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ABSTRACT

Finding optimal three-dimensional molecular configurations based on a limited amount of
experimental and/or theoretical data requires efficient nonlinear optimization algorithms.
Optimization methods must be able to find atomic configurations that are close to the abso-
lute, or global, minimum error and also satisfy known physical constraints such as minimum
separation distances between atoms (based on van der Waals interactions). The most diffi-
cult obstacles in these types of problems are that 1) using a limited amount of input data
leads to many possible local optima and 2) introducing physical constraints, such as mini-
mum separation distances, helps to limit the search space but often makes convergence to a
global minimum more difficult. We introduce a constrained global optimization algorithm
that is robust and efficient in yielding near-optimal three-dimensional configurations that
are guaranteed to satisfy known separation constraints. The algorithm uses an atom-based
approach that reduces the dimensionality and allows for tractable enforcement of constraints
while maintaining good global convergence properties. We evaluate the new optimization
algorithm using synthetic data from the yeast phenylalanine tRNA and several proteins, all
with known crystal structure taken from the Protein Data Bank. We compare the results to
commonly applied optimization methods, such as distance geometry, simulated annealing,
continuation, and smoothing. We show that compared to other optimization approaches,
our algorithm is able combine sparse input data with physical constraints in an efficient
manner to yield structures with lower root mean squared deviation.

Key words: constrained global optimization, protein, RNA, 3D molecular structure, mathematical
modeling.

1. INTRODUCTION

EVELOPING METHODS THAT WILL YIELD accurate estimates of the three-dimensional structure of bio-
logical molecules—such as proteins, nucleic acids, or combinations of both—based on experimental
data, sequence data, and theoretical considerations (e.g., secondary structure prediction) is one of the
major goals of computational biology and an important part of structural genomics. Experimental meth-
ods such as NMR and X-ray crystallography are expensive and time consuming and sometimes provide
only partial information. Thus, computational methods for molecular structure estimation can serve as an
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important complement to these costly experimental methods. Ideally, computational methods will take a
sparse amount of data from various sources and produce an estimate of the optimal three-dimensional
configuration of atoms in the molecule.

The goal of the work presented here is to develop a set of optimization methods and algorithms that will
provide improved performance in estimating biomolecular structure from sparse input data. The specific
objectives of this work are 1) to develop an efficient constrained global optimization algorithm that will
take input data regarding the three-dimensional configuration of atoms in a molecule, add known physical
information to serve as constraints in the optimization, and efficiently yield accurate estimates of the
optimal values of the x, y, and z coordinates of each atom in the molecule; 2) to evaluate and compare this
algorithm to the local and global optimization methods currently used in molecular structure estimation;
and 3) to apply and test this algorithm to a wide variety of molecular structures.

The method we introduce is novel in two ways. First, it is designed never to report structures that
violate minimum separation distances derived from van der Waals interactions. Second, it is based on a
nonstochastic global optimization algorithm that is still able to avoid local minima, in a manner similar to
stochastic Monte Carlo methods.

Given the limited amount of available molecular structure data, it is essential to develop computational
methods that can complement this data with inviolable physical constraints to efficiently produce optimal
three-dimensional atomic configurations. At the core of such computational methods is the need for an
effective nonlinear optimization algorithm. Attempting to find optimal x, y, and z coordinates for each
atom in a molecule requires optimizing for 3n degrees of freedom, where n is the number of atoms in the
molecule. When modeling large molecules or ensembles of molecules, the number of atoms and thus the
degrees of freedom can become very large and lead to significant optimization challenges. The variables
in these optimization problems are generally nonlinear since most of the input data are nonlinear functions
of the x, y, and z atomic coordinates.

In molecular structure estimation, the goal of the optimization procedure is to find the minimum value
of a given objective function, which is defined in terms of differences between the input data and the
corresponding information calculated from the estimated structure. The iterative minimization process
involves calculating the first derivatives, and possibly the actual or approximated second derivatives, of the
objective function at the current state and using that information to adjust the coordinates of the atoms
to find a lower value of the objective function. The most commonly applied minimization techniques are
steepest descent (SD), conjugate gradient (CG), and Newton’s methods.

SD methods are the simplest to implement but convergence is often slow (Press et al., 1992). SD involves
repeatedly following the direction given by the negative gradient of the objective function to a new local
minimum. CG methods are motivated by the desire to accelerate the slow convergence associated with
SD. CG makes use of the previous history of minimization steps as well as the current gradient to ensure
that move directions are conjugate to all previous directions traversed (Hestenes, 1980). This approach
significantly accelerates convergence compared to the SD method (Luenberger, 1989).

Newton’s method operates on local quadratic approximations to the objective function. The essential idea
is that the quadratic approximation, unlike the objective function itself, is trivial to minimize. The quadratic
approximation is updated and minimized during each iteration of the optimization routine. The routine
seeks to find a local minimum of the objective function by repeating this process. The degree to which the
objective function actually assumes a quadratic shape is indicative of how successful the results will be.

Newton’s method requires the use of not only first derivative information but also a second derivative,
or Hessian, matrix. Analytic second derivatives may not be available or may be too costly to evaluate. A
difference approximation to the Hessian could be used but the cost of the necessary function evaluations
may also be very high. The prohibitive costs, combined with the fact that the performance of Newton’s
method can degrade if positive definiteness of the Hessian matrix is not maintained (which often occurs),
provide the motivation for the quasi-Newton (QN) approach (Luenberger, 1989; Dennis and Schnabel,
1996).

QN methods use approximations to the Hessian matrix that 1) are less costly to construct because they are
defined in terms of first-derivative information and 2) perform better because they preserve symmetry and,
in most cases, positive definiteness. There are several variations of the QN method, including the Gauss-
Newton (GN), symmetric rank one (SR1), and Broyden—Fletcher—Goldfarb—Shanno (BFGS) (Broyden,
1970; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970) algorithms. GN is used to solve nonlinear least
squares problems. GN generally produces symmetric, positive definite matrices (Dennis and Schnabel,
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1996). The BFGS and SR1 are forms of secant approximations for H and can be used for any general
function. The BFGS approach produces symmetric and positive definite H matrices, whereas the SR1
produces H matrices that are symmetric but not necessarily positive definite. Implementational details of
the GN, BFGS, and SR1 methods can be found in Dennis and Schnabel (1996).

