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Abstract This paper presents rigorous filtering methods for constraint sat-
isfaction problems based on the interval union arithmetic. Interval unions are
finite sets of closed and disjoint intervals that generalize the interval arith-
metic. They allow a natural representation of the solution set of interval pow-
ers, trigonometric functions and the division by intervals containing zero. We
show that interval unions are useful when applied to the forward-backward
constraint propagation on directed acyclic graphs (DAGs) and can also re-
place the interval arithmetic in the Newton operator. Empirical observations
support the conclusion that interval unions reduce the search domain even
when more expensive state-of-the-art methods fail. Interval unions methods
tend to produce a large number of boxes at each iteration. We address this
problem by taking a suitable gap-filling strategy. Numerical experiments on
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constraint satisfaction problems from the COCONUT show the capabilities
of the new approach.

1 Introduction

1.1 Context

Let F : Rn→ Rm. Nonlinear systems of equations can be written as

F (x) = 0 (1)

and play a central role in several areas of scientific computing and numerical
analysis. A point x∗ ∈ Rn satisfying (1) is called a root of the system. The
task of finding one or all roots of F under certain conditions is the subject
of an extensive literature on numerical analysis.

If one or more parameters of F are not known exactly but belong to some
set (typically an interval or the finite union of intervals), then we say that the
nonlinear system is uncertain. Traditional methods for nonlinear systems are
usually not suitable to tackle uncertainty. Kreinovich gives a pedagogical
introduction to this subject in [13]. He also considered uncertain problems in
a wide range of applications like decision making [12, 14], data fitting [17],
indirect measurements [11], outlier detection [16], geophysical tomography
[8] among others. We dedicate this paper to his contributions to uncertain
problems

Constraint satisfaction problems (CSPs) generalize nonlinear systems
of equations and ask for one or all admissible solutions of nonlinear equalities
or inequalities. For example,

find x (2)
s.t. [1.0,1.1]x1 +x2 = 1 (3)

0≤ (x1− [0.5,1.5]x2)2 ≤ 1 (4)
x1 ≥ 0 (5)
x2 ∈ R (6)

is a constraint satisfaction problem. In the CSP framework, relations (3) and
(4) are called constraints while (5) and (6) are bound constraints. The
word find in this example and throughout the paper denotes the task of
finding one solution of the CSP. However, the methods in this paper can also
be used to find enclosures for all solutions of a CSP.

The point x∗ ∈ Rn is called weakly feasible if it satisfies all constraints
and bound constraints for at least one configuration of the parameters. We
say that x∗ is strongly feasible if the constraints hold for any choice of
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parameters. For example, if one fix the unknown parameters in (3) and (4) to
1.0 and 1

2 respectively, then the column vector (1
2 ; 1

2 ) satisfies all constraints
and bound constraints. Therefore it is a weakly feasible point for (2) but not
a strong one. The problem is infeasible if it has no weak solution.

Neumaier [21] classifies the algorithms to solve CSPs into four groups,
according to the degree of rigor. Incomplete methods use intuitive heuris-
tics to find approximate feasible points. Asymptotically complete pro-
cedures reach a solution with probability one if allowed to run indefinitely.
Complete methods solve the problem with certainty, assuming exact com-
putations. Rigorous methods solve CSPs with mathematical certainty and
within given tolerances even in the presence of rounding errors.

Interval arithemtic methods are commonly used to solve CSPs from
a rigorous perspective. Interval arithmetic is a tool from numerical analysis
introduced by Moore in his Ph.D. thesis [19] to automatically evaluate the
errors involved in complex calculations. The concept was later extended to
prove computational fixed point theorems (see, for example, [20] and the
references therein) and found applications in several areas. For a survey of
interval arithmetic methods, see [21].

This paper considers only factorable functions. The function F is fac-
torable if one can write it as a finite sequence of arithmetic operations and
elementary functions. If the function is factorable then it can be represented
in a directed acyclic graph (DAG) as discussed in [23]. Directed acyclic
graphs denote each variable and simple mathematical operation as a node.

