
Global Optimization of Nonconvex Factorable Programs with

Applications to Engineering Design Problems

by

Hongjie Wang

Thesis submitted to the Faculty of the

Virginia Polytechnic Institute and State University

in partial ful�llment of the requirements for the degree of

Master of Science

in

Industrial and Systems Engineering

APPROVED:

Dr. Hanif D. Sherali (Chairman)

Dr. Joel A. Nachlas Dr. Subhash C. Sarin

May 20, 1998

Blacksburg, Virginia

Global Optimization of Nonconvex Factorable Programs with

Applications to Engineering Design Problems

by

Hongjie Wang

Dr. Hanif D. Sherali, Chairman

Industrial and Systems Engineering

(ABSTRACT)

The primary objective of this thesis is to develop and implement a global

optimization algorithm to solve a class of nonconvex programming problems,

and to test it using a collection of engineering design problem applications.

The class of problems we consider involves the optimization of a general non-

convex factorable objective function over a feasible region that is restricted

by a set of constraints, each of which is de�ned in terms of nonconvex fac-

torable functions. Such problems �nd widespread applications in production

planning, location and allocation, chemical process design and control, VLSI

chip design, and numerous engineering design problems. This thesis o�ers

a �rst comprehensive methodological development and implementation for

determining a global optimal solution to such factorable programming prob-

lems.

To solve this class of problems, we propose a branch-and-bound approach

based on linear programming (LP) relaxations generated through various

approximation schemes that utilize, for example, the Mean-Value Theorem

and Chebyshev interpolation polynomials, coordinated with a Reformulation-

Linearization Technique (RLT). The initial stage of the lower bounding step

generates a tight, nonconvex polynomial programming relaxation for the

i

given problem. Subsequently, an LP relaxation is constructed for the re-

sulting polynomial program via a suitable RLT procedure. The underlying

motivation for these two steps is to generate a tight outer approximation

of the convex envelope of the objective function over the convex hull of the

feasible region. The bounding step is then integrated into a general branch-

and-bound framework. The construction of the bounding polynomials and

the node partitioning schemes are specially designed so that the gaps re-

sulting from these two levels of approximations approach zero in the limit,

thereby ensuring convergence to a global optimum. Various implementa-

tion issues regarding the formulation of such tight bounding problems using

both polynomial approximations and RLT constructs are discussed. Di�erent

practical strategies and guidelines relating to the design of the algorithm are

presented within a general theoretical framework so that users can customize

a suitable approach that takes advantage of any inherent special structures

that their problems might possess.

The algorithm is implemented in C++, an object-oriented programming

language. The class modules developed for the software perform various

functions that are useful not only for the proposed algorithm, but that can be

readily extended and incorporated into other RLT based applications as well.

Computational results are reported on a set of �fteen engineering process

control and design test problems from various sources in the literature. It

is shown that, for all the test problems, a very competitive computational

performance is obtained. In most cases, the LP solution obtained for the

initial node itself provides a very tight lower bound. Furthermore, for nine

of these �fteen problems, the application of a local search heuristic based on

ii

initializing the nonlinear programming solver MINOS at the node zero LP

solution produced the actual global optimum. Moreover, in �nding a global

optimum, our algorithm discovered better solutions than the ones previously

reported in the literature for two of these test instances.

iii

Acknowledgment

This thesis is dedicated to my advisor Dr. Hanif D. Sherali. I would like to

thank my parents and my wife Qing, for their love and support. I would also

like to thank Dr. Joel A. Nachlas and Dr. Subhash C. Sarin for serving on

the thesis committee.

Finally, I like to acknowledge the National Science Foundation for their

support under Grant No. DMI-9521398.

iv

Contents

1 Introduction 1

1.1 Scope and Purpose : 1

1.2 Problem Description : 2

2 Literature Review 4

2.1 Global Optimization : 4

2.2 Factorable Programming : 5

2.3 Reformulation-Linearization Technique : : : : : : : : : : : : : 7

2.4 Range-Reduction and Constraint Filtering : : : : : : : : : : : 8

3 Problem Structure and Assumptions 10

4 Constructing Bounding Polynomials 15

4.1 Mean-Value Theorem Based Approach : : : : : : : : : : : : : 15

4.2 Chebyshev Interpolation Approach : : : : : : : : : : : : : : : 19

5 A Branch-and-Bound Algorithm 25

5.1 A Two-Step Procedure for Generating Relaxations : : : : : : : 25

v

5.1.1 Generating a Lower Bounding Nonconvex Polynomial

Programming Problem : : : : : : : : : : : : : : : : : : 26

5.1.2 Reformulation-Linearization Technique : : : : : : : : : 27

5.2 A Branch-and-Bound Algorithm : : : : : : : : : : : : : : : : : 30

5.2.1 Branching Rule : 31

5.2.2 Algorithmic Statement : : : : : : : : : : : : : : : : : : 32

5.3 An Illustrative Example : 38

6 Implementation 45

6.1 Design Issues : 45

6.1.1 Pre-processing the Problem. : : : : : : : : : : : : : : : 46

6.1.2 Algorithms for Bounding Polynomials : : : : : : : : : : 47

6.1.3 Constructing RLT Constraints Under Di�erent Options 48

6.1.4 Range-Reduction : 51

6.1.5 Constraint Filtering Techniques : : : : : : : : : : : : : 51

6.1.6 Branch-and-Bound Framework : : : : : : : : : : : : : : 52

6.2 C++ Classes : 52

6.2.1 Constraint Class : 53

6.2.2 A Combination Class : : : : : : : : : : : : : : : : : : : 60

6.2.3 Problem Class and Sparse Matrix Class : : : : : : : : : 67

6.2.4 Classes for Branch-and-Bound : : : : : : : : : : : : : : 67

7 Computational Experience 69

8 Conclusions and Recommendations for Future Research 83

8.1 Issues for Future Research : 85

vi

Bibliography 88

Appendix A Tutorial on the Branch-and-Bound Code 96

Vita 112

vii

List of Figures

4.1 Bounding Polynomials via the Mean-Value Theorem : : : : : : 18

4.2 Bounding Polynomials via Chebyshev Interpolation Polynomials 22

5.1 Objective Function for the Illustrative Example. : : : : : : : : 39

viii

List of Tables

7.1 Computational Results with � = 10�6. : : : : : : : : : : : : : 70

7.2 Computational Results with � = 0:01. : : : : : : : : : : : : : : 71

7.3 Computational Results with � = 0:05. : : : : : : : : : : : : : : 72

ix

Chapter 1

Introduction

1.1 Scope and Purpose

The primary thrust of this thesis research is to design and implement a

global optimization algorithm for a class of nonconvex factorable program-

ming problems. This is a special class of nonconvex programming problems

for which the objective function and constraints are de�ned in terms of gen-

eral factorable functions. Such problems �nd numerous applications in di-

verse areas such as engineering design and control, computational biology,

chemical process, network design, and stochastic programming. The algo-

rithm presented in this thesis is a �rst general systematic approach to solve

such a comprehensive class of problems.

We propose a branch-and-bound solution approach for this class of prob-

lems, based on linear programming relaxations generated through various

approximation schemes that utilize, for example, the Mean-Value Theorem

and Chebyshev interpolation polynomials, coordinated with a Reformulation-

1

CHAPTER 1. INTRODUCTION 2

Linearization Technique (RLT). Suitable branching rules that guarantee con-

vergence to a global optimal solution are established. A software package in

C++ has been written to implement the proposed algorithm, and test prob-

lems from various engineering applications are solved to evaluate the per-

formance of this algorithm. The computational experience reported is very

promising. The proposed LP relaxations are shown to produce very tight

lower bounds, and the overall computational e�ort is quite modest. In two

cases, we even found better solutions than the ones reported in the existing

literature.

1.2 Problem Description

The class of nonconvex factorable programming problems that we consider

in this thesis can be stated as follows.

FP(
) : Minimize f0(x) (1.1)

subject to fi(x) � �i for i = 1 : : : ; m;

x 2
 = fx : 0 � lj � xj � uj <1; for j 2 N � f1; : : : ; ngg;

where

fi(x) =
X
t2Ti

�it

Y
j2Jit

fitj(xj) �
X
t2Ti

�itfit(x) for i = 0; 1; : : : ; m: (1.2)

Here, fi(x) is a nonconvex factorable function that is stated as a sum of

terms �itfit(x), indexed by t 2 Ti. For each t 2 Ti, fit(x) is a product

of univariate functions fitj(xj) of xj, indexed by j 2 Jit � N . The name

CHAPTER 1. INTRODUCTION 3

factorable program denotes this latter property whereby each nonlinear term

in the problem can be factored into a product of univariate functions.

The remainder of this thesis is organized as follows. Chapter 2 gives a

brief literature review on several subjects that are relevant to our research.

Chapter 3 delineates the structure and assumptions regarding the problem

that are necessary for our procedure to be applicable. Chapter 4 presents

two di�erent methods for constructing bounding polynomial functions for use

in the �rst step of the relaxation process. The branch-and-bound algorithm

is developed in Chapter 5. Various aspects of the proposed procedure are

illustrated via an insightful numerical example in this chapter. In Chapter

6, some practical issues, considerations, and implementation strategies are

presented. Several C++ program modules that play a key role in the imple-

mentation are also discussed. The computational experience obtained on a

set of �fteen practical engineering design and control problems is reported in

Chapter 7. Finally, we conclude the thesis with some suggestions for future

research in Chapter 8 and o�er a tutorial on the software in the appendix.

Chapter 2

Literature Review

2.1 Global Optimization

Global optimization has received a great deal of attention recently, due to

its widespread applications in the areas of engineering design, process con-

trol, �nance, economics and risk management, among many others. Several

examples of practical optimization problems are discussed in Pint�er (1996).

Motivated by such applications, a great number of algorithms have been

developed to solve various classes of problems (see Horst and Tuy (1996)).

Practical nonlinear problems are usually di�cult to solve due to the presence

of multiple optima. From the complexity point of view, global optimization

problems belong to the class of NP-hard problems (see Vavasis (1995)). This

means that as the input size of the problem increases, the computational

time to solve the problem to optimality can be expected to grow exponen-

tially. Designing e�ective and e�cient algorithms for global optimization is

one of the fastest growing and challenging research areas in mathematical

4

CHAPTER 2. LITERATURE REVIEW 5

programming and engineering science.

2.2 Factorable Programming

The class of factorable nonconvex programming problems was �rst intro-

duced by McCormick (1976). It is a very comprehensive class of problems

that subsumes many traditional types of problems that have received spe-

cial attention in the literature. For example, geometric programming prob-

lems can be converted into separable programming problems, a subset of

factorable programs, via suitable exponential transformations as shown in

Dembo (1978). The general nonconvex multiplicative programming prob-

lems studied in Konno and Kuno (1995) are amenable to solution with sep-

arable programming techniques. Separable concave programs that are inves-

tigated in Horst and Thoai (1996) and Shectman and Sahinidis (1996) are

special cases of nonconvex factorable programming. The nonconvex sepa-

rable resource allocation problem examined in Haddad (1996) also �ts the

description of our problem statement in Chapter 1.

Most deterministic approaches for nonconvex optimization focus on con-

structing convex relaxations, and then embedding these lower bounding prob-

lems within a branch-and-bound procedure. Consequently, considerable re-

search e�ort has been devoted to developing exact or tight approximations to

convex envelopes for nonconvex functions. To solve factorable programming

problems, McCormick (1976) proposed a systematic and recursive process

for constructing convex underestimators for the nonconvex terms in the ob-

jective function and the constraints, assuming that convex and concave en-

CHAPTER 2. LITERATURE REVIEW 6

velopes over
 are known for each de�ning univariate function in the prob-

lem. The resulting underestimating convex program was embedded in a

successive partitioning or branch-and-bound process, and various conditions

were developed under which global convergence is guaranteed. Al-Khayyal

and Falk (1983) have derived an explicit closed-form formula for the con-

vex envelope of a bivariate, bilinear function over a rectangle. Sherali and

Alameddine (1990) apply RLT to characterize explicit convex envelopes of

bivariate bilinear functions over more general D-polytopes. Sherali (1997)

has also developed the convex envelopes of multilinear functions over the

unit hypercube, as well as over other special discrete sets. Adjiman and

Floudas (1996) establish procedures to derive rigorous convex underestima-

tors for general twice-di�erentiable functions by �nding valid lower bounds

on the eigenvalues of the functions using interval Hessian matrices.

The class of polynomial programming problems is a special case of fac-

torable programs that has received considerable attention. Floudas and

Visweswaran (1990, 1995) propose a transformation process for converting

any given polynomial program into an equivalent quadratic program, and

Al-Khayyal et al. (1994) show how such a problem can alternatively be con-

verted into an equivalent bilinearly constrained bilinear program. In either

case, the resulting problem is solved via a branch-and-bound procedure that

employs convex envelope based linear programming relaxations in order to

compute lower bounds at each node of the enumeration tree. Sherali and

Tuncbilek (1992) propose a Reformulation-Linearization Technique (RLT)

for directly computing lower bounds for polynomial programming problems,

and embed this strategy into a branch-and-bound algorithm. Special branch-

CHAPTER 2. LITERATURE REVIEW 7

ing rules are designed to ensure the convergence to a global optimum. This

approach has been recently extended by Sherali (1998) to handle polynomial

programs having more general rational exponents on the variables. In this

case, an additional step is introduced to construct a lower bounding polyno-

mial program having integer exponents to which the RLT approach is applied

in order to derive lower bounds. Suitable partitioning rules are designed to

close the gap in these two levels of approximation and induce convergence

to a global optimum. The research in this thesis is a direct and signi�cant

extension of these previous research e�orts.

2.3 Reformulation-Linearization Technique

The most important component in a deterministic approach to global op-

timization such as the branch-and-bound method, is to obtain tight lower

bounds via suitable LP or convex relaxations (see Sherali and Adams (1996)).

Sherali and Adams (1990,1994) develop a Reformulation-Linearization Tech-

nique that is designed to generate a hierarchy of linear programming re-

laxations for mixed 0-1 integer programming problems. These relaxations

span the spectrum from the usual continuous relaxation to the actual con-

vex hull representation of the original feasible solution space. Typically, �rst

or second levels of RLT are used to generate tight LP relaxations that are

embedded within a general branch-and-bound procedure. This methodol-

ogy has been applied to solve many di�erent types of discrete optimization

problems (see the survey in Sherali and Adams (1996)). Moreover, Sherali

and Tuncbilek (1992) have extended this unique approach to the continuous

CHAPTER 2. LITERATURE REVIEW 8

problem domain, in particular, to nonconvex global optimization of polyno-

mial programming problems. Sherali and Alameddine (1991) further utilize

RLT to solve the class of bilinear programming problems. The LP relaxation

constructed via RLT gives a close approximation to the convex hull of feasi-

ble points of the original bilinear program. In some cases, it is proven that

the approximations are exact. In Sherali and Tuncbilek (1995), RLT is used

to devise a powerful algorithm for solving nonconvex quadratic programming

problems. In addition to the LP relaxation, other kinds of RLT based cuts

are generated so that the resulting convex relaxation yields very tight lower

bounds. Various classes of RLT based valid inequalities are also presented

in Sherali and Tuncbilek (1997) for univariate and multivariate polynomial

programming problems.

2.4 Range-Reduction and Constraint Filter-

ing

One technique that is often employed in modern implementations of branch-

and-bound methods is range-reduction. This typically utilizes the best in-

cumbent solution and other information regarding the unique structure of

the problem to further restrict the search region for locating global optimal

solutions. Ryoo and Sahindis (1996) and Sherali and Tuncbilek (1995) de-

velop a series of techniques to generate valid inequalities that are used to

reduce the size of the search space for various global optimization problems.

(Ryoo and Sahindis have coined the term branch-and-reduce to highlight this

approach to global optimization.) Another approach to reduce the number

CHAPTER 2. LITERATURE REVIEW 9

of iterations is investigated in Epperly and Pistikopoulos (1997) and Sherali

and Alameddine (1991), where the algorithm chooses only a subset of the

original variables to perform branching on, while still retaining theoretical

convergence to a global optimum.

In RLT based algorithms, constraint �ltering is a common strategy that

is used to control the size of the LP relaxations. Several practical constraint

�ltering schemes are discussed in Sherali and Tuncbilek (1995). More re-

cently, Sherali, Smith and Adams (1997) have explored the possibility and

e�ectiveness of the generation of reduced �rst-level representations for 0-1

mixed-integer programs that retain the tightness of the full �rst-level RLT

relaxation, while signi�cantly reducing the total number of RLT constraints.

Chapter 3

Problem Structure and

Assumptions

The essence of the proposed algorithm lies in two particular levels of ap-

proximation and relaxations that are employed in its design, as mentioned

in the introduction in Chapter 1. The special features of the approximating

polynomials derived in the �rst of these two steps ensure in the limit that

these polynomials converge to the original nonconvex factorable functions.

The unique properties of RLT are used to drive the gaps between the LP re-

laxations and the intermediate approximating polynomial programs to zero.

To facilitate this two-step process, the univariate functions that de�ne the

nonlinear factorable terms in the problem should satisfy some basic proper-

ties or assumptions. We point out here that these assumptions are delineated

to mainly ease the theoretical exposition. In practice, as explained later in

this chapter, several types of problem manipulation techniques can be used

to e�ectively cast a given, more general, problem into the required form that

10

CHAPTER 3. PROBLEM STRUCTURE AND ASSUMPTIONS 11

satis�es these assumptions.

