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Abstract. Several frameworks for mathematics have been constructed in the
literature. To avoid the paradoxes of naive set theory, Zermelo and Fraenkel
constructed a type-free system of sets, based on first order predicate logic, while
von Neumann, Bernays and Gödel constructed a system with two types, sets and
classes. These and related systems suffice for the common needs of a working
mathematician. But they are inconvenient to use without pervasive abuse of lan-
guage and notation, which makes human-machine communication of mathematics
difficult.

In this document, we construct a new framework for mathematics, designed as
part of the specification system FMathL for the formalized communication of
mathematics between humans and machines, in a way close to the actual practice
of mathematics. The framework is described in such a way that this description
can become part of the FMathL system itself.

All axioms are given in the form of familiar existence requirements and properties
that are used by mathematicians on an everyday basis. Thus mathematicians
trusting the axiom of choice and hence the law of excluded middle can readily
convince themselves of their truth in their private (but publicly educated) view
of mathematical concepts.

The exposition is such that students exposed to the typical introductory mathe-
matics courses should have no serious difficulty understanding the material.
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Chapter 1

Motivation and informal set-up

1.1 Introduction

The FMathL mathematical framework is designed to be a formal framework
for mathematics that will allow – when fully implemented in some programming
language – the convenient use of and communication of arbitrary mathematics
(including logic) on a computer, in a way close to the actual practice of mathe-
matics, with emphasis on matching this practice closely. The acronym FMathL

is an abbreviation for Formal Mathematical Language. General background
material for the FMathL approach to mathematical modeling can be found on
the web site [54].

FMathL looks like the mathematics accessible to undergraduates, and it specifies
only concepts and properties that are (or should be) familiar to any mathematics
student who mastered the standard introductory courses. Of course, only those
concepts are discussed that are basic in the sense that they form the raw material
for mathematical discourse, while everything else (e.g., groups and vector spaces)
can be constructed on their basis in a straightforward way.

FMathL is an axiomatic framework for mathematics that formalizes the essen-
tial properties of the basic mathematical objects and only these. The user of
FMathL as a foundation of mathematics will know by the design of FMathL

which properties are essential in that they can be relied upon in each implemen-
tation, and which properties cannot be relied upon since, being implementation-
dependent, they are accidental byproducts of a particular implementation.

The present document constitutes the syntax-free, abstract part of the FMathL

mathematical framework, defining the object level of mathematics by giving
axioms specifying the properties required of mathematical objects. Included is
that basic part of mathematics that is needed to be able to formally write in an
easily readable form everything books on predicate logic, axiomatic set theory,
and calculus (which we may regard as constituting traditional foundations) need
to be able to define their subject. This is slightly more than the minimum that
needs to be available to discuss the foundations in terms of itself, a process I call
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6 CHAPTER 1. MOTIVATION AND INFORMAL SET-UP

reflection.

There will also be a specification part, with a concrete syntax given in terms
of an explicit grammar (Neumaier et al. [58]), and an implementation part,
which describes how to implement the concepts used to define the object level
by reflection inside the object level; cf. the companion paper by Neumaier &

Schodl [57]. Ultimately, there will be also an implementation in some program-
ming language, so that any (human or computer) system that understands this
programming language will be able to process FMathL and will thus understand
mathematics, in the sense that it can perform like a mathematician all routine
aspects of mathematics.

The separation into these parts has several advantages: It frees us from the need
to formally discuss syntactical issues (grammars and parsing) within the abstract
part. It frees us from the need to consider implementation issues within the
specification part. It allows different modes of specification and implementation
of concepts in FMathL.

Chapter 2 and Section 3.7 contain the mathematically relevant part of the doc-
ument. We only prove a few theorems. But we mention without proof many
familiar properties that can be deduced from the axioms given in a straightfor-
ward way. The remaining sections mostly discuss the motivation for and the
philosophy of FMathL and its design.

In the remainder of Chapter 1, we discuss some aspects related to the design of
the FMathL mathematical framework. This discussion is informal, and touches
– as any foundational system must – a number of philosophical questions regard-
ing mathematics and how it is practiced. In particular, we clearly differentiate
between the subjective and objective aspects of mathematics.

Chapter 2 then builds the axioms and definitions that constitute the abstract
version of the framework. To complete the foundations of mathematics, Chap-
ter 3 rounds the picture by discussing some further basic terminology and their
implications, without introducing further axioms.

Acknowledgments. I want to thank the members of our FMathL seminar
for many discussions on the subject, in particular Hermann Schichl and Flaviu
Marginean for playing the role of advocatus diaboli during the evolution of the
present material, and Peter Schodl, Kevin Kofler, Waltraud Huyer, and Mihaly
Markot for commenting on earlier versions of the manuscript. I want to thank
my brother Wilfried Neumaier for discussions about Ockham’s razor and nominal
objects, and their history, Martin Bunder for discussions on illative combinatory
logic, and Andries Brouwer, Martin Fuchs, Johannes Schoissengeier, and Mike
Shulman for useful comments on earlier versions of the document.

Partial support by the Austrian science foundation FWF under contract number
P20631 is gratefully acknowledged.
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1.2 The need for a mathematical framework

The December 2008 Special Issue on Formal Proof of the Notices of the Amer-
ican Mathematical Society [1] features a collection of articles by Thomas Hales,
Georges Gonthier, John Harrison, and Freek Wiedijk, practitioners and theorists
of formal proofs and computer-assisted proofs. These articles explore the use of
computers in proofs, both extending mathematics with new results and creating
new mathematical questions about the nature and technique of such proofs.

The time seems ripe for creating the foundations for an automatic mathematical
assistant that combines the reliability and speed of a computer with the ability
to perform at the level of a good mathematics student, with respect to mathe-
matical knowledge and proofs, the ability to understand ordinary mathematical
language and to solve standard exercises, the ability to organize mathematical
information, and a searchable database of mathematical knowledge, so that it
provides advanced support for students, professional researchers, and industry in
mathematical work.

Mathematicians know that they already have a very expressive language opti-
mized for expressing things in any desired degree of brevity or detail, for maxi-
mal intelligibility and easy overview. The common mathematical language must
be learnt by everyone anyway, hence it should be the basic language for any
intelligent system designed for the ordinary scientist.

To gain quick acceptance among mathematicians, a mathematical research sys-
tem implementing such an assistant must therefore be based on mathematics as
mathematicians practice it, with their language, their editing tradition, and their
informality. The system must be both simple on the low level, building seman-
tics into a very low-level representation, and friendly on the high level, building
high-quality interfaces.

Barendregt [6] and Beeson [10] are recent surveys of the history and dif-
ferent styles of current proof assistants (automatic theorem provers); none of
these proof assistants has the user-friendliness required to make these systems
routinely useable by mathematicians. Current semantic computer support for or-
dinary mathematics notation in projects such as MathML (Miner et al. [17]) is
improving but still quite limited; see Kofler et al. [39] for a number of current
limitations.

Within our FMathL project, the computational mathematics group of the Uni-
versity of Vienna is preparing the ground for a mathematical research system
called MathResS (pronounced “mattress”, for a good, comfortable foundation
of mathematics on the computer). More about the FMathL project, its vi-
sion, and partial results towards this goal can be found at the project web site
http://www.mat.univie.ac.at/~neum/FMathL.html#FMathL

MathResS is designed explicitly with the goal that scientists will like to use
it because it provides mathematical contents and proof services on their laptops
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– as easily as Latex provides typesetting service, the arXiv provides access to
preprints, Google provides web services, Matlab provides numerical services, or
Mathematica provides symbolic services –, in a way that they can easily compre-
hend and that, unlike with present systems for formalized mathematics, does not
take undue amounts of extra time on their part.

As a first step, one needs to create a conceptual basis for mathematical notions
that is close to the actual practice of mathematics but specified unambiguously
and precisely enough so that it is programmable to make it understandable by a
machine without an excessive, human-assisted overhead in presenting mathemat-
ics of interest to the system.

Formalized mathematics. Doing mathematics directly and fully formalized
in ZFC (Zermelo-Fraenke set theory with the axiom of choice), say, is like doing
application programming on a Turing machine: Already the simplest standard
practices become long, messy, nearly incomprehensible, error prone, and very
time consuming.