Filtering stands for methods to reduce the search domain in constraint
satisfaction problems. Constraint propagation is a class of filtering that
takes the structure of each constraint into account. Two examples of con-
straint propagation methods applied to factorable functions are the forward
and backward procedures [23]. In the forward mode, we propagate the un-
certainty through each node of the DAG, starting from the variables until it
reaches each constraint node. The forward procedure is used to obtain en-
closures of the range for each constraint and to reduce the uncertainty in
the parameters of F . In the backward mode, we propagate the uncertainty
reversely, i.e., we walk the graph from the constraints nodes to the variables.
The backward mode is used to reduce the search domain.

The interval Newton operator is a filtering method extensively studied
in the last 40 years. It uses first order information of the function F in
a rigorous algorithm that resembles the improvement step of the classical
Newton operator. See [20].
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1.2 Interval unions and related work

Interval unions are finite sets of closed and disjoint intervals, introduced
by [22] and used to enclose all solutions of linear systems under uncertainty
in [18]. Interval unions extend the interval arithmetic and provide a natural
representation of the solution set of interval power, trigonometric functions,
and the division by intervals containing zero. For example, the solution set of
x2 ∈ [4,9] in the interval space is [−3,3]. However, taking the interval union
arithmetic into account, we obtain the better enclosure [−3,−2]∪ [2,3].

Multi-intervals are sets of closed intervals that are not necessarily disjoint
[26]. They were introduced by Yakovlev [27] and Telerman (see Teler-
man et al. [25]). Parallel algorithms for interval and multi-interval arithmetic
are the subject of [15]. We review the literature of multi-intervals and their
applications in [18].

Another variant of interval unions are the discontinuous intervals by
Hyvönen [9]. They are disjoint unions of closed, half-open, or open intervals.
In our opinion, the extra bookkeeping effort to distinguish between closed and
open endpoints is not warranted in most applications.

1.3 Contribution

This paper presents rigorous filtering methods based on the interval union
arithmetic. In particular, we discuss the forward-backward constraint prop-
agation and the Newton method using interval unions. The central issue
associated with interval unions is the exponential growth in the number
of boxes produced after each computation. We introduce a normalized-gap-
filling strategy to handle this difficulty.

We integrate the new methods into GloptLab [1, 2], a rigorous solver for
constraint satisfaction problems. On the other hand, one can easily imple-
ment the algorithms discussed here on any system where an interval library
is available. We integrate the new methods with several state-of-the-art fil-
tering procedures such as linear and quadratic contraction [4, 5], feasibility
verification [6] and constraint aggregation [7].

Numerical experiments on CSPs from the COCONUT test set [24] indicate
that interval union methods can reduce the search domain even when more
sophisticated approaches fail. The test set consists of 233 small instances,
where the number of variables and constraints are not bigger than 9, and 38
cases medium-sized where at least one between the number of variables and
constraints belongs to the range [10,50].

The interval union constraint propagation with no-gap-filling is 15% faster
than the interval method on small and medium-sized problems on average.
The difference rises to 20% if one considers only the last class of instances.
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The interval union Newton method with the normalized-gap-filling strat-
egy is 10% faster than the interval one in small instances on average. We
found no significant difference between both arithmetics on the Newton op-
erator applied to medium-sized problems.

We conclude from the experiments that the interval union constraint prop-
agation with no-gap-filling is the best option for small and medium-sized
problems. If one has access to first-order information of the constraints, then
the interval union Newton method with normalized-gap-filling should be the
method of choice for low-dimensional instances.

We outline the paper as follows. Section 2 introduces the required basics
of interval unions, while Section 3 presents the new enhancements for CSPs.
Section 4 gives an overview of GloptLab used in our tests. Numerical ex-
periments are presented in Section 5. We present a supplementary material
containing auxiliary Algorithms, and detailed descriptions of the test prob-
lems in:
http://www.mat.univie.ac.at/~montanhe/publications/iucpSup.pdf

1.4 Notation

This paper employs a Matlab like notation for indices. We write 1 : k to
denote the set of indices {1, . . . ,k}. The number of elements in an index set
N is given by |N |.

For vectors and matrices, the relations =, ≤, ≥ and the absolute value |A|
of the matrix A are interpreted component-wise. The n-dimension identity
matrix is given by I, the transpose of A ∈ Rn×m is given by AT and A−T is
a short for (AT )−1.

We assume familiarity with the fundamentals of the interval arithmetic.
For a comprehensive approach to this subject, see [20]. The interval notation
mostly follows [10].