Assumption 1. For each (i; t; j), i 2 f0; 1; : : : ; mg, t 2 Ti and

j 2 Jit, fitj(xj) 2 C2 (twice continuously di�erentiable) and is nonnegative

on
j = [lj; uj], and there exists a polynomial function g

j

itj (xj), which might

depend on
j, such that g

j

itj (xj) � 0 and for all xj 2
j,

8><
>:

g

j

itj (xj) � fitj(xj) if �it > 0;

g

j

itj (xj) � fitj(xj) if �it < 0:

(3.1)

Moreover, in each case, the corresponding function g

j

itj (xj) satis�es the fol-

lowing property.

Property 1. (This property is stated for the case of lower bounding

approximations in (3.1). A symmetric property must hold true for upper

bounding approximations.)

For any nested sequence f
k
jg ! �
j, where k is an index for the elements

of the sequence, and where
k
j = [lkj ; u

k
j] and

�
j = [�lj; �uj], consider a corre-

sponding sequence of lower bounding functions g

k
j

itj (xj); xj 2
k
j , satisfying

Assumption 1. Then, in case �lj < �uj, we must have as k !1,

g

k
j

itj (xj)! g
�
j

itj (xj); 8xj 2 �
j; (3.2)

where g
�
j

itj (xj) is a lower bounding function for fitj(xj) on �
j. On the other

hand, if �lj = �uj, then, for any fx
k
jg !

�lj � �uj, where x
k
j 2
k

j , 8k, we must

have as k !1,

fg

k
j

itj (x
k
j)g ! fitj(�lj): (3.3)

CHAPTER 3. PROBLEM STRUCTURE AND ASSUMPTIONS 12

Furthermore, to aid in our analysis, let us identify the following sets.

Given fitj(xj) :
j ! R, for i 2 f1; : : : ; mg, t 2 Ti, and j 2 Jit, let

Eitj � fxj 2
j : g

j

itj (xj) = fitj(xj)g; (3.4)

where the set Eitj is composed as follows, in the stated order of preference:

Eitj =

8>>><
>>>:

flj; ujg if this holds true

f�xitjg if 9 �xitj satisfying condition A below

; if neither of the above possibilities hold true.

(3.5)

Condition A requires that �xitj 2 [lj; uj] is a function of lj and uj such

that for any nested sequence of intervals that is obtained by repeatedly par-

titioning the bounding interval
j at �xitj and picking one of the subintervals

as the revised bounding interval, we have that the interval length approaches

zero.

It is obvious that this assumption is only relevant for the non-polynomial

functions fitj(xj) in the problem. Notice that we have assumed above that

fitj(xj) � 0 on
j = [lj; uj], for each i 2 f0; 1; : : : ; mg; t 2 Ti; j 2 Jit. In

practice, this assumption is not very restrictive. If fitj(xj) is not nonnega-

tive, we can replace the term fitj(xj) in the problem with fitj(xj)+vitj�vitj ,

where vitj � jmin
xj2
j

fitj(xj)j. This value vitj is easy to obtain since fitj(xj) is

a univariate function. With this substitution, we can de�ne a new function

�fitj(xj) = fitj(xj) + vitj which is nonnegative. Moreover, since we are deal-

ing with bounding univariate functions, the user can even employ graphical

plots to prescribe appropriate bounding function modules in concert with the

CHAPTER 3. PROBLEM STRUCTURE AND ASSUMPTIONS 13

methods of Chapter 4 below, in order to derive suitable tight approximations

that satisfy the required assumptions. Actually, as will be evident from our

analysis, the assumptions on the nonnegativity of fitj(xj) and g

j

itj (xj) on

j for some such pair of functions are not needed when the corresponding

term t 2 Ti for i 2 f0; 1; : : : ; mg is, for example, such that jJitj = 1, or when

fit(x) is comprised of the product of a single non-polynomial function fitj(xj)

and polynomial terms involving a di�erent set of nonnegative variables. In

addition, given that fitj(xj) � 0 8j 2 Jit, the nonnegativity requirement

on g

j

itj (xj) can be relaxed for one index j 2 Jit, in each term t 2 Ti, for

i 2 f0; 1; : : : ; mg. In our numerical example of Chapter 5, we illustrate this

point. One of the techniques used in that example involves the substitution

of each non-polynomial function with a new variable. This technique is used

in the implementation. As we shall see in Chapter 6, by employing such

problem manipulations, apparent violations of the assumptions listed in this

chapter are e�ectively resolved.

The essence of the foregoing assumption is that it presumes the existence

of bounding polynomials gitj(xj) having the stated desirable properties. Sev-

eral methods can be readily designed to e�ectively generate such polynomials,

and we present two such methods in Chapter 4 below. However, any other

alternative method can just as well be used so long as the resulting polyno-

mial functions satisfy Assumption 1, and the ensuing convergence argument

will then hold true. With this unique feature, the algorithm can be consid-

ered as a general framework in which users can design and implement their

own versions of key components according to the guidelines provided. This

design re
ects our desire to develop an algorithm that is general enough to be

CHAPTER 3. PROBLEM STRUCTURE AND ASSUMPTIONS 14

applicable on a wide class of problems, yet at the same time, it is robust and

exible enough to permit specializations for particular types of problems.

Chapter 4

Constructing Bounding

Polynomials

An important step in our algorithm is to construct appropriate bounding

polynomial functions g

j

itj (xj) so that Property 1 stated in Chapter 3, in par-

ticular, is satis�ed. In this chapter, we provide two general methods for con-

structing such polynomial functions based, respectively, on the Mean-Value

Theorem and on Chebyshev interpolation. We point out here that although

the assumption g

j

itj (xj) � 0 is not guaranteed for these two methods, this

can be readily recti�ed by applying the technique mentioned at the end of

Chapter 3 to manipulate the problem to satisfy this assumption as necessary.

4.1 Mean-Value Theorem Based Approach

For any (i; t; j); i 2 f0; 1; : : : ; mg; t 2 Ti; j 2 Jit, consider the function fitj(xj)

de�ned on
j = [lj; uj]. If this function is su�ciently smooth, according to

15

CHAPTER 4. CONSTRUCTING BOUNDING POLYNOMIALS 16

the general Mean-Value Theorem,we have that

fitj(xj) = fitj(x0) + f 0itj(x0)(xj � x0) + : : :+
1

(2r � 1)!
f
(2r�1)

itj (x0)(xj � x0)
(2r�1)

+
1

(2r)!
f
(2r)

itj (�)(xj � x0)
2r for any xj 2
j; (4.1)

where � = �xj + (1 � �)x0 for some � 2 (0; 1), and where we can select

x0 =
1
2
(lj + uj) and use r equal to any desired positive integer.

Now, suppose that m � f
(2r)

itj (xj) � M for all xj 2
j, where m and M

are known. (This is always possible for a continuous function on a compact

interval.) Then,

fitj(x0) + f 0itj(x0)(xj � x0) + : : :

+
1

(2r � 1)!
f
(2r�1)

itj (x0)(xj � x0)
(2r�1) +

1

(2r)!
m(xj � x0)

2r (4.2)

is a valid lower bounding polynomial for fitj(xj) on
j and

fitj(x0) + f 0itj(x0)(xj � x0) + : : :

+
1

(2r � 1)!
f
(2r�1)
itj (x0)(xj � x0)

(2r�1) +
1

(2r)!
M(xj � x0)

2r (4.3)

is a valid upper bounding polynomial for fitj(xj) on
j. According to the

sign of �it as in (3.1), we can choose the appropriate expression (4.2) or (4.3)

as our bounding polynomial function g

j

itj (xj).

The following lemma shows that the bounding polynomials developed in

(4.2) and (4.3) satisfy the requirements stated in Chapter 3 and are admis-

sible in our algorithm.

CHAPTER 4. CONSTRUCTING BOUNDING POLYNOMIALS 17

Lemma 1. For any (i; t; j), consider a nested sequence of intervals f
k
jg !

�
j, where
k
j = [lkj ; u

k
j], 8k = 1; 2; : : : ; and �
j = [�lj; �uj]: For each k, select

mk such that f
(2r)

itj (xj) � mk; 8xj 2
k
j , and such that fmkg is monotone

increasing (such a choice exists since f
k
jg is a nested sequence). Then, by

de�ning g

k
j

itj (xj); xj 2
k
j , as in (4.2) with x0 � (lkj + ukj)=2 and m � mk,

we have Property 1 in Chapter 3 holding true for the case of lower bounding

functions. (A symmetric result holds true for the case of upper bounding

functions.)

Proof. De�ne �x0 � (�l + �u)=2 and note that fxk0g ! �x0. Since fmkg is a

monotone increasing sequence that is bounded from above by f
(2r)

itj (�x0); we

must have fmkg ! �m for some �m. De�ne g
�
j

itj (xj) as in (4.2) using x0 = �x0

and m = �m. By continuity, we have g

k
j

itj (xj) ! g
�
j

itj (xj) for every xj 2 �
j.

Moreover, if �lj = �uj, then g
�
j

itj (xj) coincides with fitj(�x0) = fitj(�lj). This

completes the proof. 2

In principle, any x0 2
j can be used in (4.2) and (4.3) to construct valid

bounding polynomials. To obtain a tight polynomial approximation, it is

advisable to take x0 as the mid-point of the interval
j. In this case, it is

trivial to show that the maximum error is estimated as follows:

max
xj2

jfitj(xj)� gitj(xj)j �
2K

(2r)!

(uj � lj)
2r

22r
; (4.4)

where K = max[lj ;uj] jf
(2r)

itj (xj)j. In practice, however, one may choose sev-

eral di�erent values of x0 to construct alternative bounding polynomials to

provide multiple supports for fitj(xj).

Finally, we give a numerical example on constructing bounding polyno-

CHAPTER 4. CONSTRUCTING BOUNDING POLYNOMIALS 18

sin(x)
Lower bound
Upper bound

−4 −3 −2 −1 0 1 2 3
−4

−2

0

2

4

6

8

Figure 4.1: Bounding Polynomials via the Mean-Value Theorem

mial functions using the method described in this section. Consider the uni-

variate function f(x) = sin(x), x 2 [��; �]. To construct 4th order bounding

polynomials, we �rst expand f(x) about the point x0 = 0,

sin(x) = sin(0) + cos(0)x�
1

2
sin(0)x2 +

1

3!
cos(0)x3 �

1

4!
sin(4)(�)x4

= x+
1

6
x3 �

1

24
sin(4)(�)x4; (4.5)

where � 2 (��; �).

Since j sin(4)(�)j is bounded by 1, we obtain the following lower and upper

bounding polynomials, respectively. These are depicted in Figure 4.1.

x�
1

6
x3 �

1

24
x4; x�

1

6
x3 +

1

24
x4: (4.6)

CHAPTER 4. CONSTRUCTING BOUNDING POLYNOMIALS 19

4.2 Chebyshev Interpolation Approach

Suppose that we have constructed some polynomial function p(x) based on

a set of grid points in order to approximate a given univariate function f(x)

over the interval
, and let E(x) = p(x)� f(x) be the associated error func-

tion. Then p(x) � max
x2

fE(x)g will be a valid lower bounding polynomial

function for f(x). To obtain tight lower envelopes, we naturally want the

absolute values taken on by the error function to be as small as possible. An

polynomial p(x) is called the best approximation of f(x) if the maximum ab-

solute error is minimized. Unfortunately, it is not generally computationally

tractable to derive best approximation polynomials. However, good approx-

imations can be obtained by using Chebyshev interpolation polynomials (see

Davis (1975) and Ueberhuber (1997)).

Given fitj(xj) 2 Cr+1; xj 2
j = [lj; uj], let P

j(xj) denote a Chebyshev

interpolation polynomial of order r for r � 1 (see Volkov (1990), for example).

This function can be generated as follows.

� De�ne Chebyshev points x̂i =
1
2
(lj + uj) +

1
2
(uj � lj) cos(

(2i+1)�

2r+2
); i =

0; 1; : : : ; r:

� Derive the Chebyshev interpolation polynomial P
j(xj) for fitj(xj) cor-

responding to the grid points x̂0; x̂1 : : : ; x̂r. This can be done for ex-

ample, by Newton's method (see Stoer and Burlirsch (1993)).

� Compute T
j = 1
(r+1)!

2�(2r+1)(uj � lj)
r+1 max

xj2[lj ;uj]
jf

(r+1)

itj (xj)j.

� Let g

j

itj (xj) = P
j(xj)� T
j if �it > 0 and g

j

itj (xj) = P
j(xj) + T
j if

�it < 0.

CHAPTER 4. CONSTRUCTING BOUNDING POLYNOMIALS 20

Then the following result holds true, which therefore assures (3.1).

Lemma 2.

max
xj2[lj ;uj]

jfitj(xj)� P
j(xj)j � T
j �
1

(r + 1)!
2�(2r+1)(uj � lj)

r+1 max
xj2[lj ;uj]

jf
(r+1)

itj (xj)j:(4.7)

Proof. See Davis (1975) and Volkov (1990). 2

The unique feature of using Chebyshev approximation is its known tight

maximum error bound. Above, we have described one convenient procedure

for deriving such approximations, but other e�cient and elegant implementa-

tions are also available (see, for example, Ueberhuber (1997) and Press et al.

(1992)). We now establish that this class of bounding polynomial functions

is admissible for our proposed algorithm.

Lemma 3. For any (i; t; j), and a nested sequence of intervals f
k
jg ! �
j,

where
k
j = [lkj ; u

k
j], 8k = 1; 2; : : : and �
j = [�lj; �uj], de�ne g

k
j

itj (xj) �

P
k
j (xj)�T
k

j , xj 2
k
j , 8k. Then, we have Property 1 in Chapter 3 holding

true for the case of lower bounding functions. (A symmetric results holds

true for the case of upper bounding functions.)

Proof. For each k, let g

k
j

itj (xj) be the lower bounding polynomial gener-

ated using Chebyshev interpolation for fitj(xj) on the interval
k
j = [lkj ; u

k
j].

Let P
k
j (xj) be the corresponding rth order interpolation polynomial, and

denote by X
k
j = [x̂k0; x̂

k
1; : : : ; x̂

k
r] the set of associated Chebyshev points from

k
j as de�ned above. Then,

g

k
j

itj (xj) = P
k
j (xj)� T
k

j ; (4.8)

where T
k
j = 1

(r+1)!
2�(1+2r)(ukj � lkj)

r+1max
xj2

k
j

jf
(r+1)

itj (xj)j.

CHAPTER 4. CONSTRUCTING BOUNDING POLYNOMIALS 21

Case 1: �lj 6= �uj. Let P
�
j(xj) denote the Chebyshev interpolation poly-

nomial of fitj(xj) on �
j based on the associated Chebyshev points X
�
j =

[x̂0; x̂1; : : : ; x̂r], and let T
�
j be the corresponding error bound. De�ne

g
�
j

itj (xj) = P
�
j (xj)� T

�
j ; (4.9)

where T
�
j = 1

(r+1)!
2�(2r+1)(�uj � �lj)

r+1max
xj2�
j

jf
(r+1)

itj (xj)j. By the de�nition

of the grid points and the property of continuity, we have X
k
j ! X

�
j .

Hence, due to the uniqueness of the interpolation polynomial on a given

set of points, we must have P
k
j (xj) ! P

�
j(xj) for all xj 2 �
j. Further-

more, let Mk � max
xj2

k
j

jf
(r+1)

itj (xj)j = jf
(r+1)

itj (xkj)j for some xkj 2
k
j , and let

M � max
xj2�
j

jf
(r+1)

itj (xj)j. Since fxkjg is bounded, it has a convergent subse-

quence identi�ed by fxksj g ! z as s ! 1, where z 2 �
j. Moreover, since

k
j k

�
j 8k, we have that,

M � lim
s!1

jf
(r+1)

itj (xksj)j = lim
s!1

Mks = jf
(r+1)

itj (z)j �M: (4.10)

Expression (4.10) implies that M is an accumulation point of fMkg. Since

fMkg is monotone decreasing, it is convergent. Hence, fMkg ! M and

T
k
j ! T

�
j . Thus, when �lj 6= �uj, we have g

k
j

itj (xj)! g
�
j

itj (xj) for all xj 2 �
j,

and so Property 1 holds true.

Case 2: �lj = �uj. Let fxkjg be any sequence such that xkj 2
k
j and

fxkjg !
�lj as k !1. By Lemma 2,

jfitj(x
k
j)� g

k
j

itj (x
k
j)j � max

xj2

k
j

jfitj(xj)� g

k
j

itj (xj)j

�
2

(r + 1)!
2�(2r+1)(ukj � lkj)

r+1 max
xj2

k
j

jf
(r+1)

itj (xj)j: (4.11)

CHAPTER 4. CONSTRUCTING BOUNDING POLYNOMIALS 22

sin(x)+1
Lower Bound
Upper Bound

0 1 2 3 4 5 6
−1

−0.5

0

0.5

1

1.5

2

2.5

3

Figure 4.2: Bounding Polynomials via Chebyshev Interpolation Polynomials

Since max
xj2

k
j

jf
(r+1)

itj (xj)j ! max
xj2�
j

jf
(r+1)

itj (xj)j and ukj � lkj ! 0 as k !1,

lim
k!1

g

k
j

itj (x
k
j) = lim

k!1
fitj(x

k
j) = fitj(�lj): (4.12)

This concludes the proof. 2

To illustrate this method, we construct third-order bounding polynomials

for f(x) = sin(x) + 1 on [0; 2�] using the Chebyshev interpolation polyno-

mial based method. Following the procedure described in Section 4.2, we �rst

compute the Chebyshev points to obtain f0:2391; 1:9394; 4:3438; 6:0440g. Us-

ing the Lagrange interpolation method, we derive the Chebyshev polynomial

p(x) = 0:0995x3� 0:9377x2 +2:026x+0:8046. Since maxx2[0;2�] j sin
(4)(x)j �

1, this gives T = 0:5073. Thus, a valid lower bounding polynomial is

0:0995x3 � 0:9377x2 + 2:026x + 0:2973 and a valid upper bounding poly-

nomial is 0:0995x3�0:9377x2+2:026x+1:3119. They are depicted in Figure

4.2.