According to Barendregt & Wiedijk [8], creating a complex mathematical
document from the decision to write it (but after the results were already more
or less obtained) to final publication currently takes about 4 hours/page. (In
my experience, this includes the time needed for material selection, writing, cor-
rection, proofreading, reading and answering referee’s reports, etc.) Creating a
corresponding formally verified document with current systems takes, according
to the same source, about 10 times as long, and the result is nearly indigestible
for a human.

In my opinion, this huge overhead – which makes these systems unattractive for
all but the most determined potential users – is due to the huge distance between
the input the current generation of human-assisted automatic theorem provers
can accept and the input a human theorem prover accepts. One reason for this
is that current theorem provers express mathematics in terms of very concept-
parsimonious foundational systems, often some form of axiomatic set theory.

In contrast, ordinary mathematical language has a rich collection of concepts
adapted to optimally expressing what mathematicians want to say. Anyone who
has tried to reduce some nontrivial but elementary mathematics – such as the
construction of the field of rational numbers – rigorously to set theory knows
that this reduction is both error-prone and results in very lengthy and hardly
digestible formulas, looking much more like low level programming code than like
ordinary mathematics.

This is why, in practice, mathematicians pay only lip service to current founda-
tions. Not even Nicolas Bourbaki’s foundational book Theory of sets (Bourbaki

[13]), the pinnacle of mathematical rigor, proceeded far with fully formalized set
theory, and uses a host of – from the point of view of formalized mathematics
based on ZFC forbidden – abuses of language and abuses of notation, jus-
tifying it in the introduction with words such as “But formalized mathematics
cannot in practice be written down in full [...] We shall therefore very quickly
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abandon formalized mathematics”, or “As far as possible we have drawn atten-
tion to abuses of language, without which any mathematical text runs the risk of
pedantry, not to say unreadability”, while still claiming that “our series lays claim
to perfect rigor: a claim which is not in the least contradicted by the preceding
considerations, nor by the need to correct errors which slip into the text from time
to time.”

Since mathematics as an easily communicated discipline depends a lot on such
abuses of language, set theory, while sufficient to provide a foundation of math-
ematics “in principle”, is unable to fill the role of a foundation of mathematics
efficiently enough for its easy use on a computer.

Nothing much has changed since Bourbaki’s treatise. In a recent (2007) review of
the QED manifesto [62], a well-known 1994 vision of the theorem proving com-
munity, Freek Wiedijk [71] remarks: “Currently formalized mathematics does
not resemble real mathematics at all. Formal proofs look like computer program
source code. For people who do like reading program source code that is nice, but
most mathematicians, the target audience of the QED manifesto, do not fall in
that class.” – “If one writes a formalization of a mathematical result, then one
has to work quite hard, and then at the end one has a tar.gz file with several
computer program-like files in it. However, unlike a computer program, those files
have no immediate further use. The fact that they fully describe the mathematics
has some aesthetic appeal, and it is nice that they make it completely certain that
the mathematics is correct, but the unformalized version of the result already was
beautiful and understandable, so not much is gained.” – “If we want to make
some progress of getting people actually to use formal mathematics, it has to be
close to the way mathematics already is being done for centuries.”

This is why, with FMathL, I opted for designing a new mathematical framework
that gives up the principle of maximal parsimony of concepts in favor of a more
generous basis that makes life easier for the user.

Among other things, this requires that the FMathL mathematical framework
must be aware of all possible ambiguities in the common mathematical language,
and have ways to either avoid these ambiguities or to resolve them from the
context. Thus, in this document, we pay attention to language constructs that
lead to ambiguity.

1.3 Some design principles

In this section, we discuss some important principles forming the background
for the design of the FMathL mathematical framework. Initially, the main
concern was just to get a concise, flexible, and easy to use formal representation
for mathematics on a computer, but it turned out that to achieve this, a full
representation of complete foundations of mathematics was needed.
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Traditional foundations. To clarify the distinguishing features of the FMathL

approach, we contrast it with some traditional foundational systems, namely
ZFC, Zermelo–Fraenkel set theory with the axiom of choice (Zermelo [74],
Fraenkel [26], Skolem [68]), illative combinatory logic (Schönfinkel

[66], Curry & Feys [20]), and, to a smaller extent, CCAF, the category of

categories as a foundation (Lawvere [46, 47]), which all provide ontologies
for the concepts of mathematics.

ZFC, a system of first order predicate logic for sets with a single nonlogical
relation ∈ (membership) builds mathematics upon the primitive notion of a set.
Every mathematical object (including numbers, pairs, and functions) is regarded
as a set. Infinitely many axioms, expressed by a finite axiom scheme generating
these axioms, specify the properties of the membership relation. ZFC is regarded
by the majority of today’s mathematicians (if pressed for a commitment) as the
accepted foundation of mathematics.

Combinatory logic is an algebra with a single operation (application), three distin-
guished objects, the combinators I, K, and S, and three simple axioms governing
the behavior of the combinators. It serves as a model for the λ-calculus, whose
illative extensions (see, e.g., Bunder [15]) build mathematics upon the primitive
notion of a function. Every mathematical object (including numbers, pairs, and
sets) is regarded as a function. The illative version is a bit less prescriptive in this
respect, calling general objects obs, but functions and classes (both are special
obs) overlap in a nonstandard way.

In the (differing) versions of the categorical foundations CCAF given by Makkai

[50] and by McLarty [52], there is a distinction between numbers, simple sets,
and functions. (In the original version [46] of the set part of McLarty’s version of
CCAF, called ETCS, the elementary theory of the category of sets, every
set is even regarded as a mapping.) But since, in ETCS, a set cannot contain
another set, what mathematicians regard as sets of sets are no longer sets but
functions!

Clearly, these ontologies cannot be true simultaneously. In ZFC, not every set is a
function, while in the λ-calculus (as in the set theory of von Neumann [59], the
precursor of NBG, the von Neumann–Bernays–Gödel theory of classes),
not every function is a set, and in the categorical approach, things depend a lot
on which author one follows.

Thus these ontologies make contradictory assertions about the interpretation of
objects. The ontologies are equivalent only in a very weak sense. While they
all allow to represent arbitrary mathematical concepts with their characteristic
properties, the objects having these properties have additional accidental prop-
erties extraneous to mathematical agreement, and the objects may differ in these
accidental properties when represented in the different ontologies. (See Section
2.7 for further accidental properties of different constructions of the concept of a
real number within ZFC.) And to map them to the current categorical founda-
tions, one even needs to translate sets to different kinds of objects, depending on
which sort of elements they contain.
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Interpreting Ockham’s razor. This is an unsatisfactory state of affairs for
proper foundations of mathematics. Good mathematical foundations should have
a precise specification that tells which properties of a mathematical object are
essential, i.e., characteristic and indispensable for their use. They should not allow
one to make any inferences about accidental properties that are extraneous to
mathematical usage. They should not need a translation process that leads from
the concepts as used in practice to the concepts as demanded by the foundations.

The situation is analogous to the definition of a list in computer science. One
might give a definition in terms of the way a list is represented and accessed in the
memory of a computer; this may differ in different implementations. However,
what counts for the user are only a few characteristic properties of a list, namely
those that allow it to perform its intended role. These properties (defining the
interface) can be specified without knowing the implementation (how they are
realized in a particular environment), and tell the essence of what a list is. On the
other hand, it is good to know about different implementations since this reveals
something about implementability of lists, which may matter for efficiency.

Similarly, ZFC, combinatory logic, and category theory provide nonisomorphic
models implementing – very parsimoniously, but from a computational point
of view very inefficiently – some common structure that captures the essence of
mathematical concepts. The essence is precisely the part that must be represented
in order for the model to deserve being called an implementation of mathemat-
ics. (See Awodey [5] for a discussion of the essence, there called mathematical
content, from a categorical point of view.)

One goal of the present document is to present an axiomatic framework for
this common structure that formalizes the essential properties and only these.
FMathL makes available in a precisely defined way the full expressivity of stan-
dard mathematics in the form taught at universities and used by mathematicians,
but without any accidental requirements. (See McLarty [51] for an alternative,
categorical approach with similar features as regards accidental features, but the
approach is described in terms that are unfamiliar to many mathematicians.)