Let a,a ∈ R with a ≤ a then a = [a,a] denotes an interval with inf(a) :=
min(a) := a and sup(a) := max(a) := a. The set of nonempty compact real
intervals is given by

IR := {[a,a] | a≤ a, a,a ∈ R}.

The extremes of the intervals can assume the ideal points −∞ and ∞. We
define IR as the set of closed real intervals. Formally, it can be written as

IR := {[a,a]∩R | a≤ a, a,a ∈ R∪{−∞,∞}}.

The width of an interval a is defined by wid(a) := a−a. For any set S ⊆R,
the smallest interval containing S is called the interval hull of S and denoted

http://www.mat.univie.ac.at/~montanhe/publications/iucpSup.pdf
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by utS. The notions of elementary operations between intervals and inclusion
properties are the same as presented in [20].

A box (or interval vector) x = [x,x] is the Cartesian product of the closed
real intervals xi := [xi,xi] ∈ IR. We denote the set of all interval vectors of
dimension n by IRn. We indicate interval matrices by bold capital letters (A,
B,. . . ) and the set of all m×n interval matrices is given by IRm×n.

2 Interval unions

This section reviews the fundamentals of interval unions. A comprehensive
description of the arithmetic is the subject of [22].
Definition 1. An interval union u of length l(u) := k is a finite set of k
disjoint intervals. We denote the elements of u by ui and write

u = (u1, . . . ,uk) with ui ∈ IR ∀ i= 1 : k,
ui < ui+1 ∀ i= 1 : k−1. (7)

We denote the set of all interval unions of length ≤ k by Uk. The set of all
interval unions is given by U :=

⋃
k≥0Uk where U0 := ∅ and U1 := IR.

Definition 2. Let S be a finite set of intervals, the union creator U(S) is
defined as the smallest interval union u that satisfies a ⊆ u for all a ∈ S.

It is clear from the definition of union creator that the inclusion isotonic
property holds. Formally, S ⊆ S′ =⇒U(S)⊆U(S′).
Definition 3. The set of all interval union vectors of dimension n is given
by Un. In the same way Un×m denotes the sets of all interval union matrices
of size n×m. The usual operations between matrices and vectors extend
naturally to interval unions. We denote interval union matrices by capital
bold calligraphic letters like A or B and interval union vectors by lower case
bold calligraphic letters like x or y.

Let u ∈Uk \{∅} be an interval union, we denote the interval-wise midpoint
of u by ǔiw := (ǔ1, . . . , ǔk) whenever −∞< u1 ≤ uk <∞.
Definition 4. Let u := (u1, . . . ,uk) and s := (s1, . . .sk) be interval unions
of the same length and let ◦ ∈ {+,−} then the interval-wise interval union
operation corresponding to ◦ applied to u and s is given by

u ◦iw s := u1 ◦ s1∪ . . .∪uk ◦ sk.

Definition 5. An interval union function f : Un→U is said to be inclusion
isotone if u′ ⊆ u⇒ f(u′)⊆ f(u). Moreover, we say f : Un→U is the interval
union extension of f :D ⊆ Rn⇒ R in u ∈Un if

f(x) = f(x) for x ∈D∩u, and f(x) ∈ f(u) for all x ∈D∩u.
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3 Interval union and CSPs

This section applies the interval union arithmetic to constraints satisfaction
problems. We start with the formal definition of a CSP under the interval
union framework. Subsection 3.1 gives one example of the interval union arith-
metic in the forward-backward constraint propagation procedure. Subsection
3.2 presents the interval union Newton operator. Subsection 3.3 describes the
gap-filling strategy adopted to avoid the exponential growth of intervals in
an interval union.

Let F : Un→Um be a factorable function, x ∈Un and F ∈Um then

find x (8)
s.t. F(x) ∈F, x ∈ x,

is a constraint satisfaction problem. We also denote constraint satisfaction
problems by the triple (F,F,x).

3.1 The forward-backward constraint propagation

Schichl and Neumaier [23] show that the constraint propagation method
in directed acyclic graphs is useful for both, complete and rigorous global
optimization. An advantage of the DAG is that it is independent of data
types, which means that the same representation can handle intervals or
interval unions. Therefore the Algorithms in [23] can be applied to interval
unions without any modification. The approach by Schichl and Neumaier
consists of performing constraint propagation in the forward and backward
modes.

