

In this paper, we present a new global optimization method

for designing QMF (quadrature mirror filters) filter banks.
We formulate the design problem as a nonlinear constrained
optimization problem, using the reconstruction error as the
objective, and the stopband ripple, stopband energy, pass-
band ripple, passband energy and transition bandwidth as
constraints. This formulation allows us to search for so-
lutions that improves with respect to the objective, and
that performs better than or equal to the best existing de-
signs with respect to the constrained measures. We present
NOVEL, a global optimization method we have developed
for solving nonlinear continuous constrained optimization
problems, and apply it to find improved designs. We also
show that relaxing the constraints on transition bandwidth
and stopband energy will lead to significant improvements
in the other performance measures.

1. INTRODUCTION

The design of digital filter banks is important as improve-
ments can have significant impact in many fields. Among
various filter banks, QMF FIR filter banks are an important
class of filter banks that have been studied extensively.

In general, the design objectives of filter banks can be
classified into two types, the first defining the overall per-
formance of the filter bank, and the second defining the
performance of each individual filter. Figure 1 summarizes
the various design objectives used in this area for measuring
the quality of a design. Itis clear that the design problem is
a multi-objective, continuous, nonlinear optimization prob-
lem, and a good design should have small distortions, small
ripples, small attenuations, and short transition.

In this paper, we present a new global constrained op-
timization method for designing QMTF filter banks. In a
two-band QMTF filter bank, the reconstructed signal is [4]:

(1)

SH(—2)Fu(z) + Hi(~2)Ra(2)] X(2).

X(z) S Ho(2)Fo(z) + Hi(2)Fi(2)] X()

-+

where X(z) is the original signal, and H;(z) and F;(2) are,
respectively, the response of the analysis and synthesis fil-
ters. To perfectly reconstruct the original signal based on
X, we have to eliminate aliasing, amplitude, and phase dis-
tortions. QMF FIR filter banks implement perfect recon-
struction by setting Fo(z) = Hi(~z), Fi(z) = —~Ho(—2)
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| Filter ] Design Objectives |

Overall | Minimize amplitude distortion (E,)

Filter | Minimize allasing distortion

Bank | Minimize phase distortion
Minimize stopband ripple (4,)

Single | Minimize passpand ripple (8,)

Filter | Minimize transifion bandwidth {1%)
Minimize stopband energy (&)
Maximize passband flatness (£,)

IE(I)]

Figure 1. Possible design objectives of filter banks
and an illustration of the design objectives of a sin-
gle low-pass filter. ([0,w,] is the pass band; [w,, 7],
the stop band; [wp,w,], the transition band.)

and H;(z) = Ho(—z), leading to one prototype filter Ho(z)
in the system. Let h(n) be the filter parameters. If ho(n)
is symmetric, then hi(n) = (—1)"he(n) is antisymmetric,
and the system has linear phase. This leads to zero alias-
ing and phase distortions in QMF filter banks, converting
the design problem into an optimization problem that finds
ho(n) in ozder to

¢ minimize the amplitude distortion (reconstruction er-
ror) of the overall filter bank, and

¢ maximize the performance of the individual prototype
filter Ho(2).
2. NONLINEAR OPTIMIZATION OF QMF
FILTER BANKS

The design of QMF filter banks can be formulated as a
multi-objective unconstrained optimization problem or as a
single-objective constrained optimization problem.

2.1. Multi-Objective Formulation

A possible multi-objective unconstrained formulation is to
optimize the design with respect to a subset of the measures
defined in Figure 1.

Min

E, and E,

(2)



=
where FE, =/z (IHo(ej”)Iz-i-[Ho(ej(""”))lz—-1)2 duw
w=0
and E,=/ |Ho(e7)?dw

where w, is the stopband edge.!

Unfortunately, optimal solutions to the simplified opti-
mization problem are not necessarily optimal solutions to
the original problem. Oftentimes, performance in the ob-
Jjective measures not included in the formulation are com-
promised. For example, when E, and E, are the objectives
to be minimized, the solution that gives the smallest E,
and E, will probably have a large transition band.

In general, there is no method that can optimize si-
multaneously all the objectives in a general nonmlinear
multi-objective problem. Ore approach is to optimize a
weighted sum of all the objectives and to solve the new
problem using unconstrained nonlinear optimization meth-
ods [7, 3, 15, 1, 10]. For this approach to succeed, the
weights on each objective must be chosen properly, and
solving such a problem amounts to designs that trade one
performance measure with respect to another.

Other approaches try to exploit specific features of the
design problem. Examples include spectral factorization
and heuristic methods [8, 16].

2.2. Single-Objective Constrained Formulation

In a single-objective constrained formulation, constraints
are defined with respect to a reference design. The spe-
cific measures constrained may be application- and filter-
dependent [15].