Many molecular structure estimation codes use SD or CG in the energy minimization routines to avoid
the computational requirements associated with Newton’s or QN methods, which include the storage and
evaluation of the Hessian or approximate Hessian matrix and the solution of a system of linear equations
at each update step. YAMMP (Tan and Harvey, 1993) is an example of a code that uses only SD and
CG minimization methods. The Modeller code (Sali and Blundell, 1993) uses a variable target function
method (Braun and Go, 1985) employing a conjugate gradient-based minimization approach. Newton-type
or QN methods have been implemented in molecular modeling algorithms (Head and Zerner, 1985, 1989).
The CHARMM molecular modeling package offers SD, CG, and Newton’s methods (Brooks et al., 1983).
The ROAR package (Cheng et al., 1999)—used in the AMBER code (Pearlman et al., 1995)—offers
SD, CG, and a limited memory BFGS approach. The Proteinmorphosis molecular modeling system uses
QN methods to minimize potential energy functions in simulating conformational changes of proteins and
protein complexes (Meiyappan et al., 1999).

SD, CG, and QN methods perform best when a quadratic approximation of the objective function is a
relatively good one. Unfortunately, for many of the nonlinear problems encountered in molecular structure
estimation, the quadratic approximation is not good enough and the update produced by SD, CG, or QN
is unsatisfactory; i.e., the value of the objective function at the updated position is greater than that at the
initial position. In this case, one approach for proceeding towards a more favorable position is to perform
a line search. The idea of a line-search algorithm is to try the full SD, CG, or QN step first and if that
fails, backtrack in a systematic way along the direction defined by that step until an acceptable step length
is found.

Common among all local optimization methods is the propensity to become trapped in local minima
of the objective function. A local minimum is a state where the gradient is very small, thus indicating to
the local minimization routine that an acceptable state has been reached and terminating the minimiza-
tion procedure. When building a three-dimensional model of a molecule from a sparse amount of data,
many low-error conformations exist, each serving as a potential local minimum trap. In order to keep
the optimization from becoming stalled in a local minimum state, the local minimization algorithm must
be augmented with a technique to force the state out of the resulting local minima and towards a global
minimum. Methods for finding the global minimum state are referred to as global optimization methods.
There are many different global search methods that have been examined, including simulated annealing
(Kirkpatrick et al., 1983; Braun and Go, 1985; Ingber, 1989; Wilson and Cui, 1990; Sali and Blundell,
1993; Pearlman et al., 1995; Giintert et al., 1997), continuation and smoothing (Moré and Wu, 1996, 1997),
Monte Carlo (Li and Scheraga, 1987; Chang et al., 1989; Ripoll and Thomas, 1990; Shakhnovich et al.,
1991; Covell, 1992; O’Toole and Panagiotopoulos, 1992; Kolinski and Skolnick, 1994), convex global
underestimation (Dill ef al., 1997), diffusion equation method (Kostrowicki and Piela, 1991; Kostrowicki
and Scheraga, 1992), and genetic algorithms (Sun, 1993; Unger and Moult, 1993; Herrmann and Suhai,
1995).

Global optimization methods attempt to perturb the state of the system when trapped in local minima
and thereby continue to search for the globally minimum state. These perturbations are usually random
in nature and are often performed at prespecified intervals during the optimization process. Although
this produces the desired result of moving out of a local minimum and is very effective in searching
a wide range of the possible configuration space, it often results in unfavorable movements. That is,
perturbations may occur at times when the optimization is moving towards the global minimum, and the
random perturbation directions may reconfigure the state variables into difficult starting positions for the
subsequent minimization procedure. A domain-specific, nonrandom perturbation method may alleviate these
difficulties, yet it would have to be developed in such a way that is searches as much of the configuration
space as a random perturbation method.

The ability to move towards a global minimum in a computationally efficient manner during molecular
structure computations is further complicated by the addition of physical constraints on atom locations,
such as chirality or minimum separation distances between pairs of atoms or groups of atoms. MSD
constraints between atoms can be derived from van der Waals theory (Halgren, 1992), Lennard-Jones
potentials (Lennard-Jones, 1924), Buckingham potentials (Buckingham er al., 1988), and Morse potentials
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(Dinur and Hagler, 1991). MSD constraints in molecular structure estimation pose a significant global
optimization challenge.

Codes currently used for molecular structure estimation (Sali and Blundell, 1993; Tan and Harvey, 1993;
Pearlman et al., 1995; Moré and Wu, 1997; Macke and Case, 1998) often have difficulty in maintaining
acceptable convergence rates while trying to satisfy MSD constraints. The standard procedure is to add
some sort of penalty function to the objective function in order to keep atoms from moving too close to each
other. This approach is usually ineffective as it establishes more barriers to the global minimum and makes
it more difficult to move out of local minima. Turning MSD constraints on and off during the course of
the optimization process is another approach but may result in alternating between low-error, MSD illegal
structures and high-error, MSD legal structures, without being able to find the desired low-error, MSD
legal structures.

Optimization methods that simultaneously update the positions of all the atoms in a molecule, or some
group of atoms, will have difficulty in attempting to simultaneously enforce MSD constraints. Strict MSD
constraint enforcement is computationally challenging and becomes intractable when moving a large num-
ber of atoms simultaneously during the course of the minimization process. Many of the proteins that
we are interested in modeling are on the order of hundreds or thousands of atoms and will require novel
approaches for MSD constraint satisfaction.

The demand for effective MSD constraint satisfaction methods is also motivated by the fact that MSD
information is freely available from van der Waals theory and the Lennard-Jones, Buckingham, or Morse
potentials and can be applied to atoms in any molecule. MSD constraints serve as a valuable complement
to sparse molecular structure input data. We have shown previously that the distribution of interatomic
distances derived from MSD constraints is a valuable structural constraint (Chen et al., 1996). If a relatively
small amount of data is used as input to the optimization, satisfying all of the data may not be sufficient
to find good quality structures. In these cases, more information is needed and can be found simply by
adding physical constraints such as MSD. This added information will reduce the number of allowable
conformations and will result in improved resolution of those structures that satisfy the input data.