This subsection illustrates how the interval union arithmetic in the forward-
backward constraint propagation produces better results than its interval
counterpart. Consider the following example

find x (9)
s.t. cos(2πx1) + cos(2πx2)≥ 1, (10)

x2−x2
1 ≤ 0, (11)

x1 ∈ [−2,2], x2 ∈ [−1,1]. (12)

Figure 1 gives a possible DAG for (9). The nodes x1 and x2 denote the
decision variables with the indicated initial bounds given by (12). Dashed
circles denote the constraints (10) and (11), with their respective right hand
sides in the interval form. Parameters 2π and −1 are multiplicative constants
defined on each constraint. We identify intermediate nodes with labels Ti

and constraints with labels Ci.
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Fig. 1: Directed acyclic graph for the CSP (9)

In the forward mode, the uncertainty flows from the variable nodes to the
constraint nodes. In this example, T1,T2 and T3 are given by

T1 = cos(2π[−2,2]) = [−1,1],

T2 = [0,4] and T3 = [−1,1]

and
T3 = cos(2π[−1,1]) = [−1,1],

respectively. To evaluate the range at the constraint nodes, we also take the
bounds given by the right hand side of (9) into account to obtain

C1 = (T1 +T3)∩ [1,∞] = [1,2]

and
C2 = (x2−T2)∩ [−∞,0] = [−5,0].

Since the parameters are exactly determined, the forward mode does not
update them. The backward mode propagates the uncertainty from the con-
straint nodes to the variable nodes. Let the arc-cosine of an interval union
be defined as

arccos(a) := {x ∈ R | cos(x) = a, ∀a ∈ a}

and define the square root of interval unions in the same way. We denote by
T−1

i the reverse operation of the intermediate node Ti. In this case, we have
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T−1
1 = arccos((C1−T3)∩T1)∩ [−4π,4π].

The interval [−4π,4π] in the expression above is the inflow of the node T1 in
the forward mode. The values of C1, T1 and T3 also come from the forward
evaluation. Note that T−1

1 is an interval union since the arc-cosine function
produces several gaps. In particular, we have

T1 =U([−12.57,−10.99], [−7.85,−4.71], [−1.58,1.58], [4.71,7.85], [10.99,12.57]).

In the same way, we have

T−1
2 =

√
(x2−C2)∩T2∩ [−2,2]

and
T−1

3 = arccos((C1−T1)∩T3)∩ [−2π,2π].

Applying the reverse operation to x1, we obtain

x1 = T−1
1

2π ∩x1 and x1 = T−1
2 ∩x1.

Therefore, the search domain for x1 reduces to the interval union

x1 = U([−2,−1.75], [−1.25,−0.75], [−0.25,0.25], [0.75,1.25], [1.75,2]).

The search domain for x2 reduces to

x2 = U([−2,−1.75], [−0.25,0.25], [1.75,2]).

In the interval arithmetic approach, we lose the gaps produced by the arc-
cosine in T−1

1 and T−1
3 . In this case the search domain is not updated.

3.2 The interval union Newton operator

This subsection presents the interval union Newton operator. We mostly fol-
low and adjust the theory of the interval Newton method given by [20].

Let F : Rn → Rm and x ∈ Un. We are interested in finding a rigorous
enclosure of the solution set

S := {x ∈ x | F (x) = 0}.

Let A ∈ IRm×n be a bounded interval matrix and F : x ⊆ Rn→ Rm be a
function such that

F (x̃)−F (ỹ) = Ã(x̃− ỹ) (13)

for every x̃, ỹ ∈ x and some Ã ∈A. We call A a Lipschitz matrix of F .
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In particular, if the function F is continuously differentiable, well defined
on every point x ∈ x and we denote the interval extension of the Jacobian
matrix of F by J then, A := J(utx) is a Lipschitz matrix for F .

