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1. Introduction

i]n'this paper we shall consider a covering method for the enclosure of
thé solution ;et of a finite-dimensional system of nonlinear equations
1.1 FI%) = 0,
wherelF is a function defined on a subset D € R" with values in R",
‘m¢n. If F is regular in D, i.e. if f is continuously differentiable and
F'l?) has rank m for all ¥ in a neighbourhood of the solution set
| M = {XeD | F(¥X)=0},
then the solution set M of (1) is a p-dimensional manifold in Rn.
p=n-m. If F is regular then, in the degenerate case p=0 [i.e. n=m), the
equation (1.1) has only finitely many solutions. In case p>0, the vec-

tor X of variables often contains p distinguished variables 2 A

R
called parameters, and the solution or solutions of (1) are sought in

dependence on 1 "Ap' corresponding to a parametrization of M in

100

terms of 11,...,1 In that case it may be more convenient to separate

o
the independent variables and the parameters, and write (1.1) as
(1.2) FI%.X) = 0,

where now F: D C pmlﬂp  r™,

The standard method for the solution of (1.1) (or (1.2)) 1is the
continuation method, developed primarily for the case p = 1. Here, in
the regular case, the solution set M consists of a union of disjoint
curves, and the continuation method essentially consists in starting at

0 and approximately following the solution

a particular solution ¥
curve containing ¥° in one or both of the two possible directions. A
neighbouring solution point is obtained by approximately linearizing
[1.1) and solving the resultina‘equation, while taking care that the

linearization error remains small. Certain variations which use
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piecewise-linear approximations of (11) are also known as simplicial
methods. The case p>1 is reduced to p=1 by tracing particular solution
curves on M, and the case p=0 is treated by embedding the solution of
{1.1) into a 1-dimensional manifold by introducing an artificial para-
meter (homotopy or fixed point methods). The details of the method
change from author to author. See e.g. Schwetlick [22], Zangwill and
Garcia [25], Rheinboldt [20] and the survey paper [21] of Rheinboldt in

these proceedings.

élaarly, to find all solutions of (1.1) with a continuation method, one
needs to know at least one point on each connected component of M.
While in some cases this is easy to achieve, in others it is more dif-
'ficult. and in certain problems of practical interest even the number
of components of M is unknown (Ushida and Chua [24]). For the unrelia-
bility of homotopy methods (and related deflation methods) for finding
511 sdlutions in case p=0, cf. Allgower and Georg:[2] (in particular

Example II).

Interval methods for the solution of (1.1) are based on a different,
global approach. As is natural in applications, it is assumed that only
that part of M is interesting for which all variables lie within
certain bounds,

li < ;i < u; B S | & ;
so that only the solutions of (1) contained in a box x =[1,u]ElR" are
sought. Let us write, for any x€ID (the set of interval boxes contained
in D),

LIF,x) := {¥ex | F(X)=0}
The covering method to be discussed in this paper consists in covering
the set [tF,xD) by a collection of smaller and smaller boxes which give
increasingly accurate information about the location of the solution
set. At the most refined stage, the covering computed for the solution
set describes the solution set as accurately as required for represent-
ing it as an image on a computer screen. And indeed, I was inspired to
the presented investigations partly by recent applications of interval
arithmetic to computer-aided geometric design (CAGD); see Mudur and
Koparkar (7,131, Toth [23].
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Fig. 1: A coarse and a fine covering for the curve

xa—xy

2

rxz—xy-yz:

0 {see Example 3 in §4).
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Clearly, the covering method needs no information about particular
solutions or even the number of solution curves. On the other hand, it
requires a criterion for testing whether a box x€IR" contains no solu-
tion of (1.1) (i.e. [(F,x)=8), and thus can be discarded from the
covering set. The simplest test uses an interval extension of F, i.e. a
mapping from D' C " s IR™ (also denoted by F) such that

Xex » FIX)EF(x);
clearly

0¢F(x) = L(F,x)=8.
If the interval extension is also continuous, so that in particular
Fix).» FIX) if x » ¥, then, for sufficiently small boxes, this test
excludes any point not on the solution set. Since there are many ways
to construct continuous interval extensions for functions defined by
arithmetical expressions (Moore [121). this shows the feasibility of
the approach. However, in this form the method is very slow (cf. Morgan
and Shapiro [111); hence more sophisticated tests are needed to speed
up the process and to yield narrow enclures without using too many
boxes. We discuss the covering method in more detail in Section 2. In
Section 3 we give some details about the solution of linear interval
equations, required for a more refined test for discarding irrelevant
parts of a box. Sample results for a particular realization of the

covering method are presented in Section &.