CHAPTER 4. CONSTRUCTING BOUNDING POLYNOMIALS 23

The two methods described in Sections 4.1 and 4.2 can be used to con-

struct valid bounding polynomial functions for the original nonconvex func-

tions. In general, the sets Eitj de�ned by (3.5) will be di�erent for these two

methods. If we use the Mean-Value Theorem based method, Eitj will be com-

prised of the midpoint of the interval
j, while the Chebyshev interpolation

approach will usually result in an empty set for Eitj.

For special classes of functions, other approximation methods can be

preferably used. In particular, if fitj(xj) is a polynomial function having

a rational exponent, simple and e�ective methods have been developed in

Sherali (1998) to generate valid bounding polynomial functions that can be

readily veri�ed to satisfy Assumption 1 and Property 1 of Chapter 3. Here,

Eitj turns out to be given by either the �rst or the second case in (3.5).

The Mean-Value Theorem based approach provides a good approxima-

tion in a neighborhood of x0, while the Chebyshev interpolation approach

gives a more uniform approximation. The error estimate from the Chebyshev

interpolation is smaller than the one from the Mean-Value Theorem based ap-

proach. Furthermore, the error of the Chebyshev interpolation is distributed

more evenly on the entire interval. Consequently, it is highly likely that the

actual maximum error of the Chebyshev interpolation will turn out to be

less than the one from the approximation polynomial obtained by the Mean-

Value Theorem based method (see Volkov (1990)) . In some cases, we might

be able to apply more than one bounding method to simultaneously generate

a manageable number of alternative relaxation constraints. For example, we

could substitute a variable yitj in place of the function fitj(xj) and incorpo-

rate the explicit constraint yitj = fitj(xj) (written as two inequalities). To the

CHAPTER 4. CONSTRUCTING BOUNDING POLYNOMIALS 24

latter constraint(s), we can now apply multiple bounding methods to gener-

ate potentially tighter relaxations, while avoiding a combinatorial explosion

of constraints. This is the strategy that we have adopted to pre-process the

problem in the �nal implementation. It e�ectively relaxes the nonnegativity

requirements on fitj(xj) and its bounding polynomials (see Section 6.1.1).

Chapter 5

A Branch-and-Bound

Algorithm

In this chapter, we present a branch-and-bound algorithm to solve the class

of nonconvex factorable programming problems. There are three important

components in this algorithm, the bounding procedure, the branching and

partitioning rules, and the convergence property. They are discussed in detail

in this chapter.

5.1 A Two-Step Procedure for Generating Re-

laxations

The proposed lower bounding relaxations are constructed over two steps.

First, a tight nonconvex polynomial programming relaxation is created by

replacing each non-polynomial term fitj(xj) with an appropriate bounding

polynomial gitj(xj). Then, an LP relaxation is constructed for the resulting

25

CHAPTER 5. A BRANCH-AND-BOUND ALGORITHM 26

polynomial program via a suitable RLT procedure. Thus, each node of the

branch-and-bound tree contains these two levels of relaxations. The lower

bounding and partitioning schemes are designed so that the gaps from these

two levels of approximations approach zero in the limit, thereby ensuring

convergence to a global optimum.

5.1.1 Generating a Lower Bounding Nonconvex Poly-

nomial Programming Problem

Given the bounding polynomial function g

j

itj (xj) for fitj(xj) on
j = [lj; uj],

for each i 2 f0; 1; : : : ; mg; t 2 Ti; j 2 Jit, let us de�ne

�
R(
)
it (x) = �it

Y
j2Jit

g

j

itj (xj); and �
R(
)
i (x) =

X
t2Ti

�
R(
)
it (x): (5.1)

Thus, noting Assumption 1 in Chapter 3, we have

fi(x) �
X
t2Ti

�itfit(x) =
X
t2Ti

�it

Y
j2Jit

f

j

itj (xj)

�
X
t2Ti

�it

Y
j2Jit

g

j

itj (xj)

=
X
t2Ti

�
R(
)

it (x) � �
R(
)

i (x); 8i = 0; : : : ; m: (5.2)

Consequently, we derive the following polynomial programming relax-

ation of Problem FP (
).

FPR(
) : minf�
R(
)
0 (x) : �

R(
)

i (x) � �i 8i = 1; : : : ; m; x 2
g: (5.3)

CHAPTER 5. A BRANCH-AND-BOUND ALGORITHM 27

Letting v(P) generally denote the optimal objective function value of any

problem P , we have the following result.

Lemma 4.

v(FPR(
)) � v(FP (
)): (5.4)

Proof. Evident from (1.1), (5.2) and (5.3). 2

Having constructed the polynomial problem FPR(
) in the form of (5.3),

we now apply the RLT scheme of Sherali and Tuncbilek (1992) to generate a

suitable linear programming relaxation. This process operates in two phases,

as outlined in Sections 5.1.2 below.

5.1.2 Reformulation-Linearization Technique

RLT consists of two phases. The �rst phase augments the polynomial pro-

gram by adding various types of RLT constraints. The second phase linearizes

the reformulated problem via a variable substitution strategy.

Reformulation Phase

In the reformulation phase, we introduce valid RLT constraints and include

them in FPR(
). In doing so, we �rst identify � 1as the highest order of any

polynomial term in (5.3). Let �N = fN; : : : ; Ng be � replicates of N . We

now compose all possible distinct constraints of the following type.

1In this thesis, � is called the order of RLT. In principle, it is perfectly legitimate to

let � take a value that is higher than the highest order of any polynomial terms. In some

cases, it is desirable to do so (see (Sherali and Tuncbilek (1995)).

CHAPTER 5. A BRANCH-AND-BOUND ALGORITHM 28

F�(J1; J2) �
Y
j2J1

(xj � lj)
Y
j2J2

(uj � xj) � 0; 8J1 [J2 � �N; jJ1 [J2j = �;(5.5)

where J1 and J2 might contain replicated elements, and where these replica-

tions are preserved in any union operations as well. The constraints in (5.5)

are called the �th order bound-factor product RLT constraints, and are ob-

tained by taking the products of the bounding factors (xj� lj) and (uj�xj),

j = 1; : : : ; n; � at a time, allowing repetitions. Additionally, we can also

construct constraint-factor product RLT constraints. These valid inequalities

can be obtained by taking suitable products of the polynomial constraint

factors �i � �
R(
)
i (x) � 0, with bound factors or with each other, as long as

the degree of the resulting polynomial does not exceed �. The newly gen-

erated implied RLT constraints are included to augment problem FPR(
),

resulting in a reformulated lower bounding problem.

For the sake of simplicity, we only consider these basic RLT constraints

in our current discussion. As we shall see, they are su�cient to guarantee

theoretical convergence. Several other valid RLT constraints can be gener-

ated, however, to further tighten the LP relaxation. Ideas investigated in

Sherali and Tuncbilek (1995), for example, can be readily extended and ap-

plied here as well. Also, more generalized constraint-factors that imply the

bound-factors can be used to compose suitable RLT constraints that could

be used in lieu of (5.5).

CHAPTER 5. A BRANCH-AND-BOUND ALGORITHM 29

Linearization Phase

In this stage, we linearize the augmented polynomial programming problem

by substituting

XJ =
Y
j2J

xj; 8J � �N: (5.6)

To achieve consistency, we assume that the indices in J are arranged in a

nondecreasing order. Hence, for example, x1x2 and x2x1 will be replaced by

the same new variable X12. Furthermore, we identify Xj � xj for all j 2 N ,

and X; � 1.

For any (i; t); i 2 f0; 1; : : : ; mg; t 2 Ti, let �
L(
)

it (x) denote the lineariza-

tion of �
R(
)
it (x) via (5.6), and let �

L(
)
i (x) =

P
t2Ti

�
L(
)
it (x). Hence, from (5.3)

and (5.5), we obtain the following RLT linear programming relaxation.

RLT(
) : min �
L(
)
0 (x)

subject to �
L(
)

i (x) � �i 8i = 1; : : : ; m; (21)L; (V I)L; x 2
;(5.7)

where (21)L denotes the linearization of (5.5) under (5.6), and where (V I)L

likewise denotes the linearization under (5.6) of any additional valid inequal-

ities that might have been generated as previously mentioned in the Refor-

mulation Phase.

Lemma 5 stated below records the fact that v(RLT (
)) is indeed a lower

bound on v(FPR(
)) and hence on v(FP (
)), and Lemma 6 reiterates an

important property of RLT from Sherali and Tuncbilek (1992) based on the

CHAPTER 5. A BRANCH-AND-BOUND ALGORITHM 30

presence of (21)L in (5.7), that will make it possible for us to design appro-

priate partitioning strategies for ensuring convergence to a global optimal

solution.

Lemma 5. v[RLT (
)] � v[FPR(
)], and so, RLT (
) provides a lower

bound on the original problem FP (
).

Proof. Evident from Lemma 4 and by construction. 2

Lemma 6. Let (x̂; X̂) be any feasible solution to RLT (
). Suppose that

x̂p = lp for some p 2 N . Then X̂J[p = lpX̂J 8J � �N; 1 � jJ j � � � 1:

Similarly, x̂p = up implies that X̂J[p = upX̂J 8J � �N; 1 � jJ j � � � 1.

Proof. See Sherali and Tuncbilek (1992). 2

5.2 A Branch-and-Bound Algorithm

The proposed algorithm is a branch-and-bound approach that is based on

partitioning the set
 into sub-hyperrectangles, each associated with a node

of the branch-and-bound tree. Hence, at each stage s of the algorithm, sup-

pose that we have a collection of active nodes indexed by q 2 Qs, say, each

associated with a hyperrectangle
q �
, 8q 2 Qs. For each such node, we

will have computed a lower bound LBq via the solution of the linear program

RLT (
q), so that the overall lower bound on FP (
) at stage s is given by

LB(s) = minfLBq : q 2 Qsg: Whenever the lower bounding solution for any

node subproblem turns out to be feasible to FP (
), we update the upper

bound or incumbent solution value v�, if necessary. Additionally, a local

search procedure that is initialized at the solution to the lower bounding

CHAPTER 5. A BRANCH-AND-BOUND ALGORITHM 31

problem can be used as a heuristic to search for good quality feasible solu-

tions. The branch-and-bound tree retains the set of active nodes that satisfy

LBq < v�, 8q 2 Qs, for each stage s. We now select an active node q(s) that

yields the least lower bound LB(s) � LBq(s) among q 2 Qs, and partition

its associated hyperrectangle into two sub-hyperrectangles. This branching

rule is described below, and is critical to the theoretical convergence as well

as the practical e�ectiveness of the algorithm.

5.2.1 Branching Rule

Consider any node subproblem identi�ed by the hyperrectangle
0 �
, and

let (x̂; X̂) represent the solution obtained to its associated linear program-

ming relaxation RLT (
0). Determine a term (r; �) such that

�r�fr� (x̂)� �L(
0)
r� (x̂; X̂) = max

i=0;1;:::m;t2Ti
f�itfit(x̂)� �

L(
0)
it (x̂; X̂)g: (5.8)

The selection of the branching variable xp and the partitioning of
0 is

then performed using the following rule, where
0 = fx : xj 2 [l0j; u
0
j]; 8j 2

Ng:

� Partition Jr� into the following three disjoint and collectively exhaus-

tive subsets, based on the sets Er�j of Equation (3.5).

J1
r� = fj 2 Jr� : Er�j = fl0j; u

0
jgg

J2
r� = fj 2 Jr� : Er�j = f�xr�jgg and

J3
r� = Jr� � J1

r� [J2
r� : (5.9)

CHAPTER 5. A BRANCH-AND-BOUND ALGORITHM 32

� Compute

�j =

8>>><
>>>:

minfx̂j � l0j; u
0
j � x̂jg if j 2 J1

r�

maxfjx̂j � �xr�jj;minfx̂j � l0j; u
0
j � x̂jgg if j 2 J2

r�

u0

j�l
0

j

2
if j 2 J3

r�

(5.10)

and set

~xj =

8>>><
>>>:

x̂j if j 2 J1
r�

�xr�j if j 2 J2
r�

u0

j+l0j

2
; if j 2 J3

r� :

(5.11)

� Select

p 2 argmaxf(u0j � l0j)�j : j 2 Jr�g (5.12)

and partition
0 by subdividing the interval [l0p; u
0
p] into [l0p; ~xp] and

[~xp; u
0
p].

5.2.2 Algorithmic Statement

Step 0: Initialization. Initialize by setting x� = ;, v� = 1, s = 1; Qs =

f1g; q(s) = 1; and
1 =
. Solve RLT (
) and let (x̂; X̂) be the solution

obtained of objective value LB1 = v[RLT (
)]. If x̂ is feasible to FP (
)

(perhaps after using some heuristic local search method or some Newton-

Raphson iterations) update x� and v�. If v� � LB1 + �, where � � 0 is some

CHAPTER 5. A BRANCH-AND-BOUND ALGORITHM 33

accuracy tolerance, then stop with x� as the prescribed solution to FP (
).

Otherwise, select a branching variable xp according to the Branching Rule

discussed in Section 5.2.1 and proceed to Step 1.

Step 1: Partitioning Step. Partition
q(s) into two sub-hyperrectangles

by splitting the interval for xp as prescribed by the Branching Rule of Section

5.2.1. Replace q(s) by these two new node indices in Qs.

Step 2: Bounding Step. Solve the RLT linear programming relaxation

for each of the two new nodes generated, and update the incumbent solution

if possible, as in the initialization step.

Step 3: Fathoming Step. Fathom any non-improving nodes by setting

Qs+1 = Qs � fq 2 Qs : LBq + � � v�g: If Qs+1 = ;, then stop. Otherwise,

increment s by one and proceed to Step 4.

Step 4: Node Selection Step. Select an active node q(s) 2 argmin

fLBq : q 2 Qsg, and return to Step 1.

The following theorem asserts that the above branch-and-bound algo-

rithm converges to a global optimum to Problem FP (
).

Theorem 1 (Convergence Result). The algorithm of Section 5.2.2 (run

with � = 0) either terminates �nitely with the incumbent solution being opti-

mal to FP (
), or else an in�nite sequence of stages is generated such that

along any in�nite branch of the branch-and-bound tree, any accumulation

point of the x-variable part of the linear programming relaxation solutions

generated for the node subproblems solves FP (
).

Proof. The case of �nite termination is clear. Hence, suppose that

an in�nite sequence of stages is generated. Consider any in�nite branch of

CHAPTER 5. A BRANCH-AND-BOUND ALGORITHM 34

the branch-and-bound tree associated with a nested sequence of partitions

f
q(s)g for stage s in some index set S. Hence,

v[FP (
)] � LB(s) � v[RLT (
q(s))] �
X
t2T0

�
L(
q(s))
0t (xq(s); Xq(s)) (5.13)

where for each node q(s), s 2 S, (xq(s); Xq(s)) denotes the optimal solution

obtained for RLT (
q(s)). Moreover, let [lq(s); uq(s)] be the associated vectors

of lower and upper bounds that de�ne
q(s). By taking any convergent

subsequence if necessary, suppose that

fxq(s); Xq(s); lq(s); uq(s)gS ! (x�; X�; l�; u�): (5.14)

We must show that x� solves Problem FP (
).

Now, over the in�nite sequence of nodes fq(s); s 2 Sg, there exists a term

(r; �) for � 2 Tr; r 2 f0; 1; : : : ; mg, that is picked in�nitely often via (5.8).

Let S1 � S be the stages for which a partitioning is performed based on this

term (r; �) using the Branching Rule discussed in Section 5.2.1. Hence, we

have from (5.8) that,

�r�

Y
j2Jr�

[fr�j(x
q(s)
j)]� �L(
q(s))

r� (xq(s); Xq(s))

� �it

Y
j2Jit

[fitj(x
q(s)

j)]� �
L(
q(s))

it (xq(s); Xq(s))

8 i = 0; 1; : : : ; m; t 2 Ti; for each s 2 S1: (5.15)

By the partitioning strategy, over the nested sequence of nodes fq(s); s 2

S1g, there exists some index p 2 Jr� that is selected in�nitely often for

partitioning according to

CHAPTER 5. A BRANCH-AND-BOUND ALGORITHM 35

�q(s)p (uq(s)p � lq(s)p) � �
q(s)
j (u

q(s)
j � l

q(s)
j) 8j 2 Jr� ; (5.16)

where �
q(s)
j is computed as in (5.10) for node q(s). Let S2 � S1 index the set

of stages where this occurs.