An interval union linear system with coefficients A ∈Um×n and b ∈
Um is the family of linear equations

Ax= b (A ∈A, b ∈ b). (14)

The solution set of (14) is defined by

Σ(A,b) := {x ∈ Rn |Ax= b for some A ∈A, b ∈ b}. (15)

Let a,b,x ∈ U then the univariate interval union Gauss-Seidel op-
erator is given by

Γ (a,b,x) := b

a
∩x. (16)

It is clear from the definition that Σ(a,b)∩x ⊆ Γ (a,b,x). The interval union
Gauss-Seidel operator can be extended to linear systems with higher dimen-
sion assuming the form

y := Γ (A,b,x)

where
yi := Γ

(
Aii,bi−

∑
j 6=i

Aijyj ,xi

)
for i= 1 : n. (17)

Let F and A be a function and an interval matrix satisfying (13). The
interval union Hansen-Sengupta operator is given by

H(x, x̄) := x̄+Γ (CA,−CF(x̄),x−iw x̄) (18)

where C ∈ Rn×m is a preconditioner matrix and x̄ is called the expansion
point. The typical choice for C is the pseudo-inverse of the mid-point of A
(C = Ǎ−1). A better alternative based on the Gauss-Jordan decomposition
is presented in [18]. In this paper, we consider the expansion point as the
interval-wise midpoint of x, i.e., x̄ := x̌iw.

Proposition 1. Let F : x ⊆ Rn→ Rm be Lipschitz continuous on x and let
A ∈ IRm×n be a Liptschitz matrix for F on x. Then

1. S ⊆H(x, x̄).
2. If H(x, x̄)∩x = ∅ then S is empty.

Proof. Let x∗ ∈ S. By applying (13) with ỹ = x∗ we have

−F (x̃) = F (x∗)−F (x̃) = Ã(x∗− x̃) for some Ã ∈A.

Therefore

x∗ ∈ (x̃+Σ(A,−F(x̃)))∩x = x̃+ (Σ(A,−F(x̃)))∩ (x−iw x̌iw)⊆H(x, x̌c).
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Hence x∗ ∈H(x, x̌c) for any x∗ ∈ S and the result follow. ut

Operator (18) requires the solution of a linear system of equations with
interval union uncertainties. We can solve it with the interval union Gauss-
Seidel procedure [18]. The supplementary material gives a detailed descrip-
tion of the interval union Gauss-Seidel procedure. This paper considers the
procedure as a black box algorithm with the input and output given by the
Algorithm 1.

Algorithm 1 Interval union Gauss-Seidel: enclose all solutions of an interval
union linear system.
Input: The interval union matrix A and interval union vectors b and x. The absolute

and relative tolerances εAbs > 0 and εRel > 0. The maximum number of iterations
K.

Output: The interval union vector y such that Σ(A,b)∩x⊆ y⊆ x and a flag indicating
one of the following termination status:

1: The problem is infeasible;
2: The absolute or relative gain of y over x do not satisfy the tolerances εAbs or εRel;
3: The absolute and the relative gains of y over x satisgy the tolerance parameters.

The interal union Newton methods is then given by the Algorithm 2.

3.3 Gap filling

The number of boxes produced with the interval union arithmetic may in-
crease exponentially depending on the structure of the constraints. This prob-
lem can be solved by applying gap-filling strategies. A gap-filling is a mapping
g : Uk→Uk satisfying x ⊆ g(x) and utx ≡ utg(x) for any x ∈Uk.

Two trivial gap-filling strategies are the hull-gap-filling defined by g(x) :=
utx and the no-gap-filling where g(x) := x. This subsection presents the
normalized-gap-filling, a non-trivial gap-filling strategy for interval union
scalars and vectors.

Let x ∈U be an interval union and let xi,xi+1 ∈ x. The open interval gi

between the intervals xi and xi+1 is called the ith gap of x and is defined as

gi = (xi, xi+1). (19)

We say that gi Cgj if

gi Cgj ⇔
( wid(gi)

xi+1 +xi

<
wid(gj)

xj+1 +xj

)
∨
( wid(gi)

xi+1 +xi

= wid(gj)
xj+1 +xj

∧C(xi,xj)
)

(20)
where
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Algorithm 2 Interval union Newton method: this algorithm applies the
interval union Gauss-Seidel procedure to the linearized system until the ter-
mination criteria is met
Input: The nonlinear system of equations F , the initial interval union vector x0, the

absolute and relative tolerances εAbs and εRel, the maximum number of iterations
K for the Gauss-Seidel procedure and the maximum number of iterations for the
Newton method T