The terminology used in this paper follows Neumaier [14,15]. In parti-
cular, IR and IR" denote the set of real closed intervals, and of in-
terval vectors of dimension n, respectively. x, X, ¥. and elx) de-
note the lower bound, upper bound, midpoint, and radius of xEIR“. int x
is the interior of x€IR", and 0S := [inf S, sup S] (with 0s =@ if S =@)
denotes the interval hull of a bounded set S C IR". Thin intervals
(interval vectors) are those with x = x. Furthermore, we shall need
the ternary operator I, defined for a,b,x € IR by

(1.3) Fia,b,x) = 0{¥ex | 3%=B for some 3ie€a, Beb}.
Ma,b,x) is either an interval, or the empty set, and it can be

computed from the endpoints of a,b,x as
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b/a n x if O¢a,

O(x ~ int [b/a,b/al) if b>Dea,
(1.4) Ma,b,x) = o
‘ O(x ~ int [b/a,b/a]) if b<0e€a,

X if 0€a,b.

" Apart from some compares, the calculation of M({a,b,x) requires at most

one floating-point division if x20 or x<0, and at most two otherwise.

o) ing the soluti et

In this section we discuss the following diagram describing the various
ingrgdiants of an algorithm for adaptively covering the solution set

[(thﬂ) of the bound-constrained nonlinear system

(z.1) FI¥) = 0, Yex?,

where F: 0 c R" = 8™, m<n, and xUerp.

enter initial box no cho&se a box from
2T ?
into stack stack SMpLy/ the stack

yes
CEEEE) discard irrelevant
‘parts of the box
+ < yes box empty? >
no
es box_small? >
no
A bisect box

no S taeh Full] ente; halved boxes
into stack

yes

v
stop (stack
overflow)
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Remarks concerning the practical implementation are given with
reference to the programming language PASCAL-SC (see [1,4]), which was

also used to compute the numerical results in Section 4.

(i) The stack. Since the order in which the boxes are processed is im-
material, the list of boxes can be simply stored in a last in-first out
‘stack. This is simply an array stack of boxes, together with an integer
last which remembers the last entry of stack used at the present stage.

const nov = {(number of variables)  bmax = (stack size};

type box = arrayll..nov] of interval;

var stack: array[1..bmax] of box;
A box x is entered into the stack by

last := last+1; if last ¢ bmax then stack(last] := x;
and chosen from the stack by

if last > 0 then x ;= stack[lastl; last := last-1;
The stack is empty if last = 0 and full if last > bmax; if this happens
the algorithm stops. An empty stack indicates the successful completion
of the algorithm; a full stack indicates failure due to lack of storage
|bmax too small) or unreasonably high accuracy requirements (test for

smallness too strict).

{ii) Discarding irrelevant parts of the box. This is the heart of the

algorithm. Let us assume that F is given by an arithmetical expression
and that the interval evaluation F(xﬂl of F at the interval box is
defined. Then we can compute F(x) for all boxes x C xu, using the
interval arithmetic provided e.g. by PASCAL-SC. If 04F(x) then x
contains no solution point and is discarded (i.e. replaced by 8). Since
Fix) generally overestimates the range {F(¥%) | Xex}, there may or may
not be a solution point in x if 0€F(x). In this case we try to speed up
the algorithm by attempting to find a smaller box x' containing all

solutions in x.