2. METHODS

The following sections outline our nonlinear optimization approach for estimating biomolecular struc-
ture. These methods take sparse input data and produce accurate estimates of three-dimensional molecular
structure that are guaranteed to satisfy MSD constraints, while also maintaining good convergence prop-
erties.

2.1. Formulation

The first step in the molecular structure estimation process is to define an objective function to serve
as a basis for developing the search strategy. We define the objective function to be the sum of squares
of the weighted residuals. A residual is defined as the difference between a piece of input data and the
corresponding calculated value from the current model. Weights are assigned to each piece of input data
according to its given variance. The variance corresponds to the potential inherent error associated with
a piece of input data and serves as a measure of the reliability of that data. In this work, we will be
considering only distance input data, where each distance represents the pairwise distance between any
two atoms in the molecule. In this case, the objective function, f, is given by

1 m
F=35) R (1)
i=1

where m is the total number of input distances and R; is the weighted residual of the i-th input distance.
The weighted residuals are defined as
di —d.

R = 2
o
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where d; is the i-th input distance, d, is the calculated distance corresponding to the i-th input distance,
and o; is the standard deviation of the i-th input distance.

2.2. Local optimization

The goal of the local optimization algorithm is to update the atomic coordinates to a position that will
minimize Equation (1). The update of coordinates from an old position to a new position is represented
mathematically as

X1 X1 Axl
V1 V1 Ay
2 2 Azj
= | +e| : (3)
Xn Xn Axn
Yn Yn Ayy
L 2n Jpew L2n dota _AZ”_

where x;, y;, and z; are the x, y, and z coordinates, respectively, of atom i, and « is the step length to
move in the direction of the A vector. To simplify the notation, Equation (3) can be expressed as

znew = fold + a AX 4

where X now refers to a state vector consisting of all the atomic coordinates.

There are several different methods for finding AX and thus updating the independent variables X in
Equation (4). We implement several update techniques, including the Polak—Ribiere variant of CG (Polak,
1971) and three QN methods—the GN, SR1, and BFGS methods (Dennis and Schnabel, 1996).

The QN update is given by

AX = —[HGot)) ™'V f (Fota) ©)

where H is an approximation to the Hessian matrix of f and V f is the gradient of f with respect to X.
H is a 3n x 3n matrix and V f is a 3n x 1 vector, where n is the number of atoms in the molecule.

Instead of inverting H in Equation (5), the more common and computationally efficient approach is to
solve the following equivalent system of linear equations for AX:

[H Goa)1AZ = =V f (Zota)- (6)

We enhance the local minimization procedure with a quadratic/cubic backtracking line search (Dennis
and Schnabel, 1996). The line search will check to see if using « = 1 (full CG or QN step) in Equation (4)
yields an acceptable function value; i.e., f(Xpew) < f(¥or4) (minus some small correction factor). If the
resulting function value is not acceptable, then a new value for « is found by approximating f along the
search direction, AX, with a quadratic or cubic function, and calculating the value of « that minimizes the
approximating function. This procedure is repeated until either 1) an « is found that yields an acceptable
function value or 2) the number of searches exceeds some prespecified limit.

2.3. Atom-based optimization

Instead of simultaneously updating the positions of all the atoms in the molecule, or some group of
atoms, we only update the coordinated locations of one atom at a time. This atom-based approach reduces
the dimensionality of the system from 3n to 3 and makes MSD constraint enforcement more tractable.
The cost is that instead of updating all atomic coordinates at once, the algorithm has to cycle through all
the single-atom updates. But the advantage is that the algorithm is guaranteed to produce configurations
that satisfy all physical constraints on atom locations after the update of all the atoms within a cycle.

Our algorithm is based on a multilevel optimization process. At the highest level, we attempt to find
optimal configurations of subsets of all the atoms in the molecule. We will refer to this level as a group.
We build groups based on molecular sequence information. For example, in estimating optimal protein
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C, backbone structures, we start by optimizing the C, atoms from the first two amino acid residues.
Subsequent optimization groupings (from 3 atoms up to n atoms) are formed by simply adding the C,
atom from the next amino acid residue in the sequence.

Within each of the optimization groups, we perform a series of cycles. The total number of cycles
is determined by a user-specified limit or termination criteria. Each cycle consists of a series of atom
moves, one for each atom in the current group. The order of atoms to move is based on each atom’s
attributed error, and is determined at the beginning of a cycle. Atoms are moved in decreasing order of
attributed error. Moving an atom consists of a series of iferations. In each iteration, the movement of the
atom is determined by the local optimization procedures described above, i.e., CG, GN, SR1, or BFGS,
to determine step direction and line search to determine step length. The iterations continue until some
stopping criteria is met.

For each atom a in the molecule, the iterations are based on a local objective function, f,, given by

fa= %ZR? (7)

i=1

where m, is the total number of input distances associated with atom a. The three-dimensional update
equation is then given by

Xpew = X%1q + a Ax? ()

where x@ now refers to the state vector consisting of the x, y, and z coordinates of atom a. Equation (8)
is simply the reduced dimension form of Equation (4). The linear system of equations in the QN update,
Equation (6), is also reduced from dimension 3n to 3 and is given by

[Hy (X% 01a)1AXS = =V f4(x%p14) 9)

where H, is an approximation to the Hessian matrix of f, and V f, is the gradient of f, with respect to
x%;, H, is a 3 x 3 matrix, and V f,; is a 3 x 1 vector.

2.4. MSD constraint enforcement

One of the major goals of this work is to develop an optimization algorithm that can satisfy input
data and physical constraints, particularly MSD constraints, in an efficient manner. The method we have
developed for enforcing MSD constraints on atom locations is based on the line search method described
in Section 2.2

Because the optimization algorithm operates on one atom at a time, we can restrict the movement of
any atom to locations that do not violate MSD constraints. This is done by treating the atom being moved
as a point in space, placing spheres around all the other atoms in the molecule, and not allowing the atom
being moved to enter into any of the MSD spheres surrounding the other atoms. Restricting atoms to
MSD-legal space is achieved computationally in the line search procedure. After a search direction, Ax,
is calculated, we can determine which segments along that line intersect the spheres surrounding all other
atoms. If the step length, «, resulting from the line search moves an atom into a violating segment, the
position of the atom is moved to that segment’s endpoint with the lowest function value. The violating
line segments could be the result of the MSD sphere from a single atom, or the overlap of MSD spheres
from several atoms.