The minimalistic approach used in ZFC and combinatory logic, where everything
is reduced to a minimal number of initial concepts from which all others are
constructed, is an embodiment of a particular use of a basic principle of modern
science, “frustra fit per plura quod potest fieri per pauciora”, quoted in Newton’s
Principia Mathematica, that we should not use more degrees of freedom than
necessary to model a phenomenon. Today, it is called Ockham’s razor, after
William of Ockham [60], the most prominent medieval logician, although the
principle goes back to Ockham’s teacher Duns Scotus; cf. Buckner [14].

Noticing that foundations must be primarily clear, unambiguous, and objective,
FMathL uses Ockham’s razor in a different way: Instead of cutting away as many
concepts as possible, FMathL aims at cutting away all accidental, subjective
properties of concepts that are introduced by the minimalistic approaches.

A specification approach. The FMathL mathematical framework therefore
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takes a specification-oriented axiomatic approach in which the basic mathematical
concepts are specified by their properties rather than by a construction from
primitives where the objects inherit unwanted accidental properties.

As the concept of a vector space allows a basis-independent development of lin-
ear algebra by abstracting from specific coordinates, although the latter may be
introduced for specific constructions, so the FMathL approach abstracts from
the specific implementation of mathematical concepts, although the concrete im-
plementation is important for each particular subject.

Systems like ZFC, combinatory logic, or CCAF may then be seen as possible
subject levels for the implementation of a mathematical framework, rather than
as their ontology.

As a result, in contrast to ZFC, combinatory logic, and CCAF, the FMathL

mathematical framework does not have minimal symbolic foundations without
any redundancy; instead, the foundations are generous, easy to comprehend, and
reflect easy specification principles on the highest possible level.

Every elementary activity that a mathematician may want to perform is reflected
in our axiomatic system. For example, mathematicians often pick an element
x from a set A. In FMathL, the resulting element is denoted by Choice(A)
(Bourbaki [13] writes εA in the Hilbert tradition), and its obvious properties
are specified by Axiom A19.

Reasoning in mathematics is – from a computational point of view – comparable
to reasoning about a complex programming language: for comfortable use, one
needs to axiomatically require all constructs and their properties rather than
reduce the latter to primitive operations on a Turing machine. The fact that there
are many elementary activities that mathematicians perform naturally leads to
correspondingly many constructors, and hence to an axiomatic system with many
axioms.

All properties required axiomatically in FMathL are given in the form of familiar
existence requirements and properties that are used by mathematicians on an
everyday basis. Thus mathematicians trusting the axiom of choice and hence –
cf. Section 3.1 – the law of excluded middle can readily convince themselves of
their truth in their private (but publicly educated) view of mathematical concepts.
This is the best approximation to the ancient ideal that axioms should be self-
evident that I was able to achieve.

Note that all mathematicians already have (or should have) these concepts – or
a close approximation of them – in their private implementation of mathematics.
In this document, we refer to the private implementation of mathematics in a
subject capable of understanding mathematics as the subject level. The sub-
ject level, the domain of brouwer’s radical intuitionism, is clearly dependent on
who is doing mathematics, But for our mathematical culture, the essential arena
is where mathematics is communicated: Different subject levels have a common,
though somewhat ambiguous informal language with which the subjects exchange
their mathematical ideas, theorems, and proofs.
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Foundational studies usually idealize the situation by abstracting from the differ-
ences in subject levels, and call the resulting idealized subject level the metalevel

or the background theory, and its language the metalanguage. However, it
is clear from the literature that different authors (and even different publications
by the same author) use different metalanguages. Talking of subject levels recog-
nizes this explicitly. Our exposition will make the point clear that mathematics
is independent of the details of how it is implemented in different subjects, since
equivalent mathematical frameworks can be defined in all subject levels in which
common mathematical language is understood.

FMathL only codifies what is done anyway in mathematical practice. The
exposition is such that students who were exposed to the typical introductory
mathematics courses should have no serious difficulty understanding the material.
They may look at an arbitrary page and will find that (with only few exceptions)
they recognize all formulas as familiar mathematics or as simple definitions or
exercises based on it. This makes it easy to trust the system.

Like in combinatory logic but unlike in ZFC or CCAF, every object whose ex-
istence is asserted can be constructed by means of a finite formula. This makes
FMathL a suitable basis for the computer representation of mathematics. How-
ever, in contrast to combinatory logic, these formulas are much more transparent,
representing their meaning more expressively, and they are very close to mathe-
matical practice.

As a result, doing mathematics in the FMathL mathematical framework is like
programming in a very user-friendly structured programming language – it even
tolerates a certain amount of sloppiness without impairing understanding.

Consistency questions. Gödel’s second incompleteness theorem [31] implies
that no sufficiently rich consistent system of first order logic can prove its own con-
sistency – though inconsistency is provable by exhibiting a contradiction. There-
fore, consistency of a foundational system must be accepted on faith, fed by
imagination and prior experience.

It may be argued that a minimalist approach makes it less likely that an unde-
tected inconsistency is present. But the minimalistic naive set theory was for
25 years believed to be consistent before contradictions were discovered, such as
Russell’s paradox (Russell [65]) concerning the set of all sets not containing
themselves.

This shows that inconsistency is difficult to predict even for simple systems. in
particular, a necessary condition for trusting the consistency is that the axiom sys-
tem is easy to comprehend in its consequences. For example, some axioms of ZFC
are almost incomprehensible before one has introduced extra concepts and nota-
tion to build intuition. Moreover, the ZFC axioms must be carefully formulated,
introducing nonintuitive restrictions that forbid the derivation of contradictions.

The situation is similar for combinatory logic, where the axioms are deceptively
simple and intuitive. But – as history has shown – figuring out a system that can
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represent all mathematics without leading to inconsistency proved difficult and
fallacious. Indeed, the origins of both the λ-calculus and combinatory logic were
systems that – like naive set theory – at first looked fine but later turned out to
be inconsistent [42, 19, 67].

The surviving canonical repaired versions of combinatory logic and the λ-calculus
are restricted to describing recursive functions. In contrast to the situation in
naive set theory, where ZFC, the standard repaired version, has the full mathe-
matical expressivity, fully expressive consistent extensions of combinatory logic
to illative combinatory logic (Barendregt et al. [7]) and other type-free lan-
guages (Feferman [22, 23, 24]) do not seem to have reached a definite state
where people agree on a standard reference version.

Thus it is not minimality or intuition, but time-honored familiarity with the
consequences of an axiom system that makes us confident that the system is
consistent, and hence useful for founding mathematical practice. But familiar-
ity with the consequences requires comprehensibility, i.e., the expression of the
axioms and their consequences in familiar terms.

FMathL directly builds upon these familiar terms, thus represents a shortcut
to comprehensibility, and hence to confidence in its consistency. The formulas of
the FMathL system are essentially those traditionally used by mathematicians,
resulting in easy readability. Also, in contrast to ZFC, its axiom system is finite,
though not as small as that of combinatory logic.

It may be possible to give relative consistency proofs of FMathL relative to
ZFC and/or illative combinatory logic by implementing a model of FMathL in
these systems. It may also be interesting to implement a model of FMathL in
FMathL itself that uses only a minimal number of concepts and axioms from
FMathL. However, all this is outside the scope of the present document.

The best of all worlds. Like ZFC, FMathL has a primitive concept of sets,
a choice function, and a number of axioms directly inspired from ZFC, though
expressed in a more readily digestible form.

Like illative combinatory logic, the FMathL system builds mathematics on top
of a propositional calculus emerging from the system itself, rather than on top of
some predicate logic. It also takes from combinatory logic the need of functions
as primitive objects and the idea of combinators; cf. Section 2.11.

Like CCAF, the FMathL mathematical framework can be regarded as a category
of all categories, though with additonal structure.

But the FMathL mathematical framework restricts the extent to which differ-
ent mathematical concepts are related to what is really necessary. In particular,
unlike in traditional foundations, FMathL does not make the assumption that
a number or a function is a set, or that a set is a function. Thus – similar to a
system of Beeson [9] – being a set or being a function are independent prop-
erties of mathematical objects in FMathL, and there are important classes of
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primitive objects that are (without further assumptions) neither sets nor func-
tions: statements, numbers and texts. On the other hand, FMathL considers
pairs and tuples to be functions with the first few natural numbers as arguments,
whose images are the first, second, etc. entry of the pair or tuple.