We illustrate the method in the case m=1, n=2, where planar curves de-
scribed by one equation in two unknowns are sought. In this case, the
problem is simpler since it can be treated without using linear alge-

bra. For the sake of clarity we write our equation, restricted to a
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2-dimensional box, as

f(X,Y) = 0, Yex, Vey,
where x,y € IR, and denote by fx and fv interval extensions of the par-
tial derivatives with respect to the first and second variable, respec-
tively. The mean value theorem gives

0

£IX,¥) = f(?.g)ofy(?.nlc§-g:
= AU, y) e LB ) (XX f 1) (-y)
for suitable E€x, M€y, hence

(2.2) F%-x)+B(y-y)+C = 0 for some iea, Beb, Tec,

‘where

" (2.3) a=flx,y), b= flx,y), c=flx,y).
On the computer, c will also be a small interval, due to outward round-
ing interval arithmetic. If O¢a,b then (2.2) implies

: . bly-yl+c
(2.4a) x € x' = (5 = it ) n x,

‘ g alx-x)+c

(2.4b) y €y = (g = ) ny,
and often, x',y' are considerable improvements over x,y. In particular,
this is likely the case when x and y are narrow intervals since then
the intervals a,b defined in (2.3) will also be narrow. If 0€a or D€b
then we cannot use both formulae of (2.4) but we can exploit (2.2) by

using the ternary operator I defined in (1.3). We get the enclosures

(2.5a) ¥ € x' = X-T'{a,bly-yl+c,x-x),
(2.5b) Yey:

]

y-Tib,alx-x)+c,y-y).

Since x-x,y-y < 0, the evaluation of I' takes at most one real divi-
sion, If it turns out that one of the intervals x' or y' computed by
(2.4) or (2.5) is empty, the box (x,y) contains no solution point and
can be discarded; otherwise the algorithm proceeds with (x',y') in

place of (x,y).

In the general case we have to consider the problem

(2.6) FIX) = 0, ¥ex
for a subbox x of the initial box xn. Using a center 7€x (which takes
the place of (x,y) in the above consideration of the case m=1, n=2),

~

we have for each x € L(F,x) and each i= 1,...,m a relation of the form
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2.1 0= (%) = FL(Z)+F (811 (R-2) for some elex.

Useful choices for the center ¥ are the midpoint or one the the
corners of x. Let us write
X-Z Frig), Fo(2)
~ 1 1
d := ' .= i s '
1 Fm(E ).Fm(zi

(2.8) ded:= ( ‘;z ). X €A = (F (x),F(Z));

»2

so that

note in particular that dz0 if the center is chosen as #=x. Using
(2.8), we can formulate (2.7) as a homogeneous linear interval equation

(2.9) X3 = 0, Kea, ded.
(Note that d20 if §=§.) 1§ this linear interval system is found 1in-
compatible then x can be discarded; the homogeneous formulation (2.9)
is preferred to the inhomogeneous formulation

X' (%-3)=-F(3), A€F'(x)

in order to enhance the recognition of incompatible systems for ill-

conditioned Jacobi matrices F'ix).

Homogeneous linear interval equations are considered in Section 3;
apart from tests for inconsistency we shall generalize (2.4), {2.5) to
construct an interval vector d' € d such that (2.9) implies ded'. 1In
this case, the active part of the box X is contained in the subbox
x*=¥+d', and we may replace Xx by x' without losing the covering
property of the set of boxes.

The derivative enclosures required in (2.8) can be calculated recur-
sively in PASCAL-SC (Rall [18)), requiring arithmetical expressions for
the F.1 {but not for their derivatives). In fact it is more efficient to
replace the derivatives by interval slopes which satisfy similar recur-
sions (Krawczyk and Neumaier [8], Neumaier [161)) and yield a matrix A
also satisfying (2.9), but with narrower coefficients than those

obtainable by (2.8).
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(iii) Check for empty or small box. After having tried to make the box

smaller in (ii), we might have succeeded in discarding the whole box;
in this case we proceed with the next box from the stack. Or we might

have reduced the box to such small size that the specified accuracy

- requirements are satisfied; in this case the box is printed (or marked
.on a screen) and then discarded. As criterion for a box x to be small

we used in our implementation

0 .
(2100 elx,) elx;)/res; for i = 1,...,n,

" with integers resi specifying the resolution; an additional test could

be based on function values, printing and discarding a box x when the

‘enclosure F(x)nAd for the range of F over x is small,

(2.11)  |fix)nAd] < 7,

with a small number 1 specified in advance.