By constraining the line search in this way, all atoms can be guaranteed to satisfy MSD constraints after
each iteration. But imposing constraints after each iteration is too restrictive and results in atoms becoming
stuck and not being able to move through other atoms to find more optimal configurations. Therefore,
we allow atoms to move freely, unconstrained by MSD forces, up until the final iteration. After the step
direction is determined on the final iteration, we impose the constraints on the line search as described
above. This allows for atoms to sample a larger portion of the configuration space during the search, yet
their final placement is guaranteed to be in locations that do not violate MSD constraints.

Constraining atoms to move into MSD-legal spaces relative to all other atoms can also be to restrictive.
Strict MSD constraint enforcement need only be imposed on those atoms that have already been moved
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during the current cycle, since there will be no opportunity subsequent to the atom move to enforce the
constraint between those atoms and the atom being moved. But MSD constraint enforcement need not be
imposed on atoms that have not been moved yet in the current cycle because those constraints can be
satisfied during the movement of those atoms. As long as we terminate the optimization at the end of a
cycle and do not allow termination within a cycle, this MSD constraint checking approach is guaranteed
to produce structures that satisfy al MSD constraints.

We define a “real” MSD radius, r,, to be that which is derived from the true MSD constraints; r, is
used as the radii for those atoms where strict MSD constraint enforcement is necessary. The value of r, is
set by the user based on physical knowledge of how close an atom can be to other atoms in the molecule.

For the case where strict MSD constraint enforcement is not necessary, we are free to define the sphere
radii arbitrarily. This “artificial” MSD radius, r, is defined to vary in magnitude between 0 and the “real”
MSD sphere radius, r,. The value of r, is set by the following empirically discovered functions:

if an input distance exists between the atom being moved and the atom being checked

“ry (10)

R;
ry = |—
v d;

else

N i

where R; is the weighted residual of the input distance between the atom being moved and the atom being
checked, d; is the input distance between the atom being moved and the atom being checked, f, is the
value of the local objective function of the atom being moved, and f, is the value of the local objective
function of the atom begin checked. Additionally, a maximum value of r, is imposed; i.e., if r, calculated
from Equations (10) or (11) above is greater than r,, then r, is set to be equal to r,.

2.5. Local perturbation

In addition to MSD spheres, we add a local perturbation (LP) sphere to further improve global conver-
gence properties. This is done by defining a sphere around the atom being moved, centered at its position
at the start of the iterations. The LP sphere is added to the MSD spheres as constraints on the resulting
position of the atom being moved. The radius, r,,, of the LP sphere around an atom begin moved is defined
to be proportional to the atom’s attributed error. If the atom has a relatively high error, a relatively large
LP sphere will be used; and as the atom’s error decreases, the size of the LP sphere will decrease.

Therefore, if the atom has a relatively high error and has not moved beyond r,, from its initial position,
then it is perturbed by not allowing it to remain within the sphere of radius r,, centered at its initial
position. The criteria imposed for determining whether to perturb an atom is precisely the same criteria for
indication of an unacceptable local minimum; i.e., the atom has relatively high error and has not moved
very far from its initial position. This procedure will not perform unnecessary perturbations on atoms that
are making large movements, regardless of their error; and it will not perform unnecessary perturbations
of atoms that have relatively low error, regardless of how small their movements may be.

The decaying nature of the LP radii is analogous to the decaying temperature in a simulated annealing
schedule. Yet, in our method the perturbations are nonrandom and domain specific. Also, because these
perturbations occur continuously and not at prespecified intervals as in simulated annealing, they are
less likely to jeopardize a potentially favorable atomic configuration. The exact function that we found
empirically to be most effective for defining local perturbations as a function of attributed error is

m = +/0.5 % fin (12)

where f;, is the value at the end of the iterations of the local objective function of the atom being moved,
as defined by Equation (7). In this case, the local objective function serves as the attributed error for the
atom. A maximum value is set for r,,, equal to the maximum weighted residual from the previous cycle.
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2.6. Constrained optimization algorithm

We have implemented the ideas described in Section 2 in a computer program called GNOMAD. The
following pseudocode outlines the constrained, global optimization GNOMAD algorithm.

for natoms = 2 — total # of atoms in molecule { GROUPS}
determine starting positions for atoms 1 — natoms
for cycle = 1 — # of cycles {CYCLES}
determine order of atoms to move, based on attributed error
(move atoms in decreasing order or error)
for « = 1 — natoms (in order determined above) { ATOM MOVES}
perform nonlinear iterations to move atom a {ITERATIONS}
determine move direction using BFGS quasi-Newton minimization
determine move length using quadratic/cubic backtracking line search
perform MSD constraint checks
perform local perturbation checks
merge violating segments along search line into nonoverlapping segments
if necessary, perturb final position of atom a out of violating segment

The GNOMAD algorithm is very general and can be applied to any constrained optimization problem
to search for a global minimum although in this work we only test its effectiveness in solving molecular
structure estimation problems.

2.7. Initial positions

In any large-scale, nonlinear optimization, starting values are a very important factor in successful
convergence. In GNOMAD, the initial position of each atom within a group is based on information
derived from the previous group’s optimization. Specifically, the initial positions of atoms 1 — (natoms — 1)
within the group 1 — natoms are simply the final positions resulting from the preceding optimization of
the group 1 — (natoms — 1). The selection of the position of atom natoms within the group 1 — natoms
is somewhat more arbitrary. In GNOMAD, the initial position of atom natoms is determined in one of two
ways, depending on what stage the optimization procedure is in.

During the first pass through the entire optimization algorithm described above, atom natoms is initially
placed at a constant and preset distance and direction from the initial position of atom (rnatoms — 1) within
the same optimization group. At the completion of the above algorithm, the final locations of all atoms are
stored and the optimization is restarted. During the first restart (second pass of the optimization algorithm),
the natoms atoms are placed initially at their stored locations from the first pass, regardless of the initial
positions of all other atoms within the group. Multiple restarts can be made, but our experience shows that
solutions do not improve significantly beyond the first restart.