Assuming the consistency of ZFC, one can still discuss models of ZFC inside
FMathL by working inside a ZF-algebra, a mathematical structure defined by
the Zermelo-Fraenkel axioms (see, e.g., Awodey [4]). Every ZF-algebra contains
natural ZF-numbers according to the usual construction, but these ZF-numbers
are different for different ZF-algebras, and have nothing to do with the intrinsic
natural numbers beyond the fact that both sets are countable. ZF-numbers are
just one countably infinite set with a canonical well-ordering like many others, on
each of which one can build a Peano system. (Indeed, the Peano axioms do not
really define the natural numbers, but rather the concept of a counted infinite
set!)

Concept ambiguity. Gödel’s first incompleteness theorem (Gödel [31]) says
that any sufficiently rich consistent system of first order logic contains a statement
S that is true for an intended model of the system but cannot be proved in the
system. Since the system obtained by adding the negated statement ¬S to the
original system is consistent (a proof of inconsistency would give a proof of S),
it has a model by Gödel’s completeness theorem (Gödel [30]), which says that
everything valid in arbitrary models of a system of first order logic is provable.
Therefore S is independent of the system: its truth value is undetermined, both
in the sense that neither its truth nor its falsity can be proved, and in the sense
that there are two models in which the truth values of S are different – and hence
implementation-dependent, subjective.

This observation implies that any system based on classical first order logic in
which one can formalize all mathematics will have inherent ambiguities, no matter
how it is formalized. For a mathematical framework, the different models are like
different possible subject levels – indistinguishable with respect to the specified
properties of the object level, but possibly differing in things not decidable on
the basis of these specifications.

Thus we may view undecidability as the lack of a complete specification of a
concept: Only the decidable part of mathematics is clearly communicable and
hence has an unambiguous, objective meaning. The remainder is implementation-
dependent and inherently subjective since different subjects may give different
answers, true in their private implementation.

The insight that a completely unambiguous specification of the precise contents of
all mathematical concepts – by specifying a mathematical framework uniquely up
to isomorphism – is impossible (at least in classical first order logic) frees us from
the curse of having to strive for making everything unambiguous on the basis of
the axioms given.

On the contrary, for the sake of convenient specifications, FMathL makes quite
liberal use of this freedom, and decides as little as possible without losing the
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essence and usefulness of the common mathematical concepts. As usual in math-
ematics, more specific versions can be obtained by making additional assumptions
beyond those specified in the common mathematical framework, such as the con-
tinuum hypothesis, or large cardinals, in an analogous way as number theorists
assume the (so far undecided) Riemann hypothesis.

The lack of complete determination is common in the FMathL approach to the
foundations, since FMathL concentrates on paving the roads travelled by math-
ematicians (i.e., on enabling them to easily specify the properties they actually
use) rather than fencing them in by enforcing unnecessarily rigid rules (that try
to eliminate all possible misuses of the formalism). In particular, we commit
ourselves as little as possible to aspects deemed irrelevant for the actual usage of
a concept.

Thus FMathL only formalizes the common ground of most mathematicians,
taking a particular stance only when conflicting but well-established traditions
require this. This makes FMathL compatible with multiple, possibly conflicting
philosophies regarding the meaning of terms outside their intended use.

In particular, the abstract object level defines the FMathL ontology of mathe-
matical objects and makes – unlike traditional foundations – statements, num-
bers, texts, functions, and sets (possibly) different kinds of objects. In a further
reflection process, the implementation level then realizes the (reflected) objects
in a particular way, in one of many possible alternatives.

1.4 Subject levels and object levels

And God said, Let there be light, and there was

light.

(Genesis 1:3 [38])

In this section, we give an intuitive, informal picture of how the FMathL ap-
proach works. In Chapter 2, we make this picture precise at the level of usual
mathematical standards of rigor.

In the foundations of mathematics, it is necessary to carefully distinguish between
the subject level and the object level.

People (and machines) may have their subjective views about what a mathe-
matical object, a number, a function, etc. is, as long as they agree on the prop-
erties specified in the axioms, and make the same definitions based on these.
The subjective views constitute the subject level, whereas the part on which
there is agreement, enforced by some standard (in our case by the axioms for
a mathematical framework), constitutes the object level. Since the axioms un-
derdetermine the object level, there is much room for subjective variation. But
if everything communicated can be reduced to the axioms and the definitions,
perfect communication is possible in spite of this variation.
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Thus there are different subject levels, namely at least one for each subject

doing mathematics. (See Section 3.4 for the discussion of an infinite hierarchy of
subject levels for the same subject.) Within each subject level, there is a carefully
structured domain, the object level, private to each subject and nevertheless
public in a certain objective sense to be made precise.

For foundational purposes one mostly works within a fixed subject level referred
to as the subject level. The corresponding object level is then referred to as the
object level.

Subject level and object level relate to each other like mind and matter. All
concept formation, reasoning, and discussion happens on a subject level like in a
mind, or between subject levels like between minds. Like matter by the mind, the
object level is accessed only through reference: pointing to something, describing
something, a flash of insight triggered by viewing the context of something, etc..
How this may result in objective communication is discussed in Section 3.2.

On the object level, formally defined in Section 2.1, we have an infinite collection
of mathematical objects, related by a number of intrinsic binary operations;
some objects are individuals distinguished by a canonical name. Objects simply
are, static, timeless; given together with infinitely large operation tables for the
intrinsic operations. The latter is not to be taken literally; it is just a handy
intuition for the maps defining each operation. Mathematicians usually only
create a tiny finite part of such an operation table.

Objects behave like instances of abstract data structures in computer science
(lists, heaps, stacks, etc.): we know nothing about them except what is given
through the axioms describing their constructors and methods, and it is up to the
implementation how to represent and access them in a memory whose properties
are irrelevant for the ordinary user and matter only for a particular implementa-
tion.

Objects are combined, manipulated and reasoned about on the subject level:
Only subjects can do something with objects, and each subject can manipulate
only the objects from its own object level.

In particular, all mathematical language used, all mathematical formulas, and
even the axioms and definitions belong to the subject level, although they point
to objects on the object level and establish relations between such objects.

For example, carrying out an operation defined on the object level is an activity
on the subject level. One looks up the two objects to be combined by an operation
in the corresponding operation table and then reads off the result from the table.

Introducing an object into the discussion by saying “Let n be a natural number”
is another activity on the subject level. The subject ensures by this activity that
the context represented on the subject level contains the observation that n is a
natural number that was not present there before; cf. the quotation introducing
this section. In this sense, the subject level is the operating system on which the
object level (an infinite piece of structured memory) can become alive.
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Asserting truth. The concept of truth is handled separately by the concept of
contexts. Certain objects of the object levels are characterized as being state-

ments (see Section 2.4), capable of being asserted as truths.

In common mathematical language, mathematical objects are mentioned in two
different ways, either by simple reference, or to declare an object to be a truth;
in the latter case, the object must be a statement for the declaration to make
sense. When talking about the first case, we say that we reference the object;
when talking about the second case, we say that we assert the object. In both
cases, we mention the object by writing an expression for it; cf. Section 2.2 be-
low. In common mathematical language, this language is used explicitly only for
emphasis or when necessary to avoid ambiguity, since usually the context together
with the form of the object determine uniquely whether an object mentioned is
referenced or asserted. For example, when we say, “consider the statement x = y”
then x = y is mentioned but not asserted, while when we say, “suppose x = y”
or “we find x = y”, then x = y is asserted. As part of the common mathematical
language, it is therefore assumed to be clear on the subject level when an object
is asserted.

A context (see Neumaier & Marginean [56] and Section 2.5) is a collec-
tion of statements considered to be true. What is then actually true is context-
dependent: In a given context, something is true iff it is part of the collections
of truths in the closure of this context. The closure of a context is closed under
three extremely simple forms of reasoning – false reflection, and reflection, and
equal reflection – that are basic for mathematical reasoning, and in fact enough if
one adds the double negation law; possibly also under other principles not spec-
ified explicitly. In particular, it is assumed that every closed context contains
all instantiations of the assertions in the axioms of a mathematical framework
(defined below) and hence all of its consequences.