We emphasize that, while every solution point of (2.1) is contained in

some of the boxes printed (if the algorithm stops with empty stack), it

'is not guaranteed that every box printed contains a soclution point;

also the argument in Section 1 which showed that every X with F(X)#0
was discarded at some stage depends on arbitrarily fine subdivision,
i.e. holds only for €,nm » 0. However, it is possible to derive suffi-
cient conditions for the existence of a solution point in a box x,
similar in spirit to the existence tests discussed in Qi [17] and

Neumaier [16].

(iv) Bisection. If the reduced box is neither empty nor small, the box
is split into two boxes which are then replaced into the stack. To
guarantee finite termination and to enhance narrow intervals in the
entries of (2.8), it is sensible to bisect the box in the coordinate

with the largest radius. So x is split into x1 and xz, where

v 2 _ v -
LI [Ek.xk]. X = Ixpaxd
1 2

X =%, = 8. If 1 % 'k,

1 i 1
and the index k satisfies o(xk)!resk 3 glxillresi for all i*k. Clearly,
after n's nested bisections, rix) := max(e(x1jlres1....,plxnllresnj has

been reduced to 52_5r(x0]: hence after at most n-1092[r(xulfe) nested

bisections, a subbox is discarded. Since the active stack size (given
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by the variable last) equals the number of nested pisections used to
create the current box, it follows that a stack size of 0(n log e'1l is
suffic;ent to store all intermediate boxes. A more detailed count shows
that in fact a stack with
n q(xgl
pmax = 1 + L[ 109, oo~
i=1 .
boxes is enough. For small g, this worst case bound is rarely achieved,

and often bmax = 1+{n*1-m)-1092(r[xn)!s) is a more reasonable choice.

3. Homogeneous linear jinterval equations

In this section we consider the homogeneous linear interval equation

(3.1)  Rx =0, Kea, ¥ex,
where ACIR™" and x€IR", msn. (This covers the problem (2.9) with d in
place of x and n+1 in place of n). We are interested in interval enclo-
sures of the solution set of (3.1), defined as

(3.2) ¢ .= (¥ex | AX=0 for some ReAl,
and in particular in conditions which guarantee that (3.1) is incon-
sistent, i.e. [=8. By a result of Beeck {31, the solution set has the
simpler characterization

(3.3) [ = {¥ex | DeAX}.
In general, [ has a very complicated shape, and the smallest interval
enclosure xopt = 0L seens to be very difficult to find. Even the deci-
sion whether [=8 or not seems to require exponentially many operations.
However, if the entries of x have constant sign then [ is a convex
polyhedron in g" (Beeck [31), and in this case, our problem can be
viewed as a multi-objective linear programming problem. We show this
for the case x20. Here AX = [5}.1?] whence

(1.4) [ = (XeR™ | xs¥sx, AXSO<AR} (if x20)
is defined by linear inequalities. Therefore standard linear programm-
ing techniques can pe used to decide whether [=8, and if this is not
the case, the 2n problems

minimize !;i subject to XetL




NS

Lo-

determine the lower and upper bounds of the components of xnpt. How-
ever, a rigorous treatment in the presence of rounding errors is more
complicated (cf. Krawczyk [8], Jansson [5]), and we have not used this

approach.

‘Thus. we content ourselves with sufficient conditions for I[=@, and for
‘less‘tﬁan optimal interval enclosures of L. A simple test can be

; obtained by looking at each component separately. From (3.1) we find

K%y = - L X% €-L Ajpxy.
i3™3 o 1k*k K j ik®k

Using again the ternary operator I' defined in (1.3), we get the

improved enclosure

(3.6) X.er(a;.,-L A, x, ,x:) (i=1,...,n).
: J 1j Kt ik k'™ 3
To reduce the work needed to compute (3.6) we write
n
P. = A,.x_, 8. e ERea 8 := E A, xi = s_.+p
J 1373 J Kk$3 ik"k k=1 ik"k g g

For all j, we then have E:Ejfej, §=§j+5j, hence

8 = [-Ej,-sjl = [Bj~§.9j—§].