Constraint-based methods have been applied to design
QMF filter banks in both the frequency [7, 1, 2, 8, 12, 14]
and the time domains [9, 13]. In the frequency domain, the
most often considered objectives are the reconstruction er-
ror, E., and the stopband ripple. As stopband ripples can-
not be formulated in closed form, stopband attenuation is
used instead (represented as F, in (2)). In the time domain,
Nayebi [9] gave a time-domain formulation with constraints
in the frequency domain and designed filter banks using an
iterative time-domain design algorithm.

In this paper, we formulate the design of a QMF filter
bank in the most general form as a constrained nonlinear
optimization problem, using the reconstruction error as the
objective and other measures (stopband ripple, stopband
energy, passband ripple, passband energy and transition
bandwidth) as constraints:

Minimize E, (3)
subject to E, < 6p, E, <05,

6 < 95; 6, < 65,

T: < O,

where 95, 0g,, 95,, 05, and 6, are constraint values ob-
tained in the best known design. The goal here is to find
designs whose constrained performance measures are better
than or equal to those of the reference design, and whose
objective measure is better than that of the reference de-
sign. Since the objective and constraints are nonlinear, the
problem is multi-modal with many local minima.

1Note that in QMF flter banks, E, is non-zero. A multi-rate
filter bank that enforces perfect reconstruction (E, = 0) can be
formulated as a constrained optimization problem with & goal of
minimizing E, [6, 5.

Finding global optimal solutions of nonlinear continuous
constrained problems is one of the most challenging tasks
in optimization. There are three global optimization ap-
proaches to solve (3).

Methods in the first approach use local search to deter-
mine local minima, and focus on bringing the search out
of a local minimum once it gets there. The two classes of
methods and their drawbacks are as follows.

¢ Deterministic methods, such as covering methods and
generalized descent methods, do not work well when
the search space is large.

o Probabilistic methods are weak in either their local or
global search. For instance, gradient information is
not used well in simulated annealing and evolutionary
algorithms. In contrast, gradient descent algorithms
with multistarts and random probing are weak in their
global search strategy.

In the second approach, all constraints are absorbed into
the objective function and weighted by penalty coefficients.
These constant, selected ahead of time, are used to penalize
the objective function when constraints are violated. The
approach is not effective because it is usually hard to choose
appropriate penalty values when constraints are violated.

In the third approach, the single objective constrained
problem is solved by minimizing a Lagrangian function,
which is the sum of the objective function and the con-
straints weighted by Lagrange multipliers. Although this
is similar to a penalty-based method, it is more powerful
because Lagrange multipliers are dynamically adjusted in
order to push the search towards a feasible region.

In a Lagrangian formulation, a local minimum in a fea-
sible region is called a saddle point at which the objective
function is at a local mirimum and the weighted sum of
the constraints is at a local maximum. By using this prop-
erty, saddle points can be found by local search methods that
perform gradient descents in the original-variable space and
gradient ascents in the Lagrange-variable space.

Since a saddle point is only a local minimum in a feasible
region, global search methods are needed to bring the search
out of a local minimum. Strategies like random restarts
are not effective because the search space is too large to
be covered. In the next subsection, we describe an effective
global search strategy that relies on an external force to pull
the search out of local minima.

2.3. NOVEL Global Optimization Method

NOVEL (Nonlinear Optimization via External Lead) is a
global optimization method we have developed to solve
nonlinear unconstrained optimization problems [11]. Start-
ing from a Lagrangian formulation, our implementation of
NOVEL has two stages.

In the global search stage, NOVEL looks for good start-
ing points for the local-search stage. This is important be-
cause it first identifies good starting points before applying
expensive local searches. This avoids repeatedly determin-
ing unpromising local minima as in multi-start algorithms
and applying computationally expensive descent algorithms
from random starting points. The result of this stage is a
trajectory on the Lagrangian function space. The dynam-
ics of the trajectory is controlled by two forces: local gra-
dient to pull the trajectory towards a local minimum, and
the force exerted by a gradient-independent trace function
to pull the trajectory out of a local minimum. The latter
is particularly important because it provides a continuous
means of going from one local region to another, avoiding
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Table 1. Performance of three QMF filter banks found by NOVEL as compared to that of Johnston’s de-
signs [7]. The objective to minimizeis E,, and others parameters are constrained with respect to Johnston’s.

Performance 24D 32D 48D
NOVEL | Johnston’s NOVEL | Johnston’s NOVEL | Johnston’s

E. 3.660166e-05 | 4.861841e-05 4.965934e-06 | 5.941763e-06 5.623691e-07 | 5.936320e-07

F, 2.564074e-04 | 2.564074e-04 3.860062e-05 | 3.860063e-05 6.892256e-07 | 6.892257e-07

E, 3.348576e-06 | 4.358370e-06 || 3.563868e-07 | 5.829183e-07 || 2.679881e-08 | 3.544864¢-08

Oy 3.263258e-02 | 3.263258e-02 1.473594e-02 | 1.473594e-02 || 2.481871e-03 | 2.481871e-03

oy 4.124381e-03 | 4.124381e-03 1.727426e-03 | 1.834884e-03 || 4.80833%e-04 | 4.808339e-04

Aw 0.539900 0.539900 0.503369 0.503369 0.472107 0.472107
problems in methods that determine new starting points 1.01 I R
heuristically and losing valuable local information found in Johnston ——
a local search. NOVEL ——

In the local search stage, NOVEL uses promising start- 1.005 | ]
ing points identified in the global search stage and applies : .
local seaxrches to find saddle points in the Lagrangian func- -
tion space. These local searches include gradient descents s
in the original-variable space and gradient ascents in the @ 1r N
Lagrange-variable space. The designs found correspond to &
designs whose consiraints are satisfied and whose objective
is at a local minimum. 0.995 | .