Mathematicians often change contexts, even within a single line of argument. For
them, a context is something that is “known” in the weak sense of being assumed
to be true (i.e., to contain all currently relevant truths), often only temporarily
for the sake of exploring its consequences. Changes of contexts are effected by
various means.

An assertion on the subject level (such as “suppose that x = y”) changes that
context, adding the asserted statement (here “x = y”) to the old context to form
a new one, thereby declaring it to be true. The context remains the same iff
the statement was already in the context. The closure remains the same iff the
asserted statement was true in the old context; otherwise it changes, sometimes
drastically. Reasoning in some context amounts to adding to a context statements
that can be derived from statements already in the context by the three reflection
rules and their consequences, or by asserting statements that are instantiations
of known axioms, propositions, or theorems.

A context is inconsistent if its closure contains all statements – including “false
is true”, the presence of which already ensures that the context is inconsistent.
In a given context, a statement is a contradiciton if its assertion leads to an
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inconsistent context.

In principle, to check whether x = y, say, holds, one looks up in row x and
column y of the operation table of = the result of evaluating this expression, and
then checks whether this result or its negation is contained in the closure of the
current context. If so, we know that x = y is (currently) true or false. If not, we
know nothing about the validity of x = y. Of course, whether we can actually
perform these activities depends on whether we are able to construct explicitly the
relevant part of the operation table and of the context closure. This is not always
possible, whence the truth of a statement may be undecidable. In particular,
this will often be the case for mathematically unmotivated statements such as
Pointwise = Set + Small.

Often, within a mathematical text, the context is augmented, reduced, or changed
completely as needed, according to established informal principles. In particular,
in indirect proofs and in arguments by cases, extra assumptions are introduced,
to be removed again when a goal or a contradiction has been reached. A change
of context may even alter the meaning of words and symbols. A change of context
may be indicated in mathematical arguments by headings like “Chapter 3” and
phrases such as “let . . . ”, “Case 1. . . . ”, “Contradiction. Therefore . . . ”, “We
assume . . . ”, “This concludes the proof”, “As a preparation, we consider . . . ”,
“In this section, we write . . . ”, etc.. Students of mathematics usually learn early
in their studies the cues that tell when and how contexts change; in this document
we simply assume them known. (See the papers by Kolev [40] and Kuehlwein

[45] on the Naproche project for a formal approach to such cues.)

Using the subject level as an informal basis, the object level is carefully specified
in a way that, ultimately, everything is checkable by a machine, as far as the
theoretical limitations on computability allow. The part of the subject level that
is expressible formally on the object level is termed objective; everything else
is termed subjective. Because of the common properties of the object levels
of different subjects, and because of the standardardized way of referencing the
object level, objective communication is possible about everything objective.

In order to reason objectively on the subject level, one embeds the part of the sub-
ject level that is relevant for a particular discussion into the object level, thereby
achieving objective communicability. The process achieving this embedding in a
manifestly equivalent manner is called reflection.

1.5 The subject level

In the present document, the language on the subject level is used in the in-
formally rigorous manner in which mathematicians usually communicate their
concepts and theories.

Logic as part of mathematics. The traditional setting for the foundations of
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mathematics is predicate logic, which is based upon a syntactical approach. Here,
a rigid syntax for well-formed formulas defines the object level; the subject level
is concerned with the definition, parsing, and manipulation of formulas. Later,
the semantics of formulas is specified separately by a corresponding model theory.

In direct contrast, the language on the subject level of FMathL is used in the
informally rigorous manner in which mathematicians usually communicate their
concepts and theories. The resulting syntax-free abstract approach formulates
on the subject level everything that happens in mathematics; in particular, all
expressions and formulas belong to the subject level. The formulas have an im-
mediate semantics since there is a fixed object level in which the mathematical
objects are defined. Later (in another paper [58]), the syntax of admissible for-
mulas and verbal constructs is specified separately by a corresponding formal
grammar that reflects standard mathematical conventions.

In short, while the traditional approach tries to reduce mathematics to logic by
treating the foundations of mathematics as part of logic, the FMathL approach
reduces logic to mathematics by treating logic as part of mathematics.

I consider this more natural since neither the syntactic approach to logic nor
model theory, which gives it some semantics, can be rigorously defined without
exploiting on the subject level the standard mathematical tools. As in any field of
study where conceptual precision is needed, the precision is obtained by phrasing
the concepts in the field by means of mathematics. In particular, conceptual
clarity for both mathematics and logic is onbtained by basing it on mathematics.

Also, as will be argued in Section 3.2, not the logical proof – anyway available
only for a tiny fraction of today’s mathematical edifice – but the mathematical
proof is the essence of the reliability of mathematics in the real world.

Requirements for the subject level. From a linguistic point of view, we
assume that a subject level can interpret the usual informal mathematical lan-
guage (to the extent used in the axioms, definitions, and proofs in this document)
and accepts classical logic and a set theory in which unions of countably many
countable sets are countable, and in which quantification over all subsets of a
countably infinite set make sense.

Thus, on the subject level, we have available the standard machinery of classical
logic including quantifiers, and the usual set-theoretic and algebraic language for
describing and arguing with mathematical objects. In particular, we know on the
subject level the meaning of concepts such as a subset or a field.

One possible suitable formalization of the language of the subject level would
be constituted by ZFC, Zermelo-Fraenkel set theory with the axiom of choice,
together with Bourbaki-style abuses of language and notation (though these are
both difficult to formalize and difficult to avoid). However, different implemen-
tations of the subject level in a language such as illative combinatory logic, a
type-theoretic logical framework in a computer system, or category theory, ap-
pear possible. Moreover, the reflection process described briefly in Section 3.4 will
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take the FMathL object level itself as a subject level, within which a reflected
object level will be constructed.

However, due to our requirement that subjects understand the informal mathe-
matical language used in this document, the rigorous formalization requires in
each case a nontrivial amount of work.

While on the subject level the various implementations may differ, on the object
level it is as if they did not, thus achieving behavioral equivalence in terms of the
portion of mathematics that can be communicated objectively.

There need not be a definite commitment on the subject level. Indeed, it is likely
that each (human or computer) subject doing mathematics has its own, personal
subject level, only imperfectly corresponding to one of the formal subject levels
mentioned. The important thing is not the subject level itself but the agreement
of what can be said in a uniform way about all object levels defined on different
subject levels.

In a theory of admissible subject levels, it would be required that the corre-
sponding object levels are equivalent in the sense of allowing precisely the same
deductions. In the absence of such a theory, one hopes that a subjective check
for the validity of the axioms for a mathematical framework in one’s preferred
subject levelin one’s preferred subject level suffices to achieve this purpose.

Reflection. The semantics of the subject level and all syntactical issues are
specified later as part of a well-defined objectification (or, in computer science
terms, reification) process based on systematic reflection, which makes objec-
tive the properties of the subject level needed for the description of the FMathL

mathematical framework.

We shall use on the subject level only constructs that are later (in [57] and [58])
reflected into the object level. Thus, ultimately, each concept will exist both
as a concept on the object level and as a corresponding metaconcept on the
subject level. In particular, we shall have text that reflects the metatext used to
specify the properties required of the object level. This will ensure that we can
rigorously reason about the way mathematicians both define concepts and reason
about these concepts.

Thus, we follow the usual bootstrapping practice of mathematical teaching, in
which one first learns about the fundamental mathematical concepts on a more
naive basis before following a course on formal foundations.

Reflection amounts to teaching the part of the subject level relevant for doing
mathematics faithfully to a machine that understands only the object level. Ev-
erything a mathematician does on the subject level while doing mathematics is
then representable objectively on the object level, and therefore can be repro-
duced by a machine.

Achieving this in a natural way close to actual practice is the primary objective
of the FMathL approach to the foundations of mathematics.
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1.6 The object level

In the following, we create a specification of the object level, general enough and
flexible enough so that it becomes fairly easy to construct a faithful model of the
subject level inside the object level. This will be done at a later stage by defining
within the object level an algebraic structure called a mathematical framework

(see the companion paper [57]), whose definition reflects the concepts and axioms
for the object level that are specified in the following on the subject level only.
In a mathematical framework it is then possible to reflect (within certain limits)
upon the subject level via the object level.