Case (i): p 2 J1
r� . In this case, by (5.11), we partition the interval for

xp at ~xp � x
q(s)
p for each s 2 S2. It is evident that

xq(s)p 2 [lq(s)p ; uq(s)p]; while xq(s)p 62 (lq(s
0)

p ; uq(s
0)

p) for any s0 > s; s0 2 S2:(5.17)

Hence, in particular, x�p 2 [l�p; u
�
p]. We argue that x�p is not an interior point of

[l�p; u
�
p]. If x

�
p 2 (l�p; u

�
p), then there is a T 2 S2 such that when s � T; s 2 S2,

we have x
q(s)
p 2 (l�p; u

�
p). But (l

�
p; u

�
p) � (l

q(s)
p ; u

q(s)
p) for all s 2 S2. This means

that x
q(T)
p 2 (l

q(s0)
p ; u

q(s0)
p), for all s0 > T; s0 2 S2, a contradiction to (5.17).

Therefore, we must have that either x�p = l�p or x�p = u�p. In either case,

by (5.10), f�
q(s)
p g ! 0 as s ! 1, s 2 S2. Thus, by (5.16), we either have

fu
q(s)
j � l

q(s)
j g ! 0 or f�

q(s)
j g ! 0 for all j 2 Jr� .

Consider any j 2 Jr� . If j 2 J1
r� and f�q(s)j g ! 0, then by (5.10),we will

have x�j = l�j or x�j = u�j . If j 2 J1
r� and fu

q(s)

j � l
q(s)

j g ! 0, we will again

have x�j = l�j = u�j . Hence, if j 2 J1
r� , x

�
j must equal at least one of the

bounds l�j , u
�
j . Similarly if j 2 J2

r� and f�
q(s)

j g ! 0, then by (3.5) and (5.10),

x�j = lims!1 �x
q(s)
r�j = l�j = u�j . If j 2 J2

r� and fu
q(s)
j � l

q(s)
j g ! 0, we again

have x�j = l�j = u�j . Finally, if j 2 J3
r� and �

q(s)

j ! 0, by (5.10), we have

l�j = u�j = x�j . Likewise, if j 2 J3
r� and fu

q(s)
j � l

q(s)
j g ! 0, we again have that

x�j = l�j = u�j .

To summarize, we have shown thus far that

CHAPTER 5. A BRANCH-AND-BOUND ALGORITHM 36

� if j 2 J1
r� , then x�j equals one of the limiting interval end points l�j ; u

�
j ,

� if j 2 J2
r� [J3

r� , then x�j = l�j = u�j .

Now, if j 2 J1
r� , they by de�nition, fr�j(xj) coincides with g

q(s)

j

r�j (xj) at the

end points of the interval
j. In case l�j < u�j , since x
�
j is equal to one of the

end points, we have by Property 1 from Chapter 3 that as s!1, s 2 S2,

g

q(s)

j

r�j (x
q(s)
j)! g

�

j

r�j(x
�
j) = fr�j(x

�
j): (5.18)

Otherwise, j 2 J1
r� [J2

r� [J3
r� such that x�j = l�j = u�j . By Property 1, we

again have in this case that as s!1, s 2 S2,

g

q(s)

j

r�j (x
q(s)
j)! fr�j(x

�
j): (5.19)

Therefore, noting (5.1), we conclude that

�r�

Y
j2Jr�

fr�j(x
�
j) = �R(
�)

r� (x�) (5.20)

where

�R(
�)
r� (x�) = lim

s!1;s2S2
�r�

Y
j2Jr�

g

q(s)

j

r�j (x
q(s)

j): (5.21)

Furthermore, by Lemma 6, we have

�R(
�)
r� (x�) = �L(
�)

r� (x�; X�): (5.22)

Equations (5.20) and (5.22) imply the following important identity:

�r�

Y
j2Jr�

fr�j(x
�
j) = �L(
�)

r� (x�; X�): (5.23)

CHAPTER 5. A BRANCH-AND-BOUND ALGORITHM 37

Consequently, as we let s ! 1, s 2 S2, the left-hand side of (5.15)

approaches zero. Hence, from the right-hand side of (5.15), we deduce that

�it

Y
j2Jit

[fitj(x
�
j)]� �

L(
�)

it (x�; X�) � 0 8i; t: (5.24)

Since (xq(s); Xq(s)) solves RLT (
q(s)), we must have

�i �
X
t2Ti

�
L(
q(s))
it (xq(s); Xq(s)) 8i = 1; : : : ; m: (5.25)

Taking limits as s!1; s 2 S2, we have

�i �
X
t2Ti

�
L(
�)
it (x�; X�): (5.26)

From (5.24) and (5.26), we get

X
t2Ti

�it

Y
j2Jit

[fitj(x
�
j)] � �i; 8i = 1; : : : ; m; (5.27)

or that x� is feasible to FP (
). Moreover, by (5.13) and (5.24), for i = 0,

taking limits as s!1, s 2 S2, we get

v[FP (
)] �
X
t2T0

�
L(
�)
0t (x�; X�) �

X
t2T0

�0t

Y
j2J0t

f0tj(x
�
j) � f0(x

�): (5.28)

Thus from (5.27) and (5.28),we conclude that x� solves FP (
).

Hence, for Case (i), we have established the convergence of the algorithm.

Case (ii): p 2 J2
r� . In this case, from (5.11), we split the interval

[l
q(s)
p ; u

q(s)
p] at ~xp � �x

q(s)
r�p ; 8s 2 S2. By Condition A, this leads to l

�
p = u�p = x�p,

CHAPTER 5. A BRANCH-AND-BOUND ALGORITHM 38

and therefore f�
q(s)
p g ! 0. Consequently, the remainder of the proof identi-

cally follows that for Case (i).

Case (iii): p 2 J3
r� : In this case, by (5.11), we simply sequentially bisect

the interval [l
q(s)
p ; u

q(s)
p], and so, we must have l�p = u�p = x�p, or that again,

f�
q(s)
p g ! 0. Hence the argument for this case is also similar to that for Case

(i).

This completes the proof. 2.

5.3 An Illustrative Example

In this section, we present a numerical example to illustrate several features of

the generic methodology that has been developed to solve problem FP (
).

In particular, we demonstrate how the two bounding strategies discussed

in Chapter 4 can be applied to generate di�erent bounding polynomial pro-

grams. Also, we show how a problem that appears to violate the assumptions

of Chapter 3 can be readily manipulated to satisfy the stated requirements by

using some suitable transformations. Finally, we illustrate some techniques

that can be used to further tighten the LP relaxations and the polynomial

approximations.

Consider the following example adapted from Hock and Schittkowski

(1981).

Minimize sin(
�x1

12
) cos(

�x2

16
)

subject to 4x1 � 3x2 = 0

0 � x1 � 20; 0 � x2 � 20: (5.29)

CHAPTER 5. A BRANCH-AND-BOUND ALGORITHM 39

0
5

10
15

20

0

5

10

15

20
−1

−0.5

0

0.5

1

Figure 5.1: Objective Function for the Illustrative Example.

Figure 5.1 depicts the nonconvexity in the objective function. The prob-

lem has a unique global minimum at x = [9; 12] with an optimal objective

function value of �0:5.

Notice that the given form of the problem does not satisfy the assump-

tion that requires fitj(xj) � 0 8i; t; j: This can be recti�ed by equivalently

transforming the original problem into the following:

Minimize [sin(
�x1

12
) + 1][cos(

�x2

16
) + 1]� sin(

�x1

12
)� cos(

�x2

16
)� 1

subject to 4x1 � 3x2 = 0

0 � x1 � 20; 0 � x2 � 20: (5.30)

Next, let us illustrate the use of the Mean-Value Theorem method and the

Chebyshev interpolation method in order to generate lower (upper) bounding

polynomials gitj(xj) as discussed in Chapter 4. For example, suppose that we

want to construct second-order polynomial lower bounding functions for the

CHAPTER 5. A BRANCH-AND-BOUND ALGORITHM 40

univariate functions f0;1;1(x1) = sin(�x1
12
) + 1 and f0;1;2(x2) = cos(�x2

16
) + 1

on the interval [0; 20]. The Chebyshev interpolation approach generates

g0;1;1(x1) = �0:0109x21 + 0:1422x1 + 0:4251, and g0;1;2(x2) = 0:0058x22 �

0:2210x2�1:9360. On the other hand, by applying the Mean-Value Theorem

Method with x0 = 10, we obtain g0;1;1(x1) = �0:0343x21 + 0:4587x1 + 0:3403

and g0;1;2(x2) = �0:0193x22 + 0:2041x2 + 0:5037.

The sets Eitj de�ned by (3.5) are of di�erent types for these two construc-

tion methods. For the Chebyshev interpolation method, we have E0;1;1 =

E0;1;2 = ;, whereas for the Mean-Value Theorem approach, since x0 = 10,

we obtain E0;1;1 = E0;1;2 = f10g:

Recall that in Chapter 3, we assumed that these bounding polynomial

functions gitj(xj) have the property that they are all nonnegative. However,

the univariate concave function g0;1;1(x1) = �0:0343x21 + 0:4587x1 + 0:3403

generated by the Mean-Value Theorem method achieves its minimum on

[0; 20] at x1 = 20, with g0;1;1(20) = �4:2057. As suggested at the end of

Chapter 3, this situation can be recti�ed by transforming the problem into

an equivalent convenient format. We discuss two such transformations below.

First, using the fact that g0;1;1(x1) � �5, we have that the nonnegative

function g0;1;1(x1) + 5 is a valid lower for sin(�x1
12
) + 6. Hence, (5.30) is

transformed into the following equivalent format.

Minimize [sin(
�x1

12
) + 6][cos(

�x2

16
) + 1]� sin(

�x1

12
)� 6 cos(

�x2

16
)� 6

subject to 4x1 � 3x2 = 0

0 � x1 � 20; 0 � x2 � 20: (5.31)

CHAPTER 5. A BRANCH-AND-BOUND ALGORITHM 41

Since sin(�x1
12
) + 6 � �g0;1;1(x1) � (g0;1;1(x1) + 5) � 0 and cos(�x2

16
) + 1 �

g0;1;2(x2), we have that [�g0;1;1(x1)]� [g0;1;2(x2)] provides a valid lower bound-

ing function for the �rst product term in the objective function. Notice

that we need not require g0;1;2(x2) to be nonnegative for this statement to

hold true here. For the remaining two nonlinear terms in the objective func-

tion, we generate fourth-order lower bounding polynomial functions using the

Mean-Value Theorem method to obtain � sin(�x1
12
) � �0:0002x41+0:0052x31�

0:0226x21 � 0:11x1 � 0:4212, and � cos(�x2
16
) � �0:00006x42 + 0:0013x32 �

0:0096x22+0:2269x2�1:6227. The resulting lower bounding nonconvex poly-

nomial programming problem is stated below.

Minimize p(x1; x2)

subject to 4x1 � 3x2 = 0

0 � x1 � 20; 0 � x2 � 20 (5.32)

where p(x1; x2) = �0:0002x41� 0:0004x42+0:0007x21x
2
2+0:005x31+0:0078x32�

0:0069x21x2�0:0088x1x
2
2�0:0398x21+0:094x1x2�0:16x22+0:121x1+2:452x2�

13:47: To generate the LP relaxation, we �rst recognize that (5.32) is a poly-

nomial program of order � = 4, and therefore, we include all the fourth-order

bound-factor product as well as constraint-factor product RLT constraints.

For example, one such bound-factor product based RLT constraint has the

form [(x1 � 0)2(20 � x1)(20 � x2)]L = [400x21 � 20x31 � 20x21x2 + x31x2]L =

400X11 � 20X111 � 20X112 + X1112 � 0, and one valid constraint-factor

product based RLT constraint is [(4x1 � 3x2)(x
2
1x2)]L = [4x31x2 � 3x21x

2
2]L =

4X1112 � 3X1122 = 0. The problem is then solved by the branch-and-bound

CHAPTER 5. A BRANCH-AND-BOUND ALGORITHM 42

algorithm outlined in Section 5.2. If we fathom according to the practical

criterion

LB � UB� �maxf1; jUBjg (5.33)

with � = 0:05, the problem is solved after enumerating a total of 49 nodes.

The best solution obtained is x1 = 8:9063; x2 = 11:8750 with f(x1; x2) =

�0:4994.

Note that for any bounding interval [a2; b2] for x2 in the branch-and-bound

process, the constraint 4x1 � 3x2 = 0 implies that x1 2 [(3=4)a2; (3=4)b2].

We can explicitly use these revised bounds on x1 to generate the RLT con-

straints (5.5), hence resulting in a potentially tighter relaxation. Resolving

the problem with this revision, the branch-and-bound algorithm generates

only 25 nodes, a signi�cant reduction from the previous case. This type of

range or bounding interval reduction can be further enhanced by sequen-

tially minimizing and maximizing each variable in turn subject to the RLT

relaxation constraints, plus a linearized form of an objective cut that requires

the objective function to take on a value less than or equal to some known

upper bound. Additionally, other valid RLT constraints can be included to

strengthen the lower bounding problem. For example, (x1� a)2(x2� b)2 � 0

is a valid inequality for any values of a and b. Judiciously selected constraints

of this type (see Sherali and Tuncbilek, (1997)) can be generated at the initial

node, for example, and appended to the problem to tighten its relaxation.

These types of issues are pursued in detail in Chapter 6 when we deal with

computational aspects of this algorithm.

The second transformation we explore to deal with the nonnegativity

CHAPTER 5. A BRANCH-AND-BOUND ALGORITHM 43

assumptions follows the discussion at the end of Chapter 4. Here, we �rst

substitute y1 for sin(
�x1
12
) and y2 for cos(

�x2
16
) to derive the following equivalent

problem

Minimize y1y2

subject to y1 = sin(
�x1

12
)

y2 = cos(
�x2

16
)

4x1 � 3x2 = 0

0 � x1 � 20; 0 � x2 � 20;

�1 � y1 � 1;�1 � y2 � 1: (5.34)

Now, since there is no product term that requires a polynomial approxima-

tion, we are no longer concerned with the nonnegativity assumption. (Such a

transformation is used to pre-process a problem in our �nal implementation

of the algorithm.) Furthermore, as mentioned in Chapter 4, we can use di�er-

ent methods to construct multiple alternative bounding polynomials for the

functions de�ned by y1 and y2. For example, we solved (5.34) by replacing

the two nonlinear equality constraints by four equivalent inequalities, and

used both the Mean-Value Theorem and Chebyshev interpolation methods

to generate second-order polynomial approximations. This strategy proves

to be very e�ective computationally. At the initial node, it produces a lower

bound of �1, and with a tighter tolerance of � = 0:01, the problem was

solved after enumerating only 9 nodes, producing a more accurate solution

given by x1 = 9:0532; x2 = 12:0709, with f(x1; x2) = �0:4998. (With the

previously used value of � = 0:05, this reformulation requires the enumera-

CHAPTER 5. A BRANCH-AND-BOUND ALGORITHM 44

tion of only 6 nodes, yielding a solution x1 = 8:8618 and x2 = 11:8158, with

f(x1; x2) = �0:4987.)

Chapter 6

Implementation

In this chapter, we discuss algorithmic issues and computational strategies

regarding the implementation of the algorithm developed in Chapter 5. In the

�rst section, we outline the overall design of the implementation. Topics such

as problem pre-processing, RLT constraint generation, range-reduction, and

constraint �ltering are discussed. Several relevant C++ classes developed for

this algorithm are examined in the second section.

6.1 Design Issues

There are three major elements in our proposed algorithm: bounding poly-

nomial generation methods, RLT constraint construction strategies, and the

branch-and-bound framework. These are the fundamental ingredients that

ensure the validity of the algorithm. Other techniques such as range-reduction

and constraint �ltering can also be used to contribute toward the overall suc-

cessful performance of the algorithm.

45

CHAPTER 6. IMPLEMENTATION 46

6.1.1 Pre-processing the Problem.

In the illustrative example in Section 5.3, we have seen that by suitably

manipulating the original problem , we can circumvent apparent violations of

the assumptions stated in Chapter 3. Furthermore, from our computational

experience, it turns out that by adopting such a reformulation, not only

is the implementation considerably simpli�ed, but signi�cant computational

bene�ts accrue as well.

In general, at the pre-processing stage, we require that the problem is

�rst transformed into a convenient form by replacing all the non-polynomial

univariate functions with new variables. For example, consider the following

problem.

Minimize sin(x3) + (x1 � x2)
2 � 1:5x1 + 2:x2 + 1

subject to x1 + x2 = x3

�1:5 � x1 � 4;�3 � x2 � 3: (6.1)

We transform it into the following equivalent problem.

Minimize x4 + (x1 � x2)
2 � 1:5x1 + 2:5x2 + 1

subject to x1 + x2 = x3

x4 � sin(x3) � 0

sin(x3)� x4 � 0

�1:5 � x1 � 4;�3 � x2 � 3;�1 � x4 � 1: (6.2)

After this transformation, we classify the constraints of the new problem

CHAPTER 6. IMPLEMENTATION 47

into four di�erent categories: linear inequalities, equality constraints (linear

and polynomial), polynomial inequalities, and equality constraints of the

form xn+i = f(xj). Here f(xj) is a non-polynomial univariate function in

xj and xn+i is a newly de�ned variable. It is directly observed that after

the initial transformation, the new objective function is simply a polynomial

function. Appropriately implied bounds will be set for these newly de�ned

variables.

There are three important advantages for such a reformulation. First,

it transforms the problem into a new format that is easier to manage in

a general implementation framework. Second, since there are no explicit

products of non-polynomial functions, the nonnegativity requirements on

the bounding polynomials are automatically dropped. Third, this permits a

more systematic way to control the generation of RLT constraints that may

involve products of di�erent sets of original constraints.