Output: The interval union vector y ⊆ x0 such that S ⊆ y.
1: x← x0;
2: for t= 1 : T do
3: x̌← x̌iw;
4: A← F(utx);
5: C← Precondition(A);
6: A← CA;
7: b←−CF(x);
8: y←Gauss-Seidel(A,b,x−iw x̌, εAbs, εRel,K);
9: if Gauss-Seidel termination status is infeasible then
10: return ∅;
11: end if
12: y← (x̌+y)∩x;
13: if Gauss-Seidel termination status is not enough gain then
14: return y;
15: end if
16: x← y;
17: end for
18: return x;

C(x1,x2)⇔ (〈x1〉> 〈x2〉∨ (〈x1〉= 〈x2〉∧x1 < x2)).

Intuitively, (20) orders the gaps of the interval union according to its normal-
ized width w.r.t ut(xi,xi+1). Algorithm 3 describes the normalized-gap-
filling strategy.

Algorithm 3 Norm-gap-filling
Input: The interval union vector x with dimension n, the maximum number of gaps in

an interval union scalar p and the maximum number of gaps in the interval union
vector q.

Output: The vector y such that x ⊆ y, l(yi)≤ p,
∏n

i=1 l(yi)≤ q and utx ≡ uty.
1: if l(xi)≤ p for i= 1 : n and

∏n

i=1 l(xi)≤ q then
2: return x;
3: end if
4: y← x;
5: while l(yi)> p for i= 1 : n or

∏n

i=1 l(yi)> q do
6: Find the smallest gap in y according to (20) and call it g;
7: y← y∪g;
8: end while
9: return y;
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4 GloptLab

This section gives a short overview of the rigorous solver GloptLab [1, 2],
a configurable framework for global optimization and constraint satisfaction
problems. GloptLab implements several state-of-the-art methods for rig-
orous computations as, for example, linear and quadratic filtering methods
[4, 5], feasibility verification [6] and constraint aggregation [7]. We review the
basic solver and discuss how the new methods from Section 3 are used to
improve its efficiency.

The GloptLab solver consists of an optimizer carrying out a branch-
and-bound process and a memory supporting this process. The optimizer
calls a preprocessor properly initializing the memory, then alternates calls
to the reducer, the problem selector and the splitter, until a termination
criterion is met.

Each bold expression in the last paragraph denotes a configurable module
in the system. The methods presented in this paper are useful for the reducer,
which employs strategies to reduce the search domain. Algorithm 4 defines a
simple, rigorous branch and bound procedure which embeds the reducer.

The inner loop of the Algorithm 4 (lines 14 - 22) describes the reducer. The
significant gain (Line 17) in the algorithm depends on the chosen strategy.
We consider the feasibility verification methods as black boxes that receive
a subproblem (F,F,x) and return true only if it can prove that x contains a
feasible solution of the problem.

Note that the inner loop restarts whenever a method produces significant
contraction of the input box. In practice, we sort the list M in ascending
order according to the computational effort required to run each method.
Therefore, cheaper methods are always performed first. The inner loop can
also be posed as a finite state machine. Table 1 shows the state machine
currently implemented in GloptLab. The interval union forward-backward

Current state Next state Condition
Constraint propagation Constraint propagation GRel(x,y)≥ εCP

Feasibility verification otherwise
Feasibility verification Linear contraction true
Linear contraction Constraint propagation GRel(x,y)≥ εLC

Quadratic relaxation otherwise
Quadratic contraction Constraint propagation GRel(x,y)≥ εCA

exit otherwise

Table 1: The finite state machine implemented in the inner loop of the Algo-
rithm 4.

constraint propagation described on Section 3 can be used in both the first
state of Table 1 and in the step 2 of the Algorithm 4. The interval union
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Algorithm 4 Simplified solver
Input: The CSP (F,F,x) of form (8), the tolerance parameter εx and the list M of

rigorous methods used to reduce the search domain.
Output: The box y such that wid(y)< εx and the certificate that y contains a feasible

point of (F,F,x) or the certificate that the problem is infeasible.
1: Run a local solver to obtain the candidate solution y∗ ∈ x;
2: Run the feasibility verification methods described in [6] to the box y of width εx

built around y∗;
3: if y is verified then
4: Return y;
5: end if
6: Run the forward-backward constraint propagation procedure to (F,F,x) to reduce