This makes the object level objective in the sense that it makes unambiguous
communication possible between two subjects whose subject levels implement
the object level in different ways, but both satisfying the specifications.

Indeed, one can prove a completeness theorem for mathematical frameworks as
defined by the FMathL axioms, so that a statement holds in all mathematical
frameworks precisely when the statement is provable. Thus everything objective,
and nothing else, is provable. Since each proof can be represented as a finite
piece of text in the common mathematical language, it can be reflected into the
object level and then be communicated unambiguously between subjects.

Metaconcepts. Notions usually referred to by the same name may denote dif-
ferent entities on the subject level and on the object level. Thus we need to
distinguish between metaobjects (on the subject level) and objects (on the ob-
ject level), metasets and sets, metaoperations and operations, metatexts and
texts, metacountable and countable, metatheorems and theorems, etc.. However,
adding the prefix meta to every use of a metaconcept would clutter the language
too much. We therefore add the prefix meta only where it seems necessary to
remain unambiguous; the unqualified name refers to the object level or to the
subject level depending on whether or not, in the context of its use, a concept
with that name is (already) defined on the object level.

For example, the set O of all objects in the object level is a metaobject, and will
be called a metaset once sets are introduced on the object level (which we do in
Section 2.14). Similarly, the operation ∈ on O is a metaobject, and will be called
a metaoperation once operations are introduced on the object level (which we
shall do in the companion paper [57]).

A fully unambiguous way of proceeding – necessary (only) for a machine inter-
pretation of FMathL – will be deferred to the specification level of FMathL

[58].

Axioms. The main assumptions about the object level are formulated in 27
axioms, consecutively labelled by A1–A27. Certain properties within the axioms
are labelled by (P1)–(P46). Any mathematical structure satisfying these axioms
will be called a mathematical framework; see Section 3.1.
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The axioms are chosen in a way that, as a mathematician, one can readily convince
oneself of their truth in one’s private (but publicly educated) view of mathematical
concepts. In this way, the familiarity with traditional mathematics implies a
familiarity with the consequences of the FMathL axioms, and facilitate trusting
the axioms to be consistent. (See Section 3.2 for a further discussion of this
topic.)

Our language is informal, appropriate to the subject level within which the object
level is defined. In particular, all axioms are formulated in the usual, informal
style that mathematicians use. Formalizing the axioms themselves, and formally
defining the language for doing so, is part of an additional reflection process that
will be discussed in a separate paper (Neumaier et al. [58]) on the FMathL

specification level.

In our exposition, the axioms are complemented by comments that explain the
assumptions, by definitions that introduce additional notation for their flexible
use, and by properties deduced from the axioms. But we only deduce what seems
necessary to see that all mathematics can be faithfully represented inside the
FMathL mathematical framework. The fully flexible notational surface layer
representing whatever mathematicians like to define is more complex, but only
exploits properties of the object levels already presented here. Its discussion is
therefore also delegated to [58].

In the following, we objectify

• mathematical objects – the material of the object level and how to combine
it (Sections 2.1 and 2.2),

• existence – the ontology of the object level (Section 2.3),

• statements – the representation of potential assertions and their conse-
quences (Sections 2.4 and 2.5),

• equality – the representation of abstraction from detail (Section 2.6),

• membership – the concept of belonging to an object (Section 2.7),

• numbers – the core of elementary mathematics (Section 2.8),

• texts – the dominant communication medium of mathematics (Section 2.9),

• application – obtaining values at specific arguments (Section 2.10),

• functions – the representation of transformations (Section 2.11),

• abstraction – the representation of properties defined by expressions (Sec-
tion 2.12),

• categories – the representation of mathematical structures (Section 2.13),

• sets – the representation of collections (Section 2.14),

• infinity – the representation of “and so on” (Section 3.3),
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• countability – the notion of counting objects (Section 3.5),

• quantifiers – the representation of something and everything (Section 3.6).

• paradoxes – the deduction of nonexistence (Section 3.7),

This allows us to objectify (in the companion paper [57]) mathematical frame-
works, of which the (reflected) object algebra of the FMathL mathematical
framework can be seen as a particular instance. This reflection process is further
discussed in Section 3.4 below.



Chapter 2

The axioms

Note that each axiom extends to the end of the paragraph containing the para-
graph. The discussion of the axiom begins with a new paragraph.

2.1 Objects

Axiom A1.
O is a fixed, countably infinite set whose elements are called objects.

The object level consists of everything defined algebraically within O in terms
of the above operations and distinguished objects. Note that O itself is not an
object but only a metaobject.

Objects are given to the mathematical discourse only by reference; for example,
to say that 0 is an object only means that 0 is a label pointing to the object
represented by 0. For a discussion of our conventions for talking about objects
and their names (abstracted from common mathematical practice) see Section
2.2.

The countability assumption on the subject level has two important objectives.

(i) On the subject level, it gives quantification over all objects a foundationally
innocuous, nearly constructive interpretation to which not even Kronecker [44],
who said in 1886, “Die ganzen Zahlen hat der liebe Gott gemacht, alles andere ist
Menschenwerk” – that God made the natural numbers, but everything beyond is
made by man, would have objected. (For agnostics and atheists: Made by God
= isomorphicly given on each subject level.)

(ii) It ensures that it is possible to encode (as usual in mathematics) all objects in
terms of texts over a suitable finite alphabet. This can be done in many ways; one
of them is described and discussed in Section 3.5; it provides an FMathL ver-
sion of the Löwenheim-Skolem theorem (Löwenheim [49], Skolem [68]), which
says that every consistent theory in first order logic has a countable model. This

25
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theorem ensures that assuming O to be (meta-)countable is not a restriction of
generality. Since the details of the encoding are irrelevant for the foundations, the
present syntax-free abstract setting is sufficient to do everything of interest with-
out cluttering the presentation too early with a discussion of complex syntactical
issues on the object level.

But the Löwenheim-Skolem theorem also ensures that if there is some countably
infinite model then there is a model whose cardinality is any given infinite cardinal
number. Thus there is a multiplicity of possible nonisomorphic implementations
of the subject level. The concept of countability on the subject level is therefore
necessarily subjective - i.e., implementation-dependent. On the other hand, the
intrinsic notion of mathematical concepts, in particular that of countability on
the object level is objective, implementation-independent, and hence transferable
between different subject levels. Its meaning is the same in all subject levels.

Because of its fundamental importance for clarifying the reflection process, we
shall discuss countability on the subject level and the object level again after
having the mathematical framework fully defined. We shall find that the count-
ability assumption in Axiom A1 is only a convenience for the subject level, and
not an essential constraint. Indeed, it is shown in Section 3.5 that one could do
without it, and recover from each noncountable O a more or less canonical subset
of objects satisfying all axioms including countability on the subject level. Thus,
for practical purposes, there is no restriction in having assumed countability from
the outset.

Distinguished objects. In order to be able to reflect basic concepts from the
subject level inside the object level, the presence of certain objects must be pos-
tulated.

Axiom A2.
Among the objects in O are 29 distinct distinguished objects, namely 7 standard
objects denoted by the mathematical symbols

0 (false; cf. Axiom A5),

1 (true; cf. Axiom A5),

∅ (the empty set; cf. Axiom A10),

0 (zero; cf. Axiom A11),

1 (one; cf. Axiom A11),

N (the domain of natural numbers; cf. Axiom A11),

C (the domain of complex numbers; cf. Axiom A11)

and 22 auxiliary objects, denoted by the following words (in small caps to em-
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phasize that they should be regarded as single symbols):

Abs (the absolute value; cf. Axiom A12),

Char (the set of characters; cf. Axiom A14),

Choice (the choice function; cf. Axiom A20),

Cod (for defining codomains; cf. Axiom A21),

Const (for defining constant functions; cf. Axiom A20),

Conj (conjugation; cf. Axiom A12),

Dom (for defining domains; cf. Axiom A21),

Fun (for defining functions; cf. Axiom A18),

Hom (for defining homomorphisms; cf. Axiom A22),

Id (the identity; cf. Axiom A20),

Id (for defining local identity; cf. Axiom A21),

Inf (for the infimum of real numbers; cf. Axiom A13),

Intersect (defining arbitrary intersections; cf. Axiom A10),

Low (for lower bounds of real numbers; cf. Axiom A13),

Map (for creating maps; cf. Axiom A25),

Null (the empty text; cf. Axiom A14),

Pointwise (for defining expressions; cf. Axiom A20),

Set (the category of sets; cf. Axiom A23),

Small (for characterizing small sets; cf. Axiom A23),

Subsets (for power sets; cf. Axiom A27),

Text (the set of texts; cf. Axiom A14),

Union (defining arbitrary unions; cf. Axiom A10),

Intrinsic operations. Any computer implementation of mathematics must be
able to do in a finite number of basic steps every activity that mathematicians
perceive as a single step in their daily work. Thus the set of objects manipulated
must have corresponding intrinsic operations that account on the abstract level
for the activities constituting a single basic step.