6.1.2 Algorithms for Bounding Polynomials

In Chapter 4, we present two methods to generate valid bounding polyno-

mials. One is based on the Mean-Value Theorem and the other is based on

Chebyshev interpolation polynomials. The �rst approach is very straightfor-

ward while the implementation of the second method is more involved. The

di�culty with the latter lies in the fact that we are interested in obtaining the

coe�cients of the approximating polynomial. This is rarely done in numerical

analysis where one is usually concerned with only the values produced by the

approximating polynomial at any given point. While algorithms to achieve

this task exist, they usually su�er from instability, especially for higher order

CHAPTER 6. IMPLEMENTATION 48

polynomials. This instability is due to the inherent ill-conditioning of the

matrix of coe�cients (see Press et al. (1992)). Our implementation of this

module is based on the algorithm given in Isaacson and Keller (1966). Other

more sophisticated and better implementations are discussed in Dalquist and

Bjorck (1974) and Stoer and Burlirsch (1993). Here, we emphasize the fact

that, as a general rule, this module is assumed to be speci�ed by the user for

a particular problem instance. We optionally include this module as part of

the developed package. The software, however, has a generic interface that

allows the user to adopt any alternative valid bounding polynomial strategies.

6.1.3 Constructing RLT Constraints Under Di�erent

Options

The construction of RLT constraints is a very critical part of this algorithm.

There are two issues that need to be considered here. On the one hand,

we intend to generate a su�cient class of RLT constraints that involve both

bound-factors and other structural constraints to ensure the tightness of the

resulting LP relaxation. On the other hand, we hope to control the size

of the resulting LP problem to keep it manageable. Our implementation

always generates the basic bound-factor RLT constraints that are necessary

for the theoretical convergence. In addition, we o�er the user the
exibility

to generate additional RLT constraints under di�erent options to potentially

improve the lower bounding LP relaxations.

There are two basic sets of RLT constraints that are always appended to

the polynomial program at the reformulation phase. They are the bound-

factor RLT constraints and the equality based RLT constraints. The pro-

CHAPTER 6. IMPLEMENTATION 49

cedure to construct bound-factor product RLT constraints is discussed in

Section 5.1.2. To generate equality based RLT constraints of order �, we

multiply any original equality constraint with all the possible RLT variables,

so long as the orders of the resulting polynomials do not exceed �. For in-

stance, suppose that we have a problem with two variables x1; x2 and two

equality constraints x1 + x2 = 1; x1x2 + x2 = 3. The following list enu-

merates all the RLT constraints that are based on the above two equality

constraints for � = 3.

(x1 + x2 = 1)� x1 ! x11 + x12 = x1

(x1 + x2 = 1)� x2 ! x12 + x22 = x2

(x1 + x2 = 1)� x11 ! x111 + x112 = x11

(x1 + x2 = 1)� x12 ! x112 + x122 = x12

(x1 + x2 = 1)� x22 ! x122 + x222 = x22

(x1x2 + x2 = 3)� x1 ! x112 + x12 = 3x1

(x1x2 + x2 = 3)� x2 ! x122 + x22 = 3x2: (6.3)

In essence, this process is a special case of constructing constraint-factor prod-

uct mentioned in Section 5.1.2. Instead of multiplying equalities with bound

factors, we simply multiply them with RLT variables, as the latter imply all

possible constraint-factor RLT constraints that involve these equalities.

Additionally, we de�ne three
ag variables foptionl, optionp, optionng

that a user can set to signal the inclusion of additional valid RLT constraints.

1. optionl

CHAPTER 6. IMPLEMENTATION 50

� optionl = 1: In this case, each linear constraint is multiplied

with any combination of �� 1 bound factors so that the resulting

polynomials are of order �.

� optionl = 2: In this case, all the linear constraints are consid-

ered as special bound-factors and they are grouped with the basic

bound-factors to form the set of general bound-factors. A bound-

factor product constraint is generated by taking the product of

any � of these general bound-factors.

2. optionp

� optionp = 1: Each polynomial of order d < � is multiplied with

any combination of � � d basic bound-factors.

� optionp = 2: Each polynomial of order d < � is multiplied with

any combination of � � d general bound-factors.

3. optionn

� optionn = 1: Each bounding polynomial of order d < � is multi-

plied with any combination of � � d basic bound-factors.

� optionn = 2: Each bounding polynomial of order d < � is multi-

plied with any combination of � � d general bound-factors.

The default set of RLT constraints ensures the convergence of the algo-

rithm, in particular, by driving the gaps between the LP relaxations and the

parent polynomial programs to zero. The other options provide the
exibility

to judiciously include other valid constraints to enhance the LP relaxations.

CHAPTER 6. IMPLEMENTATION 51

Also, the user may choose to simply obtain a good lower bound at the initial

node by including additional valid RLT constraints, and test this against a

derived heuristic solution (without performing any branching steps).

6.1.4 Range-Reduction

During the branch-and-bound process, once a good incumbent solution is

obtained, it is often e�ective to perform several steps of range-reduction

by sequentially minimizing and maximizing each variable in turn, subject

to the RLT relaxation constraints, plus a linearized objective function cut.

Such a strategy is then embedded in a branch-and-cut algorithm. Other

more advanced range-reduction techniques are discussed in detail in Tunc-

bilek (1994). In our implementation, we adopted the above simplest form of

range-reduction and applied it only at the initial node.

6.1.5 Constraint Filtering Techniques

Sherali and Tuncbilek (1997) suggest several RLT constraint �ltering schemes

that are exploited in solving polynomial programming problems. More re-

cently, Sherali, Smith and Adams (1997) exam the possibility of creating a

reduced �rst-level representation via RLT in solving mixed 0-1 integer pro-

gramming problems. Ideas in this study can be extended to the continuous

domain in the future. In our preliminary version of the implementation, we

do not consider any constraint �ltering methods. However, proper interfaces

are created to facilitate the future inclusion of such a technique into the

model and the computational time is expected to reduce considerably.

CHAPTER 6. IMPLEMENTATION 52

6.1.6 Branch-and-Bound Framework

A successful implementation of a branch-and-bound algorithm relies heavily

on the data structure, node storage strategies, and branching variable selec-

tion rules. Sherali and Myers (1985) have conducted elaborate computational

experiments on node and branching variable selection and storage reduction

strategies within a special breadth-and-depth enumeration combination ap-

proach. Sherali and Tuncbilek (1997) use such an approach in implementing

an algorithm to solve polynomial programming problems. For simplicity, we

adopt the traditional best-�rst approach. In this case, the program maintains

a set of active nodes. At each iteration, the active node that has the least

lower bound is selected for partitioning. To conserve the run-time memory

consumption, we create a priority queue to store these active nodes. For each

active node, only a minimal degree of information is kept. Once a node is

selected from the queue, the associated subproblem is generated.

6.2 C++ Classes

The algorithm is implemented entirely in C++, a language that supports

the objected-oriented programming (OOP). The C++ classes developed can

be readily embedded into future RLT engines. The resulting product is

a uni�ed environment within which any RLT based algorithm can be easily

implemented and tested. During the coding stage, we set two important goals

to guide our development: computational e�ciency and user friendliness.

The code for the program is �ne-tuned to re
ect a good balance between

these two sometimes con
icting interests. In this section, we present some

CHAPTER 6. IMPLEMENTATION 53

explanation on several important C++ program modules. There are many

important details that comprise the implementation, only the most crucial

aspects are described here.

6.2.1 Constraint Class

A very fundamental and important building unit in our algorithm is a con-

straint. We constantly need to store , manipulate and perform various arith-

metic operations involving the problem constraints. From an OOP point of

view, it is highly necessary to implement a class that encompasses the ca-

pacity to represent and manipulate such RLT constraints. In this section,

we present such a class.

RLT Constraint and its Representation

In the current context, we de�ne an RLT constraint as any polynomial con-

straint that is linearized via the variable substitution rules speci�ed in Section

5.1.2. For simplicity and uniformity, we assume that each constraint is in the

form p(x) � 0. Such a format proves to be convenient later when we consider

constraint multiplications. Any RLT constraint can be uniquely represented

by three entities: an array of subscripts, an array of coe�cients, and an in-

teger indicating the number of terms on the left-hand side of the constraint.

1 For example, the constraint 4x1�x23+x3�4 � 0 can be described by two

arrays and one integer.

1A more e�cient data structure for this class would be a link list.

CHAPTER 6. IMPLEMENTATION 54

/* Three C statements describing a constraint */

int n_term=4;

long subs[4]={1,23,3,0};

double coefs[4]={4,-1,1,-4};

Therefore, the initialization constructor for the Constraint class takes three

arguments,

/* Initialization Constructor */

Constraint(int num_tt, double *coefss, long *subss);

Constraint example(4,coefs,subs); /*4x1-x23+x3-4 >=0 */

Any RLT constraint can be initialized by calling this constructor.

A bound-factor is a special type of RLT constraint that takes a very

simple form, xi � ai or xi � bi. Note that we can certainly construct such

a constraint by using the initialization constructor itself. However, since it

takes a simpler form, and we encounter bound-factors very frequently, it is

justi�ed to develop a constructor of its own.

/* Constructor for Bound Factors */

Constraint(int lu, double a, long sub);

/* lu=-1 if lower bound, 1 if upper bound. */

Thus, bound-factors x1 � 3:1 and x3 � 4 can be built by the following

statements.

CHAPTER 6. IMPLEMENTATION 55

Constraint lbf(-1,3.1,1); /* x1 >=3.1*/

Constraint ubf(1,4,2); /* x2 <=4 */

Notice that the overloading facility of the C++ language allows us to de�ne

several functions having the same name but di�erent signatures. The com-

piler will automatically decide which one to use according to the parameters

passed.

Constraint Multiplications

The only major mathematical operation we require for the Constraint class

is multiplication. The user can de�ne additional operations such as addition

and linear combinations. These additional operations may be useful for an

RLT based algorithm in which a surrogate constraint of a given set of con-

straints is to be constructed. The inheritance feature of the C++ language

will make such an extension painless. Consider the product 0:3x13 � 0:4x24

to yield 0:12x1234: Notice the subscript of the new variable is obtained by

taking the union of f1; 3g and f2; 4g (retaining duplications when present),

and ranging the resulting four digits in a nondecreasing order. Such an op-

eration is very similar to the merge step in Merge Sort (see Knuth (1973)).

The following member function Subunion implements the union of two RLT

subscripts.

/* a member function that generate the product subscript */

CHAPTER 6. IMPLEMENTATION 56

long SubUnion(long sub1, long sub2)

{

long ans=0;

int i=0;

while(sub1>0 || sub2>0)

{

if((sub1 %10)>=(sub2%10))

{

ans=ans+(sub1%10)*pow(10,i);

sub1/=10;

}

else

{

ans=ans+(sub2%10)*pow(10,i);

sub2/=10;

}

}

}

With this member function de�ned, the implementation of constraint mul-

tiplication is trivial. To make the resulting module more user-friendly, we

overload the operator �, so that the member function that carries out the

general constraint multiplication takes the following form.

CHAPTER 6. IMPLEMENTATION 57

Constraint operator *(const Constraint & right);

Thus, a general constraint multiplication

(x2 + 3 � 0)� (x13 � x3 � 0) = (x123 � x23 + 3x13 � 3x3 � 0)

can be accomplished by the following C++ program segment.

long subs[2]={13,3};

double coefs[2]={1,-1};

Constraint b(2,coefs, subs);

Constraint a(-1,-3,2); // bound factor

Constraint prod=a*b;

For equality constraints, the multiplication is a little di�erent. Instead

of multiplying an equality with bound-factors or other RLT constraints, we

simply multiply it with RLT variables. For example, we might perform the

operation

(x3 + x14 � 3 = 0)� x22 ! (x223 + x1224 � 3x22 = 0):

The resulting constraint is also an equality having the same coe�cients. The

only thing that has been changed is the subscripts on the associated variables.

In the Constraint class, we have included a member function to perform this

special type of multiplication.

/* Member function handling equality multiplication.*/

CHAPTER 6. IMPLEMENTATION 58

Constraint Constraint::EQMult(long sub)

{

Constraint b=*this;

for (int i=0;i<num_t;i++)

{

b.subs[i]=SubUnion(b.subs[i],sub);

}

return b;

}

The header �le of the Constraint class is listed below for reference.

//constt.h

//header file for the constraint class

#ifndef __constraint__

#define __constraint__

#include<assert.h>

class Constraint{

private:

int num_t; //# of terms

double *coefs; //coefficients

long *subs; // subscripts

char Sign(double coef);

CHAPTER 6. IMPLEMENTATION 59

void AddTerm(double coef, long sub);

long SubUnion(long sub1,long sub2);

public:

// constructors and destructor

Constraint();

Constraint(int lu, double a, long sub);

Constraint(int num_tt, double *coefss, long *subss);

Constraint(const Constraint &other);

Constraint & operator=(const Constraint &other);

~Constraint();

// access functions

int NumTerms(){return num_t;};

long GetSubs(int j);

double GetCoefs(int j);

// arithmetic

Constraint operator *(const Constraint & right);

Constraint EQMult(long sub);

// testing and debugging functions

void Display(void);

};

#endif

CHAPTER 6. IMPLEMENTATION 60

6.2.2 A Combination Class

In generating RLT constraints, we often encounter the following operation.

Given n constraints, take the product of these constraints, k at a time,

allowing repetition.

This occurs, for example, in generating all the bound-factor product RLT

constraints. A Combination class is developed for this purpose.

A Combination Generator and its Algorithm

Given n numbers f1; 2; : : : ; ng and any integer k � n, a combination gener-

ator generates a list of all the combinations of choosing k out of n numbers,

allowing repetition. To make the list unique, we require that the resulting

combinations are in a component-wise lexicographic order. More speci�cally,

if ci = fai1; a
i
2; : : : ; a

i
kg and ci+1 = fai+1

1 ; ai+1
2 ; : : : ; ai+1

k g are respectively the

ith and (i + 1)th combinations in the list, we require that aj1; a
j
2; : : : ; a

j
k are

in a nondecreasing order for j = i; i+ 1 and ci+1 is lexicographically greater

than ci. For instance, when n = 3; k = 2, the list is

f1; 1g; f1; 2g; f1; 3g; f2; 2g; f2; 3g; f3; 3g| {z }
six combinations

:

To generate such a list of combinations, we inductively construct the next

combination in the list, given the current one.

Let c = fa1; a2; : : : ; akg be the current combination. The next combina-

tion in the list can be generated using the following steps.

� Scan through each component of c from right to left, and �nd the �rst

element aj such that aj < n.

CHAPTER 6. IMPLEMENTATION 61

� The next combination is fa1; : : : ; aj�1; aj + 1; : : : ; aj + 1| {z }
k�j+1 elements

g.

� If no such aj exists, then the end of the list is reached.

We call the element aj identi�ed above as the pivot element, and let

pindex denote the index of this pivot element. At each iteration, we update

the index of the pivot element to avoid unnecessary checks. The algorithm

thus proceeds as follows.

Step 1. Initialize with pindex = k; More = 1, C = f1; 1; : : : ; 1| {z }
k elements

g, and

proceed to the next step.

Step 2. If More = 0, stop; otherwise, go to Step 3.

Step 3. Let j = pindex and C = fa1; : : : ; aj�1; aj; : : : ; akg. The new

combination is C = fa1; : : : ; aj�1; aj + 1; : : : ; aj + 1g. If a1 = n, set

More = 0 and go to Step 2. Otherwise, go to Step 4.

Step 4. If aj + 1 = n, set pindex = j � 1; else, let pindex = k: Return to

Step 2.

It can be shown that for any given n and k, there are a total of
�
n+k�1

k

�
combinations. This important formula is used in several di�erent places in

this chapter.

The header �le for this Combination class is as follows.

// file: comb.h

// purpose: the header file of the Combination class

// This class will generate all

// the k out of n combinations with repetition

CHAPTER 6. IMPLEMENTATION 62

#ifndef __comb__

#define __comb__

class Combination{

public:

Combination(int nn, int kk); // constructor

~Combination(); // destructor

void Initialize(void); // reset

void Current(int *comb) ; // the current combination

int Next(void); // generate the next combination

long Current2Num(void); // the current comb in number

private:

int *combination;

int n, k;

int more;

int pindex; // index of the pivot element

};

#endif

Generating Bound-Factor Product RLT Constraints

With the help of this Combination class, we can construct bound-factor prod-

uct based RLT constraints. Suppose that we have four bound-factors

1 � x1 � 2; 3 � x2 � 4;

CHAPTER 6. IMPLEMENTATION 63

and we are interested in composing all possible RLT constraints by taking

the product of them, 3 at a time. The program for this task is given below.

double bds[4]={1,3,2,4};

Constraint boundfactors[4];

// initialize the bound factors

for(int i=0;i<2;i++)

{

boundfactors[i]=Constraint(-1,bds[i],i);

boundfactors[i+2]=Constraint(1,bds[i+2],i);

}

// assume f is defined elsewhere

int num=f(4+3-1,3); // number of total combinations.

int indices[3];

Combination list(4,3); // 4 factors, take 3 at a time

Constraint product;

do

{

list.Current(indices);

product=boundfactors[indices[0]];

for(int j=1;j<3;j++)

product=product*boundfactors[indices[j]];

}

while(list.Next());

CHAPTER 6. IMPLEMENTATION 64

Here f(int i, int j) computes
�
i

j

�
. In this case, since there are 4 bound-factors

and � = 3, the total number of bound-factor product RLT constraints is�
4+3�1

3

�
= 20.