- Therefore the improved enclosure (3.6) can be computed for fixed i in

0(n) operations by the program piece
good := true; s := 0
for j := 1 to n dea
begin p(j] := Ali,j)*x[j1; s := s+plj) end;
good := 0 in s;
if good then for j := 1 to n do
begin minuss.inf := p[jl.sup -< s.sup;
minuss.sup := pl[jl.inf -> s.inf;
gamma (A[i,j),minuss,x[j],good) end;
where gamma (a,b,x,good) denotes a procedure which sets good := false
if Mla,b,x) = @, and otherwise overwrites x by Mla,b,x). Clearly, we

can use each equation in turn for a repeated improvement of the box.
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Because of the analogy with the classical Gauss-Seidel iteration method
for linear equations we call this improvement method the generalized
Gauss-Seidel method, and refer to going with (3.6) through each
equatiun once as one sweep of the method. Applied directly to (3.1),
the generalized Gauss-Seidel method 1s usually not very efficient, but
the performance can improve drastically when the linear system U3, 1)y A8
preconditioned by multiplying it on the left with a real mxm-matrix C.
This yields the system

(3.7) X'%¥ =0, Kr=cKeca, ¥ex,
and the generalized Gauss-Seidel method is now applied to (3.7), 1.e.
with CA in place of A. As yet we have no conclusive results about the
best choice of C, but in analogy with the case of square inhomogeneous
linear interval equations (surveyed in Neumaier [15]), it seems plausi-
ble to take C as an approximate inverse of a matrix # composed of m
linearly independent columns of some matrix XeA. In our program we
chose c=B"', using row pivoting to select %, and then performed two

sweeps of the generalized Gauss-Seidel method to improve the box.

We end this section by explaining why the homogeneous approach has an
advantage over the inhomogeneous formulation. Consider the square
inhomogeneous system

(3.8) B3 = &, Bes, Ben, Zez,
where BEIR™™ b,zeIR™ and the related homogeneous system

(3.9) X% = 0, RKea := (B,-b), Xex:=(}).
To make the point, consider the special case of (3.8) where B and b are
thin, B is singular of rank m-1, and the system is inconsistent, i.e.
(8,-b) has rank m. (In general, the situation is similar whenever (3.8)
is inconsistent and B is singular or ill-conditioned.) Then the stan-
dard way of solving (3.8) by preconditioning with an approximate mid-
point inverse C leads (due to roundoff) to a matrix C with huge ele-
ments, and all information in (3.8) is lost after multiplying by C. On
the other hand, row pivoting assures that in (3.9) one of the columns
of B is replaced by -b, thus leading to a reasonable C, and generalized
Gauss-Seidel will (at least in the thin case) almost certainly detect

the inconsistency in the second sweep.
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4, Numerical examples.

In this section we report on some calculations done with the MS-DOS

version [1] of PASCAL-SC on an Olivetti M24. In most cases we list the

" number f of boxes considered (for each box, one function+slope call and

one lihear_systsm solve is required), the number b of boxes in the

' final covering, the maximal stack size s, and the execution time t.

~ Example 1. Pairs of cubic equations of the form

e 2
ﬂix X 40, X, +O_X X, +Q, X =0,

-l s et e it
2 2 3 2 _
u5;112+u7x1x2+u811x2~u9x2+u10x2+u11x2+u12 =0

arise in combustion chemistry. In the box x1E[B,1]. xze[u,1], we find

for the coefficients given in Morgan and Shapiro [11] a single solution

box
J 165,

-6 333 -3
590 '

10 °, x,=1.0237169 x10

x1=ﬁ.3k9808 2 075

[(The results do not agree with those of [11], probably due to some mis-

‘print there.) We have f=342, b=1, s=29, t=11mi15s when res =res but

1 22
wi;h res1=1onnres2 — reflecting improved scaling of the problem —, the

answer is found much quicker (f=59, b=1, s=24, t=2m21s). This illus-
trates the need to develop an automatic, self-scaling bisection

procedure.