On the implementation level, the intrinsic operations provide the basic construc-
tors for recursively constructing new objects from the few distinguished objects,
in the same way as one constructs in Peano arithmetic particular natural numbers
from the first such number by repeated application of the successor operation.
In this sense, all of mathematics is made constructively available in a bottom-up
fashion.

The sort of constructivism resulting in FMathL is different from that tradition-
ally going under the heading of constructive mathematics as done e.g., in Bishop

[12]. There constructing a real number, say, does not mean giving some partic-
ular string characterizing the number but being able to give an algorithm that
displays the digits of a decimal number expansion one after the other, identifying
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which one of the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9 it is. Similarly, any other
construction must give a definite, unique normal form representation in concrete
data of a particular sort that allows to decide trivially whether two objects are
equal.

In the FMathL form of constructivism, however, Choice({a, b}) – which we
will soon recognize as being the mnemonic way of writing Choice@ (a ⊔ b) –
is a finite string constructing a definite element of the object {a, b}; cf. Sec-
tion 2.7. It is either a or b, but it will never be known objectively whether
this element is a or b since there is no rule that would allow to deduce such an
identification. Thus one implementation of the FMathL mathematical frame-
work may have Choice({a, b}) = a, while another implementation may have
Choice({a, b}) = b, and a third implementation may not commit itself at all –
without any violation of the axioms, and without impairing the contents of the
mathematics communicated by the construct.

The decoupling of constructivity and decidability achieved by FMathL in this
way – in the spirit of Hilbert and Bourbaki – accounts for its flexibility in handling
arbitrary mathematical contents.

Axiom A3.
O admits 14 binary intrinsic operations ω that assign to any two objects
x, y ∈ O another object xω y. The set Ω of intrinsic operations defined on O is
disjoint from O and consists of the operations

∧ (and, defining conjunction, Section 2.4),

= (equal, defining equality, Section 2.6),

∈ (in or belongs to, defining membership, Section 2.7),

⊔ (together with, defining objects with at most two elements, Section 2.7),

+ (plus, defining addition, Section 2.8),

− (minus, defining subtraction, Section 2.8),

∗ (times, defining multiplication, Section 2.8),

/ (divide, defining division, Section 2.8),

& (append, defining concatenation, Section 2.9),

@ (at or of, defining application, Section 2.11),

⊓⊔ (image of, defining images of sets, Section 2.10),

| (selection, defining objects with elements of selected properties, Section
2.10),

→ (to, characterizing arrows, Section 2.13),

⋄ (following, defining the arrow product, Section 2.13),
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The equality sign is used as a binary operation symbol rather than as a relation
sign; we use x ≡ y to express that two objects x and y are identical as elements
of O.

The meaning of the operations and distinguished objects, and the properties re-
quired of them to give them this meaning, will be specified in subsequent sections,
which give our setting a semantic interpretation in terms of standard mathe-
matical practice. Note that there are many objects that can be constructed with
the intrinsic operations but are useless for doing mathemartics, just as there are
many chess positions that will never arise in actual play.

The few operations with noncanonical symbols, &, @ , ⊓⊔, |, ⋄, and ⊔ also cor-
respond to well-known mathematical operations usually expressed in a different
syntactic form. The standard mathematical notation for @ , ⊓⊔, |, and ⊔ will
be given in Section 2.2, and will be used later except on their first occurrence
and where absolutely necessary. The mnemonic symbols & for the concatenation
of text and ⋄ for the composition of arrows were chosen to avoid unnecessary
ambiguity.

The object level consists of everything defined algebraically within O in terms of
the above operations and distinguished objects.

2.2 Variables and expressions

We now look more closely at the way objects are referenced on the subject level.
This is done by means of expressions, special texts on the subject level given by
well-formed formulas involving only the names of distinguished objects and the
symbols for the primitive binary operations.

An expression of length L = 1 is a name denoting either one of the distin-
guished objects listed in A2 or – if not in this list – a variable, i.e., a named hole
for objects. Mathematicians are quite liberal in what they consider as a name for
a variable; so FMathL makes no particular assumptions about it.

An expression of (integral) length L > 1 is a text of the form (E ω E ′), where
ω is the symbol for an intrinsic operation, and E and E ′ are expressions whose
lengths sum to L. ω is called the final operation of E, its subexpressions are
E, E ′, and their subexpressions. Expressions of length 1 have no final operation
and no subexpressions.

Note that this happens on the subject level; names and hence variables and
expressions are metaobjects, not objects. Even when we say “let x be an object”,
x is just a name pointing to the object introduced by “let”; similarly, C, say, is
just a name pointing to the object characterized by Axiom A11 below. Objects
themselves are not accessible directly in mathematical discourse. This is necessary
since different subjects may have completely different implementations of the
“same” object.
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Note that ≡ is not an intrinsic operation; therefore x ≡ y is not an expression.
A formula such as x ≡ y involving an operation neither intrinsic nor defined on
the object level is called a metaexpression if it is otherwise formed according
the above prescription.

The substitution of objects for variables in an expression E is unrestricted. Such
a substitution is determined by an assignment of objects to each variable used
in E, followed by a recursive evaluation of all intrinsic (or derived) operations.
It results in an object E(), the result of evaluating E, depending on the as-
signment. Usually, the assignment is apparent from the informal context. A
definition by abbreviation is a formula (metaexpression) of the form

a := E

with an expression E all of whose variables are assigned in the informal context.
In actual usage, E is of course replaced by the corresponding explicit expression.
This definition expresses that a is the unique object E() obtained by substituting
for the the names in E the corresponding objects known from the informal con-
text, and evaluating the operations with which the subexpressions are formed,
giving intermediate results. In particular, a ≡ E().

The convention in common mathematical language, and hence also here, is that
a formula which looks like an expression is always treated as evaluated, i.e., as
reference to an object, except when the context requires the interpretation as an
expression. This is the case when the context mentions the word expression (or
formula, string, symbol, etc.) denoting the formula in question and in constructs
that involve bound variables, i.e., in λ-notation, in the curly bracket notation for
selection and images, and in quantified formulas.

For example, C is usually regarded as an object, namely (by Axiom A11 below)
the field of complex numbers, but occasionally not, e.g., in a context like “to be
able to express the FMathL axioms, we need on the subject level the character
C”.

Abbreviations are the simplest form of definition. Later, we shall meet other kinds
of definitions for which the same notation := is used: definition by abstraction in
Section 2.12, and self-referential definitions in Section 3.7.

Concerning possible ambiguities on the informal subject level, we simply note that
mathematical notation has always been ambiguous at times, in order to achieve
brevity and easy comprehensibility in the typical usage. Teaching mathematics
to the computer requires an awareness of all such ambiguities, and how to resolve
it. Good mathematical writing uses ambiguous formulations only when these
can be disambiguated easily from the informal context, making this resolution a
manageable task.

Thus, we do not exclude ambiguities from the subject level but only ensure their
unique interpretability in their informal context.
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To match traditional notation, we write expressions more liberally, with rules
that allow one to replace the liberal notation by one strictly conforming to the
above definition. In particular, we write

f(x) for f @ x, (evaluation)

f(x, y) for f(x)(y), (currying)

and similarly for f(x, y, z), etc.,

|x| for Abs(x), (absolute value)

x for Conj(x), (conjugation)

xy for x ∗ y, (multiplication)

IdA for Id (A), (identity on A)

{x, y} for x ⊔ y, (unordered pair)

f [Z] for f⊓⊔Z, (image)

{f(x) | x ∈ Z} for f⊓⊔Z, (image)

{x ∈ Z | f(x)} for Z | f. (specification)

Each of these notations will be explained again on first usage.