3. TEST COMPUTATIONS

3.1. Comparison procedure

To evaluate our algorithm and compare it to other molecular modeling codes, we performed a series of
optimization experiments. The data used in these experiments were derived from molecules with known
three-dimensional structure. These “crystal” structures were taken from the Protein Data Bank (PDB)
(Berman et al., 2000). The goal of the experiments was to recreate the known crystal structure using
various subsets of all the distances between pairs of atoms in the molecule. We first made performance
comparisons among the various local optimization methods implemented in our algorithm. Based on
these comparisons, a preferred local optimization method was chosen. We then compared our constrained
global optimization algorithm, using the best local optimization technique, against several other molecular
modeling codes.

An optimization experiment consisted of first generating data sets containing 20%, 30%, ...,70% of
all possible “short-range distances” (SRD) between atoms in the molecule. The definition of SRD is
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somewhat arbitrary but is based on the range of distances that might be expected as realistic input, which
can be derived from knowledge of biochemical theory or experimental measuring techniques such as NMR.
For each of the input data sets, we estimated the optimal three-dimensional molecular structure using the
various optimization methods. The resulting structures were then analyzed in terms of 1) root mean squared
deviation (RMSD) from the crystal structure and 2) satisfaction of input data. Satisfaction of input data is
measured in terms of maximum distance residual, where residual is defined as in Equation (2).

The first set of experiments was made using only a “backbone” structure of the molecule. This backbone
structure consisted only of C, atoms for proteins and phosphate atoms for RNA. SRD data sets for the
backbone structure experiments were generated so that all “i to i + 17 distances along the backbone chain
were included. As a further test of robustness, we performed optimizations on two molecules using all the
nonhydrogen atoms in the molecule. In these full-atomic estimates, we used 30% and 70% SRD data sets,
which were constructed to include all distances between atoms that are covalently bonded and all distances
between atoms that share covalent bonds with the same atom (constant bond angle assumption).

3.2. Test structures

We used four different test structures in our optimization experiments, three of which are proteins and
one is a tRNA. The first test structure is the L7/L12 50S ribosomal protein (C-terminus domain) from
E. coli, which has the PDB ID Ictf. This is a 68-residue protein, containing three helices and one beta sheet
comprised of three strands. The second test structure is the yeast phenylalanine tRNA, which has the PDB
ID Itra. The phosphate backbone contains 76 atoms which form three double-helices and three loops. The
third test structure is the triose phosphate isomerase, or tim barrel as it is commonly known, which has the
PDB ID Itim. This is a 247-residue protein, containing 24 helices and two beta sheets comprised of nine
strands each. The fourth test structure is the periplasmic nitrate reductase from desulfovibrio desulfuricans,
which has the PDB ID 2nap. This is a single-chain, 720-residue protein, which is one of the largest single-
chain entries in the PDB. This protein has 31 helices and six beta sheets comprised of three, five, five,
two, two, and seven strands each. Table 1 shows the number of atoms and SRD for the backbone estimates
and full-atomic estimates we performed on the various test structures.

3.3. Local optimization comparison

The first set of experiments was designed to compare the performance of the various local optimization
techniques that can be used within the GNOMAD algorithm. The methods we tested were the Polak-
Ribiere variant of CG, and the GN, SR1, and BFGS variants of the QN method. We performed backbone
structure estimations on all four test structures, each with 20%, 30%, ..., 70% of SRD as input, using all
of the local optimization methods. Selection of a preferred local optimization method was made based on
comparisons of maximum residuals and RMSD from crystal structure for each of the resulting structures.

3.4. Global optimization comparison

We chose three molecular modeling codes to use for comparisons to our algorithm—PROTEAN (Altman,
1995; Chen et al., 1998), DGSOL (Moré and Wu, 1997), and NAB (Nucleic Acid Builder) (Macke and
Case, 1998). Although there are other codes that could have been used for comparison, our choice was

TaBLE 1. TEST STRUCTURES

Structure (PDB ID)

Ictf Itra Itim 2nap
# of backbone atoms 68 76 247 720
Definition of “short-range distance” for backbone model 10 A 25 A 10 A 10 A
# of short-range distances for backbone models 557 1213 2225 7497
Total # of atoms 487 1613 1870 5591
Definition of “short-range distance” for full-atomic models 6 A e 6 A

# of short-range distances for full-atomic models 8578 e 35201
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limited by the ability to set up test computer simulations in a consistent manner. We chose codes that
could easily accommodate distance-only data sets and provide flexibility in adjusting parameters in order
to make fair comparisons.

The PROTEAN code is a probabilistic least-squares estimator that transforms a collection of potentially
noisy observations into a set of optimal (in the least-squares sense) mean atomic positions and a set
of uncertainties associated with each atomic coordinate (Altman, 1995). It uses a gradient-based search
approach, combined with a hierarchic decomposition of structural computations (Chen et al., 1998). For
the purpose of this work, we use a version of the PROTEAN code that was modified to include simulated
annealing. We use this as a comparison to our global optimization algorithm, as simulated annealing is a
very common method for improving global convergence properties in molecular simulations.

DGSOL solves distance geometry problems with a global continuation algorithm, with Gaussian smooth-
ing of an objective function that only depends on the sparse distance data. Several minimizers are traced
in the continuation process, and the best minimizer is selected as the global minimizer (Moré and Wu,
1997). Distance geometry is a commonly used method for estimating molecular structure based on distance
input data alone. Since we consider only distance data in this work, distance geometry codes provide a
good comparison. But our goal is to develop algorithms that are capable of incorporating many different
types of data, so if we are successful then GNOMAD will not be as limited as distance geometry in its
applicability to molecular structure estimation problems. There are other more mature implementations of
distance geometry, and our choice of DGSOL was based on its straightforward implementation and little
extra features that are specific to particular experiments or types of molecules. DIANA is an example of a
distance geometry algorithm that is closely tied to the iterative interpretation of NMR data (Mertz et al.,
1991).