Indices of the RLT Variables

The combinations constructed from the corresponding combination generator

are closely related to the subscripts of the RLT variables. For example,

a combination f1; 1; 2g corresponds to the subscript f112g, treated as the

integer 112. The member function

long Current2Num(void)

transform a combination into an integer that represents the subscript of an

RLT variable. Suppose that a problem has three original variables x1; x2; x3

and we apply a second-order RLT. The list of all relevant RLT variables is

as follows:

x1; x2; x3; x11; x12; x13; x22; x23; x33:

Notice that the subscripts correspond to the list of combinations of choosing 1

out of 3 followed by combinations of choosing 2 out of 3, allowing repetitions.

This relationship can be exploited to generate all the subscripts of RLT

variables in a given problem. It is also easy to see, in light of this relationship,

that the total number of RLT variables is given by

�X
i=1

�
n + i� 1

i

�
=

�
n+ � � 1

�

�
: (6.4)

CHAPTER 6. IMPLEMENTATION 65

Here n is the number of original variables and � is the order of the RLT.

The following program segment uses the combination class to construct

SUBRLT[], an array of all possible RLT variables in a lexicographic order.

int n=2; // number of original vars.

int RLTorder=3;

int RLTnum=f(n+RLTorder, order)-1;// number of RLT vars;

long SUBRLT[RLTnum];

int j=0;

for(int i=1;i<RLTorder;i++)

{

Combination list(n, i);

do

{

SUBRLT[j]=l.Current2Num();

j++;

}

while(l.Next());

}

It is conventional that the constraint set in an LP problem is represented

as a matrix. (Notice the di�erence between representation and storage. The

matrix is a conceptual representation. The constraints might be actually

stored using di�erent data structures.) Since there are new RLT variables

CHAPTER 6. IMPLEMENTATION 66

and constraints being de�ned during the process of the model construction,

it is important to have a systematic way to assign column numbers to the

variables in the �nal constraint matrix. With the ability to compose an array

of all RLT variables via SUBRLT[], such a task becomes trivial. It can be

shown that if we assign column numbers to RLT variables according to the

lexicographic order of the subscripts of these RLT variables, then, Xa1a2:::ak

corresponds to the column number

�
n+ k � 1

k

�
�

kX
i=1

�
n� ai + k � i

k � i+ 1

�
+

�
n + k � 1

k � 1

�
: (6.5)

In our implementation, however, instead of using the above formula, we adopt

a more practical approach. For any n (the number of original variables) and

� (the order of RLT), we compose SUBRLT[], an array of subscripts of all

the possible RLT variables up to order �. Since the subscripts in SUBRLT[]

are sorted in a lexicographic order, the column number of any RLT variable

can be determined by performing a binary search using the subscript of this

RLT variable as the key word. This method avoids the repeated evaluation

of formula (6.5), which is numerically expensive.

Finally, we describe brie
y the method we use to build equality based

RLT constraints. For convenience, we de�ne the order of an RLT variable

as the number of digits in its subscript. As mentioned in Section 6.1.3,

to generate equality RLT constraints, we take the product of any original

equality with all possible RLT variables so that the order of the resulting

polynomial is less than or equal to �. Suppose that the equality is of order

s, where s � �. Then, the highest order of RLT variables by which this

equality can be multiplied is t = � � s. The index of the �rst tth order RLT

CHAPTER 6. IMPLEMENTATION 67

variable in SUBRLT[] can be obtained by using the formula I =
�
n+t

t

�
�1. To

produce all the RLT constraints based on this equality, we simply multiply

this equality with the �rst I elements in SUBRLT[].

6.2.3 Problem Class and Sparse Matrix Class

The Problem class is responsible for loading the data, generating the con-

straint set according to various user options, and feeding the resulting data

via a proper interface to an LP or NLP solver. The LP solver we use is

CPLEX 4.0, which requires information on the nonzero elements in the con-

straints. Since all the RLT constraints are generated at run-time, there is no

obvious way to determine the number of nonzero elements in the constraints

before the actual construction process. For this reason, an auxiliary sparse

matrix class SPM is developed to hold the resulting RLT constraint set. The

SPM class uses an array of link lists as the underlying data structure. Each

link list corresponds to one column of the constraint matrix. The memory

for the sparse matrix is dynamically allocated when a particular location is

initialized with a nonzero element.

6.2.4 Classes for Branch-and-Bound

There are three classes developed for the general branch-and-bound frame-

work. The BranchBound class implements a general branch-and-bound pro-

cedure. It is the only program module that the user needs to work with.

Detailed information about this class can be found in the tutorial attached

in the appendix. The Odlist class implements a priority queue. This queue

is used by the branch-and-bound algorithm to store active nodes, and it is a

CHAPTER 6. IMPLEMENTATION 68

priority queue because whenever a new node is added to this queue, it is ap-

pended to the proper location according to the rank of its lower bound. The

BBNODE class is another auxiliary module that is used to represent a node

in the branch-and-bound tree. Finally, we have developed C++ interfaces

for CPLEX 4.0 and MINOS 5.4 to simplify the use of these two solvers.

The classes we have discussed in this section are used in the implementa-

tion of our algorithm. However, they are all generic enough and independent

to be incorporated into other applications, especially those that involve the

application of the RLT.

Chapter 7

Computational Experience

For evaluating the proposed algorithm, we use a set of �fteen test prob-

lems from the literature. The algorithm is tested using di�erent bounding

polynomial strategies as well as diverse RLT constraint generation options.

The overall performance of the algorithm is very encouraging. For prob-

lems whose optimal solutions are known, the algorithm terminates with the

correct solutions with a very competitive e�ort. For two test problems, by

detecting global optimal solutions, we actually found better solutions than

the ones previously reported in the literature. In most cases, the LP so-

lutions obtained at the initial node produced tight lower bounds and often

provided warm starts for MINOS that resulted in an optimal solution being

detected at node zero itself (for nine out of �fteen cases). In the following,

we �rst summarize in three tables the computational results obtained on a

Sun Ultra-1 station running SunOS 5.5. Then, detailed information on each

individual problem is presented.

69

CHAPTER 7. COMPUTATIONAL EXPERIENCE 70

Table 7.1: Computational Results with � = 10�6.

Problem No Optimal Value Initial LB No. of Nodes CPU time (seconds)

1 �1:90596 �2 17 1:31

2 �4:601308 �5:12 13 0:3

3 �16:73 �28:5 27 1:06

4 0 0 1 negligible

5 17:014 16:68 5 8:34

6 �2 �3 3 negligible

7 �1:9132 �12:3 41 18:32

8 �
p
3 �2:15 23 2:61

9 �4:5142 �5:78679 13 0:32

10 �3:1336 �3:5539 17 0:68

11 �13:40196 �14:0028 67 4:14

12 �30665:5387 �30673:086 3 0:75

13 �5:6848 �5:6848 1 13:41

14 �750 �750 1 3:58

15 �1:031628 �81 35 283:5

CHAPTER 7. COMPUTATIONAL EXPERIENCE 71

Table 7.2: Computational Results with � = 0:01.

Problem No No. of Nodes CPU time (seconds)

1 17 1:31

2 7 0:18

3 9 0:47

4 1 negligible

5 1 5:71

6 3 negligible

7 27 13:06

8 9 1:01

9 13 0:32

10 5 0:26

11 67 4:12

12 1 0:24

13 1 13:41

14 1 3:58

15 29 269

CHAPTER 7. COMPUTATIONAL EXPERIENCE 72

Table 7.3: Computational Results with � = 0:05.

Problem No No. of Nodes CPU time (seconds)

1 15 1:24

2 3 negligible

3 3 0:26

4 1 negligible

5 1 5:71

6 3 negligible

7 21 10:37

8 5 0:64

9 13 0:32

10 3 0:18

11 1 0:09

12 1 0:24

13 1 13:41

14 1 3:58

15 27 244

CHAPTER 7. COMPUTATIONAL EXPERIENCE 73

Problem 1

(Floudas and Pardalos (1992), pp. 215)

Minimize sin(x) + sin(
2x

3
)

subject to 3:1 � x � 20:4:

This problem has three local minima and one global minimum. The

global solution is x� = 17:0393; f � = �1:90596: For the two nonlinear terms,

we construct fourth-order polynomials using the Chebyshev Interpolation

Polynomial approach. A fourth-order RLT is applied. MINOS is called to

�nd upper bounds as mentioned above. At the initial node, the LP relax-

ation yields a lower bound of �2. Using this LP solution, MINOS locates a

local minimum of �1:1983 at the �rst node. The global minimum is found

by MINOS at the eighth node. The branch-and-bound process terminates

successfully after enumerating a total of 17 nodes. The total CPU time used

is 1:31 seconds.

Problem 2

(Floudas and Pardalos (1992), pp. 215)

Minimize sin(x) + sin(
10x

3
) + log(x)� 0:84x

subject to 2:7 � x � 7:5:

The global optimal solution is f � = �4:601308. For the three non-

polynomial terms, second-order bounding polynomials based on the Mean-

Value Theorem are constructed. For the resulting polynomial program, a

second-order RLT is applied. The branch-and-bound algorithm enumerates

totally 13 nodes and uses 0:3 CPU second.

CHAPTER 7. COMPUTATIONAL EXPERIENCE 74

Problem 3

(Floudas and Pardalos (1990), pp. 31)

Minimize �12x1 � 7x2 + x22

subject to �2x41 + 2� x2 = 0

(0; 0) � (x1; x2) � (2; 3):

The best known solution is x� = (0:71751; 1:470) with an objective func-

tion value of f � = �16:73889: For this problem, we apply a fourth-order RLT

and the correct solution is obtained after enumerating 27 nodes in 1:06 CPU

seconds. The lower bound at the initial node is�28:5. After range-reduction,

the same node yields a lower bound of �17:3974. For the branch-and-bound

algorithm, we set optionl; optionp and optionn all to zero (see Section 6.1.3).

Problem 4

(Schittkowski (1987), pp. 32)

Minimize 100(x2 � x21)
2 + (1� x1)

2

subject to (0; 0) � (x1; x2) � (3; 3):

This is the so-called Banana function. The optimal solution is x� = (1; 1)

with objective function value f � = 0. In addition to the usual bound-factor

product RLT constraints, we add two valid cuts, (1�x1)
2 � 0 and (x2�x

2
1)

2 �

0. The problem is solved at the initial node with negligible CPU time.

CHAPTER 7. COMPUTATIONAL EXPERIENCE 75

Problem 5

(Hock and Schittkowski (1981), pp. 92)

Minimize x1x4(x1 + x2 + x3) + x3

subject to x1x2x3x4 � 25 � 0

x21 + x22 + x23 + x24 � 40 = 0

1 � xi � 5; i = 1; 2; 3; 4:

The optimal solution is x� = (1; 4:743; 3:82115; 1:37941), having an ob-

jective function value f � = 17:014. A fourth-order RLT is applied to this

problem. optionl; optionp are optionn are set to zero. The �rst node yields

a lower bound of 16:6846. After range-reduction, the initial lower bound

becomes 16:79806. The global optimal solution is found after enumerating 5

nodes in 8:34 CPU seconds with a tolerance level of � = 10�6.

Problem 6

(Torn and Zilinskas (1989), pp. 185)

Minimize x21 + x22 � cos 18x1 � cos 18x2

subject to (�1;�1) � (x1; x2) � (1; 1):

The objective function in the above problem is called the Rastrigin func-

tion. It is a frequently used test problem in the Russian papers on global

optimization. There are about 50 local minima in the feasible region. The

global optimal solution is x� = (0; 0) with objective value f � = �2. For

this problem, we replace cos 18x1 and cos 18x2 with x3,and x4 respectively.

Bounding polynomials of fourth-order based on Chebyshev Interpolation are

generated for these two nonlinear terms. Also, we use trivially implied bounds

CHAPTER 7. COMPUTATIONAL EXPERIENCE 76

for the new variables as (�1;�1) � (x3; x4) � (1; 1). Notice that the LP so-

lutions from the relaxations would also be feasible to the original problem.

Thus, this problem is solved without the help of MINOS. The initial node

produces a lower bound of �3. After partitioning, both of the two children

nodes of the initial node produce a lower bound of �2. The feasible solution

from the left child gives an upper bound of �2. Thus, the problem is solved

within 3 nodes and with negligible CPU time. This amazing performance

is no surprise, since for the second and third nodes, the bound-factor RLT

constraints actually produce a characterization of the convex envelope of the

original objective function over the convex feasible region.

Problem 7

(McCormick (1976))

Minimize sin(x3) + (x1 � x2)
2 � 1:5x1 + 2:5x2 + 1

subject to x1 + x2 = x3

(�1:5;�3) � (x1; x2) � (4; 3):

The global optimal solution is x� = (�0:5472;�1:5472), with an objective

value of f � = �1:9132. For this problem, we apply a fourth-order RLT. For

the non-polynomial term sin(x3), a fourth-order bounding polynomial based

on Chebyshev Interpolation is constructed. The lower bound from node zero

is �12:3. However, the second and third nodes yielded much tighter lower

bounds of �5:94 and �3:92. The problem is solved after enumerating 41

nodes in 18:32 CPU seconds.

CHAPTER 7. COMPUTATIONAL EXPERIENCE 77

Problem 8

(Hock and Schittkowski (1981), pp. 30)

Minimize log(1 + x21)� x2

subject to (1 + x21)
2 + x22 � 4 = 0:

The global optimal solution is x� = (0;
p
3) with an objective value of

f � = �
p
3. To solve this problem, �rst, the univariate function log(1 + x21)

is replaced by a new variable x3. Then, second-order bounding polynomials

are constructed for this term using the Mean-Value Theorem based approach.

The order of RLT applied is four. The lower bound at node zero is �2:15.

Using MINOS to �nd upper bounds, the problem is solved after enumerating

23 nodes in 2:61 CPU seconds.

Problem 9 (Structural Sensitivity Analysis)

(Floudas and Pardalos (1990), pp. 28)

Minimize x0:61 + x0:62 � 6x1 � 4x3 + 3x4

subject to x2 � 3x1 � 3x3 = 0

x1 + 2x3 � 4

x2 + 2x4 � 4

x1 � 3; x4 � 1; xi � 0; i = 1; 2; 3; 4:

The best solution reported is x� = (4=3; 4; 0; 0) with an objective function

value of f � = �4:5142. For the concave terms x0:61 and x0:62 , bounding poly-

nomials are constructed using the method presented in Sherali (1998). A

second-order RLT is applied. The option optionl = 2 is used. Since all the

constraints are linear, the LP solutions are also feasible to the original prob-

lem, and therefore, are used to update upper bounds. Problems 9, 10 and

CHAPTER 7. COMPUTATIONAL EXPERIENCE 78

11 are solved without using MINOS. The LP relaxation at node zero yields

a lower bound of �5:78679 and �x = (4=3; 4; 0; 0). This is actually a global

solution. The problem is solved after enumerating 13 nodes in 0:36 CPU

seconds.

Problem 10 (Structural Sensitivity Analysis)

(Floudas and Pardalos (1990), pp. 29)

Minimize x0:61 + 2x0:62 + 2x3 � 2x2 � x4

subject to x2 � 3x1 � 3 = 0

x1 + 2x3 � 4

x2 + x4 � 4

x1 � 3; x4 � 2

xi � 0; i = 1; 2; 3; 4:

The bounding method applied and the option of generating RLT constraints

used for this problem are identical to the ones used in problem 9. The

best solution reported in Floudas and Pardalos (1990) is x� = (4=3; 4; 0; 0),

having an objective value of f � = �2:07: This solution is obviously not

feasible to the above problem. Our algorithm �nds a global optimal solution

x� = (0; 3; 0; 1),with f � = �3:13364 for this problem after enumerating 17

nodes in 0:68 second. The solution prescribed in Floudas and Pardalos (1990)

is actually an optimal solution to a problem identical to the above one, except

that the �rst constraint is replaced by x2�3x1 = 0. For this case, the optimal

objective value is �2:2168.

CHAPTER 7. COMPUTATIONAL EXPERIENCE 79

Problem 11 (Structural Sensitivity Analysis)

(Floudas and Pardalos (1990), pp. 29)

Minimize x0:61 + x0:62 + x0:43 + 2x4 + 5x5 � 4x3 � x6

subject to x2 � 3x1 � 3x4 = 0

x3 � 2x2 � 2x5 = 0

4x4 � x6 = 0

x1 + 2x4 � 4

x2 + x5 � 4

x3 + x6 � 6

(x1; x5; x3) � (3; 2; 4)

xi � 0; i = 1; 2; : : : ; 6:

The best solution reported is x� = (0:67; 2; 4; 0; 0; 0), having an objective

value of f � = �11:96. Our algorithm �nds a better solution x� = (0:16667; 2; 4; 0:5; 0; 2),

with f � = �13:4019. The initial node produces a lower bound of �14:00.

The LP solution at node-zero is actually a global optimal solution. The

branch-and-bound process generates a total of 67 nodes and the problem is

solved to optimality in 4:14 seconds CPU time.