3. EXPERIMENTAL RESULTS
‘We have applied NOVEL to solve some QMF filter-bank de- 0.99 — P S T—
sign problems formulated by Johnston [7]. In our designs, -0.25-0.2-0.15-0.1-0.05 0 0.05 0.1 0.15 0.2 0.25
we have used the reconstruction error as our objective to be f
minimized, and have constrained other performance mea- 0.0001 T T
sures with respect to those of Johnston’s designs. Our goal 9e-05 JC;\II"S\SIEE |
is to find designs that are better than Johnston’s results N gaos | A )
across all six performance measures. 55.* {‘,

To apply NOVEL, all the measures defined in Figure 1 v 7e05 i 1
and their gradients must either be in closed form or eval- & ee05 .
uated accurately by numerical methods. We have derived & 56-05 | |
closed-form formulae for the reconstruction error, passband (=)
energy, stopband energy, and the corresponding gradients. T 405t ]
The ripples, the transition band, and their gradients are N 305t -
found by numerical methods. :.:?‘ 2e-05 | -

Table 1 shows the performance of 24D, 32D and 48D = ¢
QMTF filter banks designed by our method as compared to 1e-05 1 /AA ) ’

those of Johnston’s. In all three cases, our designs have
smaller reconstruction errors and passband energies, while
all other measures are either better than or equal to John-
ston’s. Note that other design methods generally perform
trade-offs, resulting in designs that are better in one or more
measures but worse in others.

Figure 2 depicts our 24D QMF and Johnston’s designs. It
indicates that our design has smoother passband response
and lower reconstruction error.

Note that Johnston used sampling in computing en-
ergy values whereas NOVEL used closed-form integration.
Hence, designs found by Johnston are not necessarily at
the local minima in a continuous formulation. To demon-
strate this, we applied local search in a continuous formu-
lation of the 24D design, starting from Johnston’s design.
We found a design with a reconstruction. error of 3.83E-
05, which is better than Johnston’s result of 4.86E-05. By
applying global search, NOVEL can further improve the
design to result in a reconstruction error of 3.66E-05.

To summarize, performance improvements in NOVEL
come from three sources. First, the closed-form formula-
tion used in NOVEL is more accurate than the sampling
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Figure 2. A comparison of our 24D QMTF design
and Johnston’s design. The upper graph shows the
passband frequency responses, and the lower graph
shows the reconstruction errors.

method used in Johnston’s approach. Local optima found
by NOVEL are true local optima whereas Johnston’s so-
Iution are local optima in a discrete approximation of the
design problem. Second, NOVEL uses a constrained formu-
lation which allows it to find designs that are guaranteed to
be better than or equal to Johnston’s design with respect
to all performance measures. Third, NOVEL employs effec-
tive global optimization strategies that allows it to explore
a large part of the search space without first committing to
many expensive local searches.

By using our constrained formulation, we can further
study trade-off in designing QMTF filter banks in a controlled
environment. Tightening the constraints in (3) will cause
the reconstruction error to increase, whereas loosening them
will lead to smaller reconstruction error.
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Figure 3. Experimental results in relaxing and in
tightening the constraints with respect to John-
ston’s designs for 24D (upper) and 32D (lower)
QMFs. The z-axis shows the ratio of the con-
straint in NOVEL with respect to Johnston’s value.
The y-axis shows the ratio of the measure found by
NOVEL with respect to Johnston’s.

Figure 3 demonstrates these trade-offs for 24D and 32D
QMTF filter banks. In our experiments, we have used John-
ston’s designs as our baselines. We use constraint ratio,
R., to represent the tightening or the relaxation of all the
constraints. For example, R, = 1.1 means that all the con-
straints in NOVEL are set to 1.1 times of the measures
in Johnston’s design. The y-axis shows the solution ratio,
which is the ratio between the measure found by NOVEL
and that of Johnston’s. Hence, the line z = y in Figure 3
indicates that the resulting measure is exactly at the con-
straint value.

When constraints are loosened, the reconstruction error,
passband energy, passband ripple and stopband ripple de-
crease significantly with respect to the relaxed constraints.
These improvements are at the expense of the transition
bandwidth and stopband energy, which increase according
to the relaxed constraints.

When constraints are tightened, we have difficulty in sat-
isfying the constraint on the transition bandwidth, and have
found designs whose transition bandwidth is about the same
as that when R, = 1. This indicates that Johnston’s designs
are already very good, and that it may only be possible to
have trade-offs between the transition bandwidth and the
stopband energy.
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