NAB was primarily designed to construct models of helical and nonhelical nucleic acids from a few
dozen to a few hundred nucleotides in size, but can also be used for other molecular modeling tasks,
including proteins (Macke and Case, 1998). NAB uses a combination of rigid body transformations and
distance geometry to create candidate structures that match input criteria. It is designed to provide a
flexible way to describe molecular structures at an atomic level of resolution and contains built-in connec-
tions to the AMBER (Pearlman et al., 1995) and YAMMP (Tan and Harvey, 1993) molecular modeling
packages.

4. RESULTS

Results from the local optimization methods—CG, GN, SR1, and BFGS—revealed several important
issues. First, the CG method is not as effective as the QN methods when used within the framework of our
constrained global optimization algorithm. Using the CG method as a local optimizer in our algorithm tends
to move atoms into alignments that result in numerical instabilities and thus poor convergence performance.
For example, CG sometimes moves more than two atoms into alignment along a single line, which will
result in instabilities.

The GN method was somewhat effective when used as a logical optimizer in our algorithm, but it is
applied only to objective functions that are expressed in terms of sum of squares functions. Distances fit
such a criterion but our goal is to build a set of methods that will be applicable to any type of input data,
including those that can only be expressed in terms of nonquadratic functions.

Both the SR1 and BFGS methods are applicable to general objective functions, and both showed rel-
atively good performance. But BFGS was slightly more accurate and robust and thus it is the preferred
local optimization method for use in our algorithm. All the following results were generated using the
BFGS method as the local optimization procedure within the GNOMAD constrained global optimization
algorithm.

Figures 1 and 2 show comparisons of local optimization, simulated annealing (SA), and the full GNO-
MAD algorithm on the lctf and 1tim proteins, respectively. Local optimization runs were made using the
GNOMAD algorithm described previously, but with the MSD constraint checking and local perturbation
methods turned off. SA runs were made using PROTEAN with the addition of a simulated annealing
routine to improve the global convergence.

Figure 3 shows sample convergence profiles from an optimization of the lctf protein. The plots in Fig. 3
show 1) how the constraint error is reduced as the entire optimization algorithm is applied through all the
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FIG. 1. Comparison of local optimization, simulated annealing, and GNOMAD results on the 1ctf protein, showing
both RMSD and maximum residual of all distance constraints.

atoms of the lctf protein and again for one restart, and 2) how the constraint error is reduced during one
specific suboptimization grouping within the overall optimization process.

To illustrate the effects of adding MSD constraints, Figs. 4 and 5 show qualitative comparisons of
structures resulting from non-MSD and MSD GNOMAD runs and their relative proximity to the crystal
structure. These results are from input distance data sets consisting of 30% SRD on the lctf and Itim
proteins, respectively.

Figures 6-9 present RMSD and error results from DGSOL, NAB, and GNOMAD runs on each of the
four test structures. Each plot contains a set of vertical bars, where each bar represents an entire distribution
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FIG. 2. Comparison of local optimization, simulated annealing, and GNOMAD results on the 1tim protein, showing
both RMSD and maximum residual of all distance constraints.

of output data for a set of runs. The horizontal lines within each bar reflect the distribution of results for
that set of runs. The bottom and top of each bar represent the minimum and maximum output values. For
each % SRD value on the x-axes, ten different distance data sets were used. For the codes that involve
random parameters—DGSOL and NAB—ten different runs were made for each of the ten distance data
sets. Therefore, each of the bars for the DGSOL and NAB runs contain results for 100 data points, whereas
each of the bars for the GNOMAD runs contain results for only ten data points.

Table 2 shows the average CPU times for all of the backbone optimization experiments. As discussed
above, for each of the % SRD, ten different data sets were used. For the GNOMAD runs, average CPU



ESTIMATING MOLECULAR STRUCTURE 535
1.6 I T T
d) 1 4 n]

< 1.2 -

0-3 0-68 1-34 1-68
Restart # — # Atoms Optimized

-2 .

Max. Distance Residual (Ang.)

0 100 200 300 400 500
Cycle (Restart 0, # Atoms = 63)

FIG. 3. Sample convergence profiles from the lctf protein. The top plot shows the minimum average cycle error
over for each of the series of suboptimization groupings in a complete GNOMAD optimization. The bottom plot
shows a more detailed convergence profile of one of the suboptimization groupings, displaying the maximum distance
residual for each cycle.

times are simply the averages over those ten runs. But for the DGSOL and NAB runs, which involve
random parameters, ten runs were made (varying the random seed) for each of the 10 distance data sets.
So CPU times are first summed over the 10 different random seed runs, and those sums are then averaged.

Figures 10 and 11 show qualitative results of the full-atomic optimizations for the lctf and 1tim proteins,
respectively, using 30% of distance constraints less than 6.0 A. Ribbon diagrams of the backbone structure
are shown for each, as well as the full-atomic models. Runs were also made using 70% of distance
constraints less than 6.0 A but results for these were almost identical to the crystal structure and thus are
not displayed separately.
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Crystal Structure

Not MSD Constrained MSD Constrained
(max. distance residual = 0.01 A, (max. distance residual = 0.01 &,
RMSD = 7.02 A) RMSD = 2.87 A)

FIG. 4. Crystal structure and structure estimation of lctf protein using 30% of distance constraints, illustrating
the effects of adding MSD constraints with GNOMAD. Distance satisfaction between MSD-constrained and non-
MSD-constrained structural estimates is very similar, yet the MSD-constrained estimate shows significantly improved
RMSD.

5. DISCUSSION

To evaluate and compare the performance of the GNOMAD algorithm to other optimization methods,
we will consider two different error metrics. The first is the maximum distance residual, which is a true
indication of how well the optimization procedure is able to satisfy its objective of minimizing all of the
distance residuals. The second is the RMSD, which measures how close the resulting three-dimensional
structure is to the true structure. We are able to use the RMSD error in these test cases because the true
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Crystal Structure

Not MSD Constrained MSD Constrained
(max. distance constraint error = 0.27 A, (max. distance constraint error = 0.17 A,
RMSD = 15.40 A) RMSD = 3.10 A)

FIG. 5. Crystal structure and structure estimation of 1tim protein (tim barrel) using 30% of distance constraints,
illustrating the effects of adding MSD constraints with GNOMAD. In this case, the MSD-constrained estimate yields
slightly better distance residuals and again shows significantly better RMSD than the non-MSD-constrained estimate.

structure is known. But in cases where the optimization procedure is used to predict unknown structure,
only the first error metric would be available. For the purpose of this discussion, we will refer to the first
error metric as “error” and the second as RMSD.