CHAPTER 7. COMPUTATIONAL EXPERIENCE 80

Problem 12

(Floudas and Pardalos (1990), pp. 23)

Minimize 37:293239x1 + 0:8356891x1x5 + 5:3578547x23 � 40792:141

subject to �0:0022053x3x5 + 0:0056858x2x5 + 0:0006262x1x4 � 6:665593 � 0

0:0022053x3x5 � 0:0056858x2x5 � 0:0006262x1x4 � 85:334407 � 0

0:0071317x2x5 + 0:0021813x23 + 0:0029955x1x2 � 29:48751 � 0

�0:0071317x2x5 � 0:0021813x23 � 0:0029955x1x2 + 9:48751 � 0

0:0047026x3x5 + 0:0019085x3x4 + 0:0012547x1x3 � 15:699039 � 0

�0:0047026x3x5 � 0:0019085x3x4 � 0:0012547x1x3 + 10:699039 � 0

78 � x1 � 102; 33 � x2 � 45; 27 � x4 � 45

27 � x4 � 45; 27 � x5 � 45:

The objective function and the constraints are de�ned by nonconvex

quadratic terms. The best known solution is x� = (78; 33; 29:9953; 45; 36:7758),

with an objective value of f � = �30665:5387. In Tuncbilek (1994), a RLT

based convex relaxation is used at the bounding step to solve this problem.

The second-order convex RLT lower bound at node zero is �30765:086. We

apply a third-order RLT (with optionp = 1) and obtain a better lower bound

of �30673:04. Furthermore, the solution x = (78; 33; 29:9878; 45; 36:7792)

obtained for the LP relaxation is in a relatively close vicinity of an actual

global optimal solution. This enables MINOS to locate a global solution at

node zero. The branch-and-bound algorithm terminates successfully after

enumerating 3 nodes.

CHAPTER 7. COMPUTATIONAL EXPERIENCE 81

Problem 13 (Flywheel Design)

(Siddall (1972))

Minimize �0:0201x41x2x
2
3=10

7

subject to x21x2 � 675

x21x
2
3 � 4190000

0 � x1 � 36; 0 � x2 � 5; 0 � x3 � 125:

In Tuncbilek (1994), a global solution x� = (16:51; 2:477; 124) having

f � = �5:6848 is reported. Our algorithm applies a seventh-order RLT (with

optionp = 1) and �nds an alternative solution of x� = (35:8068; 0:526468; 50:71664).

The problem is solved at the initial node.

Problem 14 (Haverly's Pooling Problem)

(Floudas and Pardalos (1990), pp. 61)

Minimize �9x1 � 15x2 + 6x3 + 13x4 + 10x5 + 10x6

subject to x7 + x8 � x3 � x4 = 0

x1 � x7 � x5 = 0

x2 � x8 � x6 = 0

x7x9 + x8x9 � 3x3 � x4 = 0

x7x9 + 2x5 � 2:5x1 � 0

x8x9 + 2x6 � 1:5x2 � 0

x1 � 100; x2 � 200:

The best known solution for this problem is x� = (0; 200; 50; 150; 0; 0; 0; 200; 1:5)

with an objective value of�750. Applying a third-order RLT (with optionp =

CHAPTER 7. COMPUTATIONAL EXPERIENCE 82

1), the solution from the LP relaxation at the �rst node is feasible to the origi-

nal problem. It produces an upper bound that equals the lower bound. Thus,

the problem is solved after enumerating only one node.

Problem 15

(Dravnieks and Chinneck (1997))

Minimize 4x21 � 2:1x41 + x61=3 + x1x2 � 4x22 + 4x42

subject to �2x41 + 2� x2 � 0

(x2 + 2)2 � x� x21 � 0

cos(x1 + 1) + (x1 � 1)2 � x2 � 6 � 6

�1 � x1 � 4;�10 � x2 � 10:

The global optimal solution for this problem is x� = (�0:0898420; 0:712656)

with an objective value of f � = �1:031628. To solve this problem, we apply a

sixth-order RLT. Eight valid nonnegativity restrictions of the following type

are added

xi1x
j
2 � 0; i; j; even

to tighten the lower bounds. For the non-polynomial term cos(x1 + 1),

second-order bounding polynomials based on the Mean-Value Theorem are

constructed. When generating RLT constraints, we set both optionp and

optionn to 1. The lower bounds for the �rst three nodes are, respectively,

�81:08;�16:96 and �3:1485. The problem is solved using 283 CPU seconds.

The relatively greater computational time is due to the presence of high order

terms and a large number of constraints, which results in large LP subprob-

lems. An appropriate application of constraint-�ltering techniques could be

expected to improve the performance in this case.

Chapter 8

Conclusions and

Recommendations for Future

Research

In this thesis, we have explored a global optimization method for solving non-

convex factorable programming problems. Such problems abound in many

domains of natural sciences, engineering, operations research, economics and

social sciences. Traditional convex optimization algorithms are not adequate

for solving these nonlinear problems due to the presence of multiple local

optima and the lack of local criteria for deciding whether a local solution is

globally optimal or not. From the complexity point of view, global optimiza-

tion to nonconvex factorable programming is an NP-hard problem. Despite

recent advances in developing new algorithms, there is still no prevailing

method for this very general class of problems.

Sherali and Adams developed a Reformulation-Linearization Technique

83

CHAPTER 8. CONCLUSIONS ANDRECOMMENDATIONS FOR FUTURE RESEARCH84

(RLT), a ground-breaking approach in mathematical programming, which

has been successfully applied in solving various combinatorial optimization

problems. Later, Sherali and Tuncbilek extended this approach to solve

the more general family of continuous, nonlinear polynomial programs. The

research in this thesis is an important generalization of the previous research

e�orts.

Our proposed algorithm is also a branch-and-bound algorithm, but one

that employs two levels of approximations, carefully crafted to yield a strong

bounding mechanism. At the �rst level, the original nonconvex factorable

functions are approximated by appropriately constructed nonconvex bound-

ing polynomials. An LP relaxation is then generated for the resulting poly-

nomial program via the application of RLT. Suitable partitioning rules are

accordingly developed to drive the errors in these two levels of approximation

simultaneously to zero, and therefore ensure the convergence of the process

to a global optimum. In generating the LP relaxation, RLT is directly ap-

plied to the approximating polynomial program, without any intermediate

transformation. For the �rst level approximation, we provide methods based

on the Mean-Value Theorem and Chebyshev Interpolation, which are easy

to implement and have empirically been shown to be e�ective. General as-

sumptions, transformation strategies, and implementation guidelines are pro-

vided for each component of the algorithm. Based on these guidelines, users

can develop their own versions of these components, and add other special

techniques such as Lagrangian relaxation, range-reduction, and constraint

�ltering into the general algorithm. Therefore, this algorithm serves as a

theoretical framework within which users can customize their applications to

CHAPTER 8. CONCLUSIONS ANDRECOMMENDATIONS FOR FUTURE RESEARCH85

take advantage of special structures that a particular problem may possess.

The software developed is implemented entirely in C++. It is �ne-tuned

to re
ect the Objected-Oriented design and to maintain a good balance be-

tween e�ciency and robustness. The class modules developed for this al-

gorithm can be easily extended and adapted into future RLT engines. The

resulting product is a comprehensive collection of data types, algorithms,

and program modules that constitutes a uni�ed environment within which

the design, implementation, and testing of RLT based algorithms can be

readily facilitated.

Finally, the algorithm is tested on a set of problems from various sources

in the literature. The computational experience has been very competitive

and promising.

8.1 Issues for Future Research

As mentioned in the beginning of this chapter, the primary focus of the

research in this thesis is to develop the theoretical aspects of an algorithm

for solving nonconvex factorable programming problems. There are many

detailed issues that could be pursued in future research e�orts to compose

an e�cient variant of this algorithm.

Sherali and Tuncbilek (1997) analyze the e�ectiveness of the inclusion

of various additional valid RLT constraints in the bounding step. Special

types of RLT constraints such as squared grid factor products, and squared

Lagrangian interpolation polynomial based constraints can be incorporated

in the initial bounding step to strengthen the tightness of the lower bounds.

CHAPTER 8. CONCLUSIONS ANDRECOMMENDATIONS FOR FUTURE RESEARCH86

Furthermore, instead of forming an LP relaxation, we can alternatively apply

the Reformulation-Convexi�cation Technique studied in Sherali and Tunc-

bilek (1995). At the bounding stage, a convex program is formulated by

linearizing only the nonconvex terms and leaving the convex terms intact.

Furthermore, other valid convex cuts and underestimators can be added to

tighten the relaxation. By solving convex subproblems, we may potentially

derive stronger lower bounds, although having to contend with convex, rather

than simply linear relaxations. Computational experiments can be conducted

to measure the tradeo� between these two approaches.

Constraint �ltering schemes discussed in Sherali and Tuncbilek (1995) and

Tuncbilek (1994) can be applied in conjunction with the basic framework of

our algorithm. Computational improvements are expected. Ideas exempli�ed

in Sherali, Smith and Adams (1997) prompt similar investigations in the

continuous problem domain as well.

For the current implementation, we have employed the simplest form of a

range-reduction strategy that is conducted at the initial node of the branch-

and-bound tree. More general and more complex range-reduction techniques

examined in Sherali and Tuncbilek (1995) and Ryoo and Sahinidis (1996)

can be potentially embodied into our algorithm.

In Sherali, Adams and Driscoll (1996), a new and extended hierarchy

of RLT relaxation is presented that provides a unifying framework for con-

structing a range of continuous relaxations for mixed 0-1 integer program-

ming problems. The ideas discussed in that paper could also be exploited in

the context of continuous global optimization. In particular, RLT constraints

that imply simple bound-factors can be used to produce tighter LP or convex

CHAPTER 8. CONCLUSIONS ANDRECOMMENDATIONS FOR FUTURE RESEARCH87

relaxations. New discoveries in this area will enrich the theory of RLT and

lead to more general and e�ective branching and partitioning rules for future

branch-and-bound algorithms.

Bibliography

[1] Adjiman, C. S. and C. A. Floudas (1996), Rigorous Convex Underes-

timators for General Twice-Di�erentiable Problems, Journal of Global

Optimization 9, pp. 23-40.

[2] Al-Khayyal, F. A. J. E. Falk (1983), Jointly Constrained Biconvex Pro-

gramming, Mathematics of Operations Research 8, pp.273-286.

[3] Al-Khayyal, F. A., C. Larson, and T. Van Voorhis (1994), A Relaxation

Method for Nonconvex Quadratically Constrained Quadratic Programs,

Working Paper, School of Industrial and Systems Engineering, Georgia

Institute of Technology, Atlanta, Georgia 30332.

[4] Audet, C., P. Hansen, B. Jaumard and G. Savard (1998), A Branch

and Cut Algorithm for Nonconvex Quadratically Constrained Quadratic

Programming, Working Paper, Ecole Polytechnique de Montreal.

[5] Bromberg, M. and T. Chang (1992), One Dimensional Global Optimiza-

tion Using Linear Lower Bounds, in: C. A. Floudas and P. M. Pardalos

(Eds.), Recent Advances in Global Optimization, Princeton University

Press, pp. 200-220.

88

BIBLIOGRAPHY 89

[6] Byrne, R. P. and I. D. Bogle (1995), Solving Nonconvex Process Op-

timization Problems Using Interval Subdivision Algorithms, in: I. E.

Grossmann (Ed.), Global Optimization in Engineering Design, Kluwer

Academic Publishers, pp. 155-174.

[7] Dalquist, G. and A. Bj�orck (1974), Numerical Methods, Prentice-Hall,

Englewood Cli�s, New Jersey.

[8] Davis, P. J. (1975), Interpolation and Approximation, Dover Publica-

tions, New York.

[9] Dembo, R. S. (1976), A Set of Geometric Programming Test Problems

and their Solutions, Mathematical Programming 10, pp. 192-213.

[10] Dembo, R. S. (1978), Current State of Art of Algorithms and Computer

Software for Geometric Programming, Journal of Optimization Theory

and Applications 26, pp. 149-183.

[11] Dravnieks, E. W. and J. W. Chinneck (1997), Formulation Assistance

for Global Optimization Problems, Computers Operations Research 24,

pp. 1151-1168.

[12] Epperly, T. G. and E. N. Pistikopoulos (1997), A Reduced Space Branch

and Bound Algorithm for Global Optimization, Journal of Global Opti-

mization 11, pp. 287-311.

[13] Floudas, C. A. and P. M. Pardalos (1990), A Collection of Test Prob-

lems for Constrained Global Optimization Algorithms, Springer-Verlag,

Berlin.

BIBLIOGRAPHY 90

[14] Floudas, C. A. and V. Visweswaran (1990), A Global Optimization Al-

gorithm (GOP) for Certain Classes of Nonconvex NLP's I. Computers

and Chemical Engineering, 14, pp. 1397-1417.

[15] Floudas, C. A. and P. M. Pardalos (1992) (Eds.), Recent Advances in

Global Optimization, Princeton University Press.

[16] Floudas, C. A. and V. Visweswaran (1995), Quadratic Optimization,

in: R. Horst and P. M. Pardalos (Eds.), Handbook of Global Optimiza-

tion, Nonconvex Optimization and its Applications, Kluwer Academic

Publishers, pp. 217-270.

[17] Haddad, E. (1996), Nonconvex Global Optimization of the Separable Re-

source Allocation Problem with Continuous Variables, in: C.A. Floudas

and P.M. Pardalos (Eds.), State of the Art in Global Optimization, Com-

putational Methods and Applications, Kluwer Academic Publishers, pp.

383-393.

[18] Hock, W. and K. Schittkowski (1981), Test Examples for Nonlinear Pro-

gramming Codes, Springer-Verlag, Berlin.

[19] Horst, H. and H. Tuy (1996), Global Optimization, Deterministic Ap-

proach, Springer-Verlag, Berlin.

[20] Horst, H. and N. Thoai (1996), Global Minimization of Separable Con-

cave Functions under Linear Constraints with Totally Unimodular Ma-

trices, in: C. A. Floudas and P. M. Parlalos (Eds.), State of Art in Global

Optimization, Kluwer Academic Publishers, pp. 35-45.

BIBLIOGRAPHY 91

[21] Horst, R., P. M. Pardalos and N. V. Thoai (1995), Introduction to Global

Optimization, Kluwer Academic Publishers, Netherlands.

[22] Isaacson, E., and H. B. Keller (1966), Analysis of Numerical Methods,

John Wiley & Sons, New York.

[23] Knuth, D. E. (1973), The Art of Computer Programming, Vol. 1,

Addison-Wesley, Reading, MA..

[24] Konno, H. and T. Kuno (1995), Multiplicative Programming Problems,

in: R. Horst and P. M. Pardalos (Eds.), Handbook of Global Optimiza-

tion, Nonconvex Optimization and its Applications, Kluwer Academic

Publishers, pp. 369-405.

[25] Lamar, B. W. (1995), Nonconvex Optimization over a Polytope Using

Generalized Capacity Improvement, Journal of Global Optimization 7,

pp. 127-142.

[26] McCormick, G. P. (1976), Computability of Global Solutions to Fac-

torable Nonconvex Programs: Part I - Convex Underestimating Prob-

lems, Mathematical Programming 10, pp. 147-175.

[27] Pint�er, J. D. (1996), Global Optimization in Action, Continuous and

Lipschitz Optimization: Algorithms, Implementations and Applications,

Kluwer Academic Publishers.

[28] Press, W. H, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery

(1992), Numerical Recipes in C, Cambridge University Press, Cam-

bridge.

BIBLIOGRAPHY 92

[29] Ryoo, H. S. and N. V. Sahinidis (1996), A Branch-and-Reduce Approach

to Global Optimization, Journal of Global Optimization 8, pp. 107-138.

[30] Schittkowski, K. (1987), More Test Examples for Nonlinear Program-

ming Codes, Springer-Verlag, Berlin.

[31] Shectman, J. P. and N. V. Sahihidis (1996), A Finite Algorithm for

Global Minimization of Separable Concave Programs, in: C.A. Floudas

and P.M. Pardalos (Eds.), State of the Art in Global Optimization, Com-

putational Methods and Applications, Kluwer Academic Publishers, pp.

303-338.

[32] Sherali, H. D. and D. C. Myers (1985), The Design of Branch and Bound

Algorithms for a Class of Nonlinear Integer Programs, Annals of Oper-

ations Research 5, pp. 463-484.

[33] Sherali, H. D. and W. P. Adams (1990), A Hierarchy of Relaxations

between the Continuous and Convex Hull Representations for Zero-One

Programming Problems, SIAM Journal on Discrete Mathematics 3, 411-

430.

[34] Sherali, H. D. and A. Alameddine (1990), An Explicit Characterization

of the Convex Envelope of a Bivariate Bilinear Function over Special

Polytopes, Annals of Operations Research 25, pp. 197-210.

[35] Sherali, H. D. and A. Alameddine (1991), A New Reformulation-

Linearization Technique for Bilinear Programming Problems, Journal

of Global Optimization 2, pp. 379-410.

BIBLIOGRAPHY 93

[36] Sherali, H. D. and C. H. Tuncbilek (1992), A Global Optimization Al-

gorithm for Polynomial Programming Problems Using a Reformulation-

Linearization Technique, Journal of Global Optimization 2, pp. 101-112.

[37] Sherali, H. D. and W. P. Adams (1994), A Hierarchy of Relaxations and

Convex Hull Characterizations for Mixed-Integer Zero-One Program-

ming Problems, Discrete Applied Mathematics 52, pp. 83-106.