the search domain x; Save the reduced domain in y;
7: if y is proved to be infeasible then
8: Return ∅;
9: end if
10: Start the memory with (F,F,y);
11: while memory is not empty do
12: Run the problem selector to obtain the subproblem (F,F,x);
13: i← 1
14: while i≤ |M| do
15: Run the strategy Mi on (F,F,x) to obtain (F,F,y);
16: (F,F,x)← (F,F,y);
17: if y is significantly smaller than x then
18: i← 1;
19: continue;
20: end if
21: i← i+ 1;
22: end while
23: if x is verified and wid(x)≤ εx then
24: Return x;
25: end if
26: Run the splitter and stack all subproblems in the memory;
27: end while
28: Return ∅;

Newton operator is a linear contraction method and therefore can be used in
the second step of the state machine.

5 Numerical experiments

5.1 The COCONUT test set

This section performs numerical experiments on constraint satisfaction prob-
lems from the COCONUT test set [24] to evaluate the capabilities of the
interval union filtering methods. The COCONUT test set contains 306 con-
straint satisfaction problems. Using the TestEnvironment [3], we selected all
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instances with the number of variables and constraints in the range [1,50]
to obtain 271 CSPs. We obtained 3 linear problems (i.e., all constraints are
linear), 86 quadratics (all constraints are linear or quadratic polynomials),
121 polynomial, 24 rational, 31 smooth, and 6 non-smooth instances. The
supplementary material gives a detailed description of the selected problems.

We also selected a subset of medium-sized problems from the set of 271
instances resulting in 38 cases with more than 9 variables and constraints.
Again, the supplementary material gives detailed descriptions of the tested
problems.

5.2 Forward-backward constraint propagation

We run the Algorithm 4 with the state machine defined by the Table 1 and the
linear contraction described by Domes and Neumaier in [5] (also referred
simply as relaxation in the remainder of this section) to compare the interval
union forward-backward constraint propagation with its interval counterpart.
We test the normalized-gap-filling strategy as described by the Algorithm 3
with p= 5 and q = 32. We also consider the no-gap-filling and the hull-gap-
filling strategies in our experiments.

We limit the execution time of the Algorithm 4 to 60 seconds for each test
problem. All parameters in the Table 1 are set to 0.1. We ran the experiment
in a core i7 processor with frequency of 2.6 GHz, Windows 10 and JVM
1.8.021.

Figures 2 and 3 show that the interval union constraint propagation with
no-gap-filling is always better than the hull or normalized strategies. It means
that the forward-backward constraint propagation does not generate an ex-
cessive number of intervals at each iteration. On average, the no-gap-filling
strategy is 15% faster than the hull-gap-filling one in the full set of instances
and the difference rises to 20% if we consider only medium-sized problems.

5.3 Interval union Newton method

We ran the Algorithm 4 with the Newton operator as the linear contraction
method, under the same conditions as given in the last subsection. For the
Algorithm 2, we set εAbs = 10−4, εRel = 0.1, K = 10 and T = 5. Figures 4
and 5 show the results of the experiment

Figures 4 and 5 show that the interval union Newton method with no gap-
filling strategy can solve fewer problems within the one-minute time limit
than their hull and normalized counterparts. This behavior is due to the cost
of each function evaluation which increases proportionally with the number of
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Fig. 2: Time performance profile for the Algorithm 4 with the linear con-
straction described in [5] and three gap-filling strategies for the forward-
backward constraint propagation. All 271 instances.

gaps. The normalized-gap-filling presents better results in small problems and
is competitive with the hull-gap-filling strategy on medium-sized problems.

The experiment also shows that the interval union Newton method with
the normalized-gap-filling strategy is 10% faster than the interval one in
the full test set on average. In this case, the number of gaps produced dur-
ing the linearization is significant, and the simple application of the interval
union Newton method (without gap-filling strategies) can be catastrophic.
We also note that for the test set of 38 medium-sized problems, the interval
Newton operator outperforms the interval union counterpart even with the
normalized-gap-filling strategy.
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Fig. 3: Time performance profile for the Algorithm 4 with the linear con-
straction described in [5] and three gap-filling strategies for the forward-
backward constraint propagation. Medium-sized instances.
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