In general, the relationship between optimization performance and number of SRD used in estimating
molecular structure displays an almost dichotomous pattern. At the low end of the SRD spectrum (< ~ 30%
SRD) many low-error local minima exist that are easy to find using any optimization procedure, yet the
RMSD for these structures can vary widely with most being relatively high. This is because the level of
distance information provided is not sufficient to define a single high-resolution structure. At the higher
end of the spectrum (> ~ 30% SRD) the error landscape becomes rugged with relatively high-error
local minima and a low-error global minimum that is very difficult to find yet will yield a structure with
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FIG. 6. Comparison of DGSOL, NAB, and GNOMAD results on the 1ctf protein, showing both RMSD and maximum
residual of all distance constraints. For this protein, GNOMAD is able to achieve very low distance residuals for all
SRD levels and shows improved performance in terms of RMSD, particularly at the higher SRD levels.

o

relatively good RMSD. At this end of the spectrum there is a more direct relationship between low error
and low RMSD.

In the lower SRD range, more information is required to distinguish which of the low-error solutions
will yield the better RMSD. In the higher SRD range, global optimization methods are required to move
solutions out of local minima and towards the global minimum, which will yield a good RMSD. The MSD
constraint enforcement and local perturbation methods used in GNOMAD are effective in addressing both
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FIG. 7. Comparison of DGSOL, NAB, and GNOMAD results on the yeast phenylalanine tRNA, showing both
RMSD and maximum residual of all distance constraints. GNOMAD is able to find very low distance residuals across
the entire range of SRD and yields structures with consistently low RMSD.

the low SRD and high SRD concerns. At lower SRD, the MSD constraints serve as added information to
reduce the number of potential low-error local minima. At higher SRD, the MSD constraint enforcement
combined with the local perturbation provides the global optimization necessary to move solutions out of
the local minima and towards the global minimum.

Figures 1 and 2 show how GNOMAD compares to local optimization and SA global optimization
methods over the entire range of SRD. We can see from these figures that the local optimization follows
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FIG. 8. Comparison of DGSOL, NAB, and GNOMAD results on the Itim protein, showing both RMSD and
maximum residual of all distance constraints. For this larger protein, GNOMAD continues to be able to satisfy
distance inputs very well for all SRD levels. These low distance residual structure estimates also translate consistently
to low RMSD.

a typical pattern of low error at low SRD and increased error as SRD is increased. At low SRD, the
low error translates to poor RMSD. As SRD increases, RMSD improves slightly but not to an acceptable
level, due to the increased error from local minima entrapment. The SA global optimization procedure is
able to decrease the error in the 60—70% SRD range but is not as effective in the 40-50% SRD range.
Also, because neither the local optimization nor the SA method is using MSD constraints, their RMSD is
relatively high at lower SRD, where the error is small. GNOMAD, on the other hand, yields lower RMSD
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FIG. 9. Comparison of DGSOL, NAB, and GNOMAD results on the 2nap protein, showing both RMSD and
maximum residual of all distance constraints. Results on this very large protein demonstrate how well GNOMAD
scales. GNOMAD continues to be able to find structures with relatively low distance residuals and RMSD.

structures at lower SRD, given the same level of near-zero error. This is due to the addition of MSD
constraints. GNOMAD is also able to find lower error structures at high SRD, which translate directly to
lower RMSD. This is due to a combination of the MSD constraint and local perturbation algorithms which
yield very good global convergence.

The MSD constraint enforcement/local perturbation algorithm used in GNOMAD is effective in avoiding
local minima for two reasons: 1) it significantly reduces the search space and thereby eliminates many



542 WILLIAMS ET AL.

TaBLE 2. CPU TiME (SEC) COMPARISONS

% short-range distances

Structure Optimization
(PDB ID) code 20 30 40 50 60 70
letf DGSOL 34.20 116.90 127.00 101.50 95.90 89.60
NAB 150.00 153.19 156.00 158.41 161.12 163.05
GNOMAD 11.94 255.49 344 .81 208.83 127.34 111.22
1tra DGSOL 265.40 267.30 291.60 323.50 372.70 402.50
NAB 160.98 164.95 171.24 174.08 177.64 181.28
GNOMAD 581.89 505.00 548.63 774.33 1007.96 1292.72
1tim DGSOL 253.00 1263.20 838.30 841.50 904.70 1001.40
NAB 490.84 493.00 496.53 499.55 502.40 506.13
GNOMAD 1340.59 9849.11 10893.97 10546.32 11633.17 13308.66
2nap DGSOL 2052.38 4991.28 3924.62 4076.40 4514.01 4912.13
NAB 10801.80 10831.78 10855.57 10869.53 10915.25 10941.22

GNOMAD 22350.82 24974.29 25402.08 25757.34 26205.89 27354.62

of the local minima that a greedy, unconstrained optimization algorithm might become trapped in, and
2) it provides for natural, nonrandom perturbation of atoms. The perturbations occur each time an «
(Equation 8) is adjusted due to a MSD constraint violation. This keeps the algorithm from always moving
atoms to their locally optimal value (¢ = 1) in the QN procedure and getting stuck in local minima. This
perturbation acts in a similar fashion to perturbations found in other global optimization approaches, such
as simulated annealing, the difference being that our approach is completely nonrandom and is instead
based on domain-specific information acquired during the course of the optimization process.

It could be argued that the SA algorithm might also find the same global minimum solutions that
GNOMAD finds if it were allowed to run long enough and with the right combination of parameters.
But given the random nature of the algorithm and that there are many parameters to set, it could be
very time consuming and computationally inefficient to try to find the global minimum for the structures
presented here using SA. In the results presented in Figs. 1 and 2, we ran the SA algorithm for the same
number of cycles as the GNOMAD algorithm to make for a fair comparison. Global convergence of the
GNOMAD algorithm is not guaranteed, but for the types of structures examined in this work, which were
mainly globular, we found that global convergence was uniform and relatively fast. For all of the test cases
considered in this work, GNOMAD was allowed to run for 3,000 cycles on the final grouping containing all
toms. Minimum error configurations, however, were generally found within 1,000-2,000 of those cycles.