[38] Sherali, H. D. and C. H. Tuncbilek (1995), A Reformulation-

Convexi�cation Approach for Solving Nonconvex Quadratic Program-

ming Problems, Journal of Global Optimization 7, pp. 1-31.

[39] Sherali, H. D., W. P. Adams and P. J. Driscoll (1996), Exploiting Special

Structures in Constructing a Hierarchy of Relaxations for 0-1 Mixed

Integer Problems, Operations Research, to appear.

[40] Sherali, H. D. and W. P. Adams (1996), Computational Advances in Us-

ing the Reformulation-Linearization Technique (RLT) to Solve Discrete

and Continuous Nonconvex Programming Problems, OPTIMA 49, pp.

1-7.

[41] Sherali, H. D. and C. H. Tuncbilek (1997), New Reformulation-

Linearization/Convexi�cation Relaxations for Univariate and Multivari-

ate Polynomial Programming Problems, Operations Research Letters 21,

pp. 1-9.

[42] Sherali, H. D. (1997), Convex Envelopes of Multilinear Functions over

a Unit Hypercubes and over Special Discrete Sets, Acta Mathematica

Vietnamica 22, pp. 245-270.

BIBLIOGRAPHY 94

[43] Sherali, H. D., J. C. Smith and W. P. Adams (1997), Reduced First-Level

Representation via the Reformulation-Linearization Technique: Results,

Counter-Examples, and Computations, Working Paper, Department of

ISE, Virginia Tech.

[44] Sherali, H. D. (1998), Global Optimization of Nonconvex Polynomial

Programming Problems Having Rational Exponents, Journal of Global

Optimization 12, pp. 267-283.

[45] Siddall, J. N. (1972), Analytical Decision Making in Engineering Design,

Prentice-Hall, Englewood Cli�s, N.J.

[46] Stephanopoulos, G. and A. W. Westerburg (1975), The Use of Hestenes's

Method of Multipliers to Resolve Dual Gaps in Engineering System Op-

timization, Journal of Optimization Theory and Applications 15, pp.

285-309.

[47] Stoer, J. and R. Burlirsch (1993), Introduction to Numerical Analysis,

Springer-Verlag, Berlin.

[48] Torn, A. and A. Zilinskas (1989), Global Optimization, Spring-Verlag,

Berlin.

[49] Tuncbilek, C. (1994), Polynomial and Inde�nite Quadratic Programming

Problems: Algorithms and Applications, Ph.D Dissertation, Department

of ISE, Virginia Tech.

[50] Tuy, H. (1995), D. C. Optimization: Theory, Methods and Algorithms,

in: R. Horst and P. M. Pardalos (Eds.), Handbook of Global Optimiza-

BIBLIOGRAPHY 95

tion, Nonconvex Optimization and its Applications, Kluwer Academic

Publishers, pp. 149-216.

[51] Ueberhuber, C. (1997), Numerical Computation I, Methods, Software,

and Analysis, Springer-Verlag, Berlin.

[52] Vavasis, S. (1995), Complexity Issues in Global Optimization: A Survey,

in: R. Horst and P.M. Pardalos (Eds.), Handbook of Global Optimiza-

tion, Nonconvex Optimization and its Applications, Kluwer Academic

Publishers, pp. 1-40.

[53] Visweswaran, V., and C. A. Floudas, Unconstrained and Constrained

Global Optimization of Polynomial Functions in One Variable (1992),

Journal of Global Optimization 2, pp. 73-99.

[54] Volkov, E. A. (1990), Numerical Methods, Hemisphere Publishing, New

York.

[55] Voorhis, T. V. and F. Al-Khayyal (1996), Accelerating Convergence

of Branch-and-Bound Algorithms For Quadratically Constrained Opti-

mization Problems, in: C.A. Floudas and P.M. Pardalos (Eds.), State of

Art in Global Optimization, Kluwer Academic Publishers, pp. 267-284.

[56] Wolf, D. D. and Y. Smeers (1995), Optimal Dimensioning of Pipe Net-

works with Application to Gas Transmission Networks, Operations Re-

search 44, pp. 596-607.

Appendix

A Tutorial on the

Branch-and-Bound Code

In this appendix, we present a tutorial on how to use the developed pro-

gram to solve nonconvex factorable programming problems. As mentioned

in Chapter 6, the BranchBound class is the only program module that a user

has to work with. We will study the functions in this class in detail by work-

ing through an example. First, the header �le of the BranchBound class is

listed below.

#ifndef _bbound_

#define _bbound_

#include "bbnode.h"

#include "odlist.h"

#include "PXSWdata.h"

#include "problem.h"

class BranchBound{

96

APPENDIX 97

private:

int n;

int order;

double *bestsol;

double bestsolvalue;

double *l;

double *u;

int psizes[4];

int loption, poption, noption;

void SetIndex(BBNode node);

int Fathom(BBNode node, double e);

int objorder;

int Bounding(BBNode & node, int flag, int index);

public:

BranchBound(int nv, int orderRLT,

double *lb, double *ub, int *size);

void SetBestSolution(double *x, double v);

void SetOptions(int op1,int op2, int op3);

void SetObjOrder(int order);

void BranchingVars(int i);

void SolveInitialNode(int flag);

void RangeReduction(void);

void Enumerate(int iter, int rdtion, double eps);

};

#endif

APPENDIX 98

We stress the fact that the problem is assumed to have been pre-processed

as described in Section 6.1.1.

For each problem, a user needs to provide three modules. The �rst module

is a header �le named PXSWdata.h. It is imperative that the exact same

name is used. This header �le provides the input data of the problem. The

following is a template for such a �le.

#include "problem.h"

#include "cplexcpp.h"

#include <assert.h>

#include <iostream.h>

double PXSWocoefs[];

long PXSWosubs[];

int PXSWoterm;

// the above two constitutes the objective function

long PXSWlsubs[];

double PXSWlcoefs[];

int PXSWlterms[]; // linear constraints

**

long PXSWpsubs[];

double PXSWpcoefs[];

int PXSWpterms[]; // polynomial constraints

APPENDIX 99

**

long PXSWesubs[];

double PXSWecoefs[];

int PXSWeterms[]; // equalities

**

long PXSWnsubs[];

double PXSWncoefs[];

int PXSWnterms[];

// bounding polynomials

It is essential that all the variables are present in this �le. Since they are

global variables, the user should avoid using the same names in other parts

of the program.

Each problem consists of an objective function and a set of constraints.

The constraints are classi�ed into four categories: linear, polynomial, equal-

ity, and general non-polynomial constraints. Each type of constraints is de-

scribed by three variables. For example, PXSWlsubs[] stores the subscripts

of all the terms of linear constraints. PXSWlcoefs[] stores the correspond-

ing coe�cients of these terms. PXSWlterms[] gives the number of terms in

each constraint. The polynomial, equality, and non-polynomial constraints

are speci�ed in a similar fashion. For the objective function, since there is

only one objective function, PXSWoterms is an integer, not an array. All

the arrays are declared and initialized in PXSWdata.h with the exception

of PXSWncoefs[]. This array is allocated for the coe�cients of the bound-

ing polynomials for the non-polynomial functions. Since these coe�cients

APPENDIX 100

change from node to node, they are determined during the run-time via a

user supplied routine. However, the array still needs to be declared.

The second module that a user needs to provide is a routine to update

the coe�cients of the bounding polynomials. The following is a prototype of

this routine.

/* routine to update the coefficients */

void UpdateBoundingPoly(double *l, double *u, double *coefs);

During the program execution, the array PXSWncoefs[] is passed into this

routine to be updated at each node. The �rst two parameters in the above

routine, i.e., l and u, are the lower and upper bounds for the original variables.

Since they are passed as pointers, the user can change the content of l and u

in the routine. This is especially useful in a situation where a certain variable

xk is de�ned in terms of other variables xi, and xj. When the bounds on xi

and xj are revised for a new node, the user can update the bounds for xk in

the routine to potentially give a tighter RLT relaxation. Notice that coefs

is just a formal parameter for the actual PXSWncoefs[] in PXSWdata.h.

In implementing this routine, it is the user's responsibility to update this

parameter in a way that is consistent with the way in which PXSWncoefs[]

would be updated.

The third module that the user needs to supply is a function named

UPPERBOUND. This routine is used to search for an incumbent solution.

A prototype is given below.

APPENDIX 101

double UPPERBOUND(double *x, int flag);

Here, x is the initial solution which will be overwritten by the �nal solution.

The function value is returned. If the variable
ag is set to 1, then, the initial

solution is used as a warm start.

The BranchBound class provides a set of public member functions that

are very straightforward to use. We discuss each of them in the sequel.

BranchBound(int nv, int orderRLT,

double *lb, double *ub, int *size);

This is the constructor of the BranchBound class. It takes �ve parameters:

the number of variables, the order of the RLT , the corresponding lower and

upper bounds on the original variables, and the size of the problem. The size

of the problem is given by an array of four integers, which respectively give

the number of each type of constraints. These numbers should be consistent

with the length of the arrays that are used to describe these constraints in

the header �le PXSWdata.h.

void SetBestSolution(double *x, double v);

This member function allows the user to optionally specify an advanced so-

lution. If the user decides to perform a range-reduction, it is usually a good

idea to set a good solution by calling this member function.

APPENDIX 102

void SetOptions(int op1,int op2, int op3);

By using this member function, the user can control the RLT constraint

generation process. Each of these three arguments takes the value 0; 1, and

2. The meanings of these options are discussed in Section 6.1.3.

void SetObjOrder(int order){objorder=order;};

The user must input the order of the objective function by calling this mem-

ber function.

void SolveInitialNode(int flag);

Upon being called, this member function will solve the initial node sub-

problem. The
ag variable will signal whether a range-reduction should be

performed �rst.

void RangeReduction(int i);

This member function performs a range-reduction on the variable xi.

APPENDIX 103

void BranchingVars(int i);

Suppose that x1; x2; : : : xk are the variables present in the original prob-

lem. After the initial pre-processing, we add xk+1; : : : xn to replace the non-

polynomial terms. All of the variables x1; x2; : : : xn are considered \original"

variables in the transformed problem. However, we may decide not to use

xk+1; : : : xn as branching variables since they are de�ned in terms of the func-

tions of the �rst k variables. Furthermore, among the �rst k variables, the

user may choose to branch only on a subset of these variables. This member

function sets the �rst i variables as branching variables.

void Enumerate(int iter, int rd, double eps)

This is the principal function in this class that executes the branch-and-

bound process. The user may control the number of nodes the process gen-

erates before it terminates, and the tolerance by which a node is fathomed.

Also, setting rd=1 indicates the execution of range-reduction at every �ve

nodes.

Finally, we present an example. Consider the following problem.

Minimize ln(1 + x21)� x2

subject to (1 + x21)
2 + x22 � 4 = 0

(0; 0) � (x1; x2) � (10; 10):

APPENDIX 104

First, we substitute ln(1 + x21) with a new variable x3. At any node, for

x1 2 [a; b], x3 is bounded by [ln(1 + a2); ln(1 + b2)] since ln(z) is a monotone

increasing function. Thus, the problem becomes to

Minimize x3 � x2

subject to (1 + x21)
2 + x22 � 4 = 0

x3 � ln(1 + x21) � 0

�x3 + ln(1 + x21) � 0

(0; 0) � (x1; x2) � (10; 10); 0 � x3 � ln(101):

The second step is to set up the PXSWdata.h �le.

#include "problem.h"

#include "cplexcpp.h"

#include <assert.h>

#include <iostream.h>

double PXSWocoefs[2]={1,1};

long PXSWosubs[2]={3,2};

int PXSWoterm=2;

//***************************

long PXSWlsubs[];

double PXSWlcoefs[];

int PXSWlterms[];

//***************************

APPENDIX 105

long PXSWpsubs[];

double PXSWpcoefs[];

int PXSWpterms[];

long PXSWesubs[];

//**************************

long PXSWesubs[4]={0,1111,11,22};

int PXSWeterms[2]={4,0};

double PXSWecoefs[4]={-3,1,2,1};

//**************************

long PXSWnsubs[12]={0,1,11,111,1111,3,0,1,11,111,1111,3};

double PXSWncoefs[12];

int PXSWnterms[2]={6,6};

In this case, we construct fourth-order bounding polynomials to approx-

imate the term ln(x21 + 1). These bounding polynomials take the form

a1x
4
1 + a2x

3
1 + a3x

2
1 + a4x1 + a5 � x3 � 0

�b1x
4
1 � b2x

3
1 + b3x

2
1 � b4x1 � b5 + x3 � 0:

There are a total of 12 terms. The subscripts of these terms are stored in the

array PXSWnsubs[12]. The corresponding coe�cients are to be determined

by the routine UpdateBoundingPoly. There is no �xed order to range the

terms in a constraint. However, the subscripts in PXSWnsubs[] should be in

harmony with the coe�cients in PXSWncoefs[].

APPENDIX 106

The third step is to provide routines to update the coe�cients of the

bounding polynomials and to �nd feasible solutions. For this example, the

bounding polynomials are built using the Chebyshev Interpolation method

described in Chapter 4. The search for a feasible solution is accomplished by

calling MINOS.

double fn(double a, double b, double x, int flag)

/* a function needed for using the Chebyshev interpolation */

{

if (flag==0)

return log(1+x*x);

if (flag==1)

return log(1+a*a);

if (flag==2)

return log(1+b*b);

if (flag==3)

return

void UpdateBoundingPoly(double *l, double *u, double *coefs)

{

double a=l[0];

double b=u[0]; //a <=x1<=b

ChebshevApp pxx(fn,4); // 4th order

pxx.AppX(a,b,-1,coefs);

pxx.AppX(a,b,1,coefs+6); // fill in coefs, 12 elements

l[2]=log(1+a*a); // update bounds for x3

APPENDIX 107

u[2]=log(1+b*b);

}

/* External subroutines to be called */

/* Results files subroutine */

extern "C" void mispec_ (int*, int*, int*, int*, int*);

/* Minoss */

extern "C" void minoss_(char*,int*,int*,int*,int*,int*,int*,

int*,int*,int*,double*,

char*,double*,int*,int*,double*,

double*,int*,int*,int*,

double*,double*,double*,int*,int*,

int*,int*,double*,double*,

double*,int*);

double UPPERBOUND(double *x, int flag)

{

/* int nwcore_ptr=3000;

char* start1="Cold";

char* start2="Warm";

char names[40];

int m=1;

APPENDIX 108

int n=2;

int nb=m+n;

int ne=2;

int one=1;

int zero=0;

double dzero=0.0;

int nncon=1;

int nnobj=2;

int nnjac=2;

int iobj=0;

double objadd=0;

double xn[3];

int inform, ns, ninf, mincor;

double rc[6];

double obj, sinf;

double z[nwcore];

int ispecs, iprint, isumm ;

int i;

int ha[2];

int ka[3];

int hs[6];

double pi[1];

double bl[3];

double bu[3];

double a[2];

APPENDIX 109

inform=0;

for(i=0;i<n;i++)

xn[i]=x[i];

pi[0]=0;

ispecs=4;

iprint=0;

isumm=0;

ha[0]=ha[1]=1;

ka[0]=1;

ka[1]=2;

ka[2]=3;

bl[0]=0;

bl[1]=0;

bu[0]=5;

bu[1]=5;

bl[2]=0;

bu[2]=0;

for(i=0;i<n;i++)

hs[i]=0;

for(i=n;i<nb;i++)

hs[i]=0;

mispec_(&ispecs, &iprint, &isumm, &nwcore_ptr,&inform);

if(flag==0)

minoss_ (start1,&m,&n,&nb,&ne,

&one,&nncon,&nnobj,&nnjac,&zero,&dzero,

APPENDIX 110

names,a,ha,ka,bl,bu,&zero,&zero,hs,xn,pi,

rc,&inform,&mincor,&ns,&ninf,&sinf,&obj,

z,&nwcore_ptr);

else

minoss_ (start2,&m,&n,&nb,&ne,

&one,&nncon,&nnobj,&nnjac,&zero,&dzero,

names,a,ha,ka,bl,bu,&zero,&zero,hs,xn,pi,

rc,&inform,&mincor,&ns,&ninf,&sinf,&obj,

z,&nwcore_ptr);

return obj;

}

Finally, a main function is set up to use the member functions from

BranchBound class to solve this problem.

int main()

{

int s[4]={0,0,0,1}; // one equality constraint

double xl[3]={0,0,0};

double xu[3]={10,10,10};

double x[9]={0,0,0};

double v=0;

BranchBound bb(3,4,xl,xu,s);

bb.SetBestSolution(x,v);

bb.SetObjOrder(1);

APPENDIX 111

bb.SetOptions(0,0,0);

bb.Printout();

bb.Enumerate(100,0,0.000001);

}

We point out that the program is
exible enough to allow users to add

additional cuts at each node. Notice that all the original constraints are

given in the �le PXSWdata.h. Some of the arrays in the PXSWdata.h are

updated at each node to derive new constraints. To facilitate the inclusion

of other polynomial constraints, the user can properly change the length of

the arrays PXSWpcoefs[], PXSWpsubs[] and PXSWpterms[]. The values of

these arrays can be dynamically updated in another user supplied routine.

Vita

Hongjie Wang was born in Shanghai, China on January 17, 1971. He

graduated from Liberty University in Lynchburg, Virginia where he received

a Bachelor of Science degree in Mathematics in 1995. He attended Virginia

Polytechnic Institute and State University where he received a Master of

Science degree in Industrial and Systems Engineering in May 1998.

112