Example 2. Robot manipulation leads to systems of 8 polynomial equa-
tions in 8 unknowns. With the data from Morgan and Shapiro [11], we
find 16 solutions in the initial box xie[—1,1] (i=1,...,8), covered by
16 boxes. We have =240, b=16, s=8, t=53m05s. Sample coordinates for

the first box found:
91
82

B4b  _ 13
= 0.991322415 .

K = 0.1844315553;, x3=-0.9547284344

K5=-0.91115$?9582, Xq

Example 3. The 1-dimensional manifold defined by

xa—xyzéxz—xy-yz =0, x€[-5,51, yel-3,3]
is, for different resolutions, covered by the set of boxes shown in the
introduction (Fig.1). The covering method correctly detects three
curves, two of which intersect. For the highest resolution, f=1043,

b=808, t=15m33s.
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Example 4. Ushida and Chua [24] consider the following pair of

equations for a simple tunnel diode circuit:

3, 2
] 2.59v1*£.58v

(4.1) 0.43v
(4.2) Vg u1+v2+3.21.

The covering method for (4.1) correctly detects two components curves

- 3 2 =
1 = 2,5v2 10.5v2+11.ﬂv2 & §

one of them closed, and the subsequent calculation of vin from (4.2)
leads to the transfer characteristics shown in Fig.2. For (6.1), we
have f=1021, b=883, t=14m33s, and the transformation (4#.2) takes 10
further minutes.
Example 5. The polynomial system

z = xzoyz, az = y2+z2
has as solution set a figure 8 curve if a<l, two touching closed curves
if a=1, and an isolated point (at zero) plus a closed curve if a>1. The
projection to the x-y plane is a so-called hippopede (Lawrence [10]).
For a=1.1 and x€[-1.5,1.5), yel(-1,11, z€[0,4] we get a covering whose
projection to the x-y plane is shown in Fig.3. (The spurious boxes are
due to the influence of the singularity at zero, and disappear when the

resolution is increased). We have f=1719, b=841, s=1%, t=55m10s.

Example 6. Rheinboldt [19] describes a system of 5 polynomial equations
in B unknowns y1,...,y5,u1,....u3 arising in aircraft equilibrium prob-
lems. For u1=n.1, u3=0 we get a covering of drawing accuracy with
£=1518, b=588, s=14, t=4h33Im20s

We note that for curve coverings (n=m+1, Examples 3-6) the number of
boxes considered was less than 3 times the number of boxes in the final
covering. The time required for each box considered is roughly propor-
tional to nz, so that the 0[n3)~complexitv for solving linear systems

is not yet observed for small n.

Example m n f/b tl(f-n2)
1 2 2 342.00 0.493s
2 8 8 15.00 0.207s
3 1 2 14,28 0.224s
4 1 2 1.16 0.214s
5 2 3 2.68 0.214s
6 5 6 2.58 0.300s
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Fig, 3: A covering for the hippopede.

Some of the examples were also tried on other microcomputers; the

following speed-up times were observed on Examples 2 and 5:

6.5 ATARI
6 -7 KWS SAMBE8K (without BAP)
4 12 - 18 KWS SAMGS8K {with BAP)
12 KWS EBGAB/20 (without BAP)
Fin emark

All systems solved above were low-dimensional polynomial systems, and

it seems that such systems are solved easily and reliably by the cover-
ing method. There is no problem in solving piecewise polynomial systems
(with rational expressions involving also abs, max,min) when the slopes
are calculated as in Neumaier [16]. This makes the method particularly

suitable for problems in computer aided geometrical design (CAGDI).
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and
cover-
ystems
slopes

larly

The situation may be different for high dimensional systems — in parti-

cular if these involve functions not defined for all values of the

'variables —, since, due to overestimation, the method may generate ini-

tially an exponential number of boxes. (Locally, however, it can be
shown that the number of boxes is exponential only in the manifold di-
mension p and not in m or n.) A simple example of this situation is the
system F(x)=0, where Fiix)=2xi/[1-xi+xi)-1, x €0.1] {i=1,...,n). In
this case a natural approach may be to combine the covering method with
continuation techniques to save searching large empty regions: simply
choose the next box near a box containing a solution point, taking in

account the direction in which the curve leaves the current box.
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