Figure 3 gives a more detailed view of a typical GNOMAD convergence profile. From the first plot,
we can see that as atoms are added to the suboptimization groupings, distance residuals tend to grow. But
during the first restart (second pass) of the algorithm, very low distance residuals are found throughout
all groupings. This is due in part to better initial values for atoms that are added during the restart. The
second plot shows the specific convergence profile for one of the optimization subgroupings. From this
plot, we see how the perturbations provided by the MSD constraint-checking algorithm allow the algorithm
to search many configurations before settling into the path toward the globally optimal configuration.

It is interesting to note from the second plot in Fig. 3 that despite an apparent move near cycle 150
towards the global minimum, the GNOMAD algorithm is intelligent in detecting that this is a path towards a
potentially local minimum. At this point the nonrandom domain-based perturbations force the optimization
out of this path and back into the search for the global minimum. It is also interesting to note the subsequent
behavior around cycle 250, where the next low-error configurations are found. At this point, instead of
being disturbed by some prespecified perturbation pattern, the algorithm recognizes this as a viable path
towards the global minimum, which it follows, and does eventually find the global minimum.

The qualitative results presented in Figs. 4 and 5 show what typically happens when a relatively small
number of distance constraints (30% of SRD in these cases) is used with and without the addition of MSD
constraints. In Fig. 4, we see that for the 1ctf protein a very low maximum distance error is found for both
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1ctf: Crystal

(Backbone RMSD = 0.01 A) (max. distance residual = 0.01 A,
RMSD = 0.18 A)
lctf: 30% SRD

FIG. 10. Results from full-atomic optimization of lctf protein using 30% of distance constraints less than 6 A. On
the left are ribbon representations of only the backbone atoms from the resulting structure estimate, and on the right
are the full-atomic representations.

non-MSD and MSD runs but qualitatively the results look much better for the case where MSD constraints
are used. This illustrates the point that MSD constraints serve to 1) limit the search space, 2) reduce the
number of acceptable low-error structures, and 3) yield better resolution low-error structures. For the case
of the 1tim protein, Fig. 5, maximum distance errors for the non-MS and MSD cases are again similar,
yet again the MSD results show a much better resolution structure. These results show the value that is
added by being able to efficiently incorporate MSD constraints into the optimization procedure. In doing
so, we are able to get better structural estimates with less distance information.

Results in Figs. 6-9 show that GNOMAD is able to consistently satisfy the distance data to a very
low error, over a wide range of problem sizes. Because of the use of MSD constraints, the RMSD



544 WILLIAMS ET AL.

1tim: Crystal

(Backbone RMSD = 0.54 A) (max. distance residual = 0.60 A,
RMSD = 1.07 A)

1tim: 30% SRD

FIG. 11. Results from full-atomic optimization of the 1tim protein using 30% of distance constraints less than 6 A.
On the left are ribbon representations of only the backbone atoms from the resulting structure estimate, and on the
right are the full-atomic representations.

from GNOMAD runs is relatively low in the 20-30% SRD level. And because of the improved global
convergence properties of GNOMAD, lower errors are attained in the higher % SRD level, which translate
directly to lower RMSD structures.

It should be noted that for the results shown in Figs. 6-9, relatively tight bounds on the input distances
(£0.1 A) were used for the distance geometry-based DGSOL and NAB codes. This was done to make a
fair comparison to GNOMAD for the case considered in this work where we know the input distance data
are exact and we are trying to evaluate and compare the accuracy of the various codes in satisfying this
data. DGSOL seemed to perform best when given tight distance bounds, but NAB seemed to have some
“optimal” distance bounds where it performed best. In future work, we will consider the case of inexact
data and methods for finding optimal structures in light of residual error.
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All of the optimization methods were also slightly sensitive to the default MSD constraint radius value,
ry, as defined in Section 2.4. For smaller proteins, this value can be set closer to the actual minimum
distance seen between any atoms in the molecule. Yet, for larger proteins, this constraint must be relaxed
slightly. For example, we used a value of 3.7 A for the backbone C, estimates of the smaller lctf protein
and 3.5 A for the larger Itim and 2nap proteins. A value of 5.0 A was used for the backbone phosphate
estimates of the 1tra tRNA molecule.

Timing results in Table 2 show that GNOMAD takes approximately the same amount of run time as
DGSOL and NAB for the smaller structure, 1ctf, which is not a particularly difficult problem. Then, as
the structures become larger and it becomes more difficult to find optimal estimates, GNOMAD spends
more CPU time but finds much better solutions. Experiments were performed with DGSOL and NAB
to allow them to run longer but this did not seem to correspondingly increase their search capabilities
or improve the results of the optimization in terms of error or RMSD. The extra CPU times used by
GNOMAD appears to be spent effectively searching the space of possible configurations to find a global
or near-global minimum.

Results shown in Figs. 10 and 11 demonstrate that the GNOMAD code is robust and scales well for
larger optimization problems that consider all atoms in the molecule. For the lctf and 1tim full-atomic
structures, GNOMAD is able to yield structural estimates of approximately 1.0 A and less using only 30%
of distances less than 6.0 A.

Based on the results of this work, we can draw several conclusions:

e Optimization methods play an important role in molecular structure estimation, as they can provide
better resolution structures given the same amount or even less input data. This is valuable because the
means for collecting input data are often time consuming and expensive.

e Two important aspects of molecular optimization algorithms are the ability to effectively incorporate
MSD constraints and to find the global minimum error solution. Each of these will contribute significantly
to finding better resolution structures from relatively sparse data.

® A new optimization algorithm is presented that displays very good global convergence properties, while
maintaining MSD constraint satisfaction. This algorithm is able to find relatively low RMSD structures
over the entire spectrum of SRD information content.

e Tests of this new optimization algorithm on various types of biological molecules show it to be very
robust and computationally efficient. The new algorithm compares favorably to other molecular structure
estimation codes, in terms of both error and RMSD. The algorithm scales well and remains effective
when applied to optimizations involving a large number of atoms.
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