Note that in the last two formulas, the letter x is a dummy letter (usually referred
to as a bound variable) that is not part of the algebraic structure; hence it can
be replaced by any other letter distinct from Z and f (and other letters which
would be confusing in a particular context) without altering the meaning; e.g.,
{x ∈ Z | f(x)} and {z ∈ Z | f(z)} are just different (in the context usually
“telling”) ways of referring to Z | f . The only role of the bound variable is to
connect the formal algebra in O to the traditional notation on the subject level,
where we communicate many formulas using bound variables rather than using
algebraic operations.

We shall meet later numerous other defined notations including new operation
symbols such as ¬, 6∈, etc., which may be used in forming expressions, but which
could in principle be removed by substitution.

To be able to write expressions without unnecessary parentheses, we adopt the
convention that evaluation written as f(x) binds strongest, invisible multiplica-
tion binds stronger than explicit operations, the operator ¬ binds stronger than
all explicit binary operations, / binds stronger than ∗, which binds stronger than
+ and −, which bind stronger than ∈, 6∈, and ∋, which bind stronger than the
set operations ∪, ∩, and \ introduced later, which bind stronger than ∧, = and
6=, which bind stronger than ⇒ and ⇔, which bind stronger than ≡. Operations
of the same priority are applied from left to right. Only deviations from these
rules need to be marked by parentheses or by additional locally specified priority
rules; however, pairs of parentheses may also be added for the sake of clarity or
emphasis. For example,

1/2x = 1/(2x), 1/2 · x/y = (1/2)(x/y),

a + 1/a = a + (1/a), a − b − c = (a − b) − c.
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Local priority rules, where the priority is deduced from the context, are particu-
larly meaningful for the binding of ∧, = and 6=. In equational logic, one would
want ∧ to bind stronger than = and 6= (the convention used in [56]), while for
mathematics in general, one would like = and 6= to bind stronger than ∧ (the
convention used in the following), and uses the comma as a replacement for ∧
that binds weaker than = and 6=.

2.3 Existence

Mathematicians often reason with objects such as “the largest prime number”
whose existence is in doubt, in order to prove them either existent or nonexistent.
A famous example is the proof by Feit & Thompson [25] that there is no
noncyclic finite simple group of odd order, where much of the argument is about
“the smallest noncyclic finite simple group of odd order”, a nonexistent object
that at first seems quite respectable but, after several hundred pages of reasoning
based upon its properties, is shown not to exist. Other, existing objects like the
finite simple group called the monster, were later constructed by similar methods,
first finding property after property of this hypothetical group until its character
table and some important subgroups were known. From these, such a group was
constructed by Fischer & Griess [28] after additional work.

Thus there must be a stronger concept of existence of objects that goes beyond
the obvious fact that an object exists as an element of O (which is necessary to
reason formally about its properties).

Objects that do not exist in this stronger sense are traditionally called nominal;
they have a name (nomen) which defines the object but no real existence beyond
that name. The term “nominal” goes back at least to William of Ockham [60]
around 1320; the distinction between real existence (of primary entities = “protoi
ousiai”) and nominal existence (of secondary entities = “deuterai ousiai”) even
to Aristotle [2, 3] around 350 B.C..

According to Ockham, a definition (i.e. a simple or composite name for an object)
may be real (“quid rei”), signifying an absolute thing (e.g., a tree, whiteness,
taste, or an angel) or nominal (“quid nominis”), signifying a thing indirectly (e.g.,
white or length). Thus, for Ockham, an object such as a tree (corresponding to
urelements in a set theory) would have real existence, while an object such as
length (a function in a set theory) would have nominal existence only, and get
real existence only when evaluated (“length of the tree”).

Modern mathematics has a more liberal view of existence but still benefits from
the distinction between strong, real existence and weak, nominal existence. Nom-
inal mathematical objects (such as 0/0 in arithmetic) are also useful for writing
down formulas that do not make sense for all possible arguments (such as in
arithmetic x/y for x = y = 0), and to be able to reason about paradoxes (see the
discussion of Axiom A5 below, and Section 3.7).

The dual meaning of the term “exists” is naturally accommodated in the FMathL
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setting by assigning the weaker sense (metaexist = have existence as real or nom-
inal essence) to the subject level and the stronger sense (exist = have existence as
real essence only) to the object level: All objects metaexist, but some of them are
nominal and have no “real” existence. The FMathL propagation rules, how-
ever, are adapted to current mathematical practice, and hence quite different
from those suggested by Ockham.

Axiom A4.
We say the object x exists if xω y or y ω x holds for some object y and some
intrinsic operation ω; otherwise the object x is called nominal. All distinguished
objects described in Axiom A2 exist.

Thus the result of operations involving at least one nominal object is always a
nominal object. This restrictive rule is chosen so that logical arguments with
nominal objects will not give rise to inconsistencies. While nominal (i.e., nonex-
isting) objects can be named and manipulated on the subject level, they have a
very inferior ontological status compared to existing objects. Nontrivial logical
arguments with nominal objects are very limited, essentially being restricted to
their occurrence in expressions involving bound variables, see Section 2.12 below.

The value of nominal objects lies in the fact that we can form objects without
restriction, without having to bother about their existence. We can then inves-
tigate their properties under the assumption that the object exists, and if this
leads to a contradiction, conclude that the object must in fact have been nominal
only. Thus nominal objects are typically formed only to discard them once proved
nominal.

Axiom A4 implies that if x and y are objects for which xω y exists for some
primitive operation ω then x and y exist. Thus one can infer from the existence
of the result of an expression the existence of all its intermediate results. For
example, the assertion of x ∈ Z entails the existence of both x and Z. The
FMathL axioms usually imply the existence of interesting objects in this indirect
way.

On the other hand, one can usually not infer the existence of xω y from that of
x and y, though this can be proved from the axioms under suitable restrictions.
In particular, the substitution of objects for variables in an expression E is not
always meaningful since the result E() of evaluating E may be nominal. We say
that the expression E is defined for an assignment if E() exists.

2.4 Statements

Now we reflect the concept of a statement. Statements are those objects on the
object level that can be meaningfully asserted on the subject level; the assertion
itself is not a statement but only a metastatement. Asserting a statement means
declaring it to be true; unasserted statements need not have a definite truth value
“true” or “false”.
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FMathL writes false as 0 and true as 1. The statement 1 is the unconditionally
true statement, and 0 is the unconditionally false statement.

FMathL also identifies equality of statements with their logical equivalence.
(Equality in general will be discussed in Section 2.6.) Informally, the assertion
that a statement is true is the same as the assertion of the statement itself. This
motivates the following axiom.

Axiom A5.
We say that the object x is a statement if x exists and (x = 1) = x. The objects
0 (false), 1 (true) are statements. If the objects x and y exist then x = y is a
statement. If x and y are statements then x ∧ y is a statement; otherwise x ∧ y
is nominal.

According to our conventions on terminology, we need to refer now, after this
axiom, to an assertion on the subject level as a metastatement rather than as
a statement. For example, all axioms are true metastatements.

Note that we may make use of = in this axiom, since we know already that
x = 1 and (x = 1) = x are objects, although their properties are specified only
in Section 2.7 below. Analogous remarks apply to other usages of operations
explained only later in the text.

For existing objects x, the object x = 1 is a statement, and – consistent with the
definition of a statement – we take the assertion of x to stand for the assertion
of the statement x = 1. On the other hand, a nominal object x cannot be
meaningfully asserted since x = 1 is again nominal, hence not a statement.

Thus what is usually called a meaningless statement is not a statement in the
FMathL sense but a nominal object whose assertion is meaningless. This gives
the resulting logic of assertions a 3-valuedness on the subject level, with truth
values “true”, “false”, and “meaningless”. Because of Axiom A4, the latter prop-
agates through all operations in the fashion of the weak 3-valued logic of Kleene

[41]. (On the object level, there are many more truth values – one for every nomi-
nal object, and one for every equivalence class of equal statements. Because many
statements are undecidable, there are many such equivalence classes.)

More generally, it follows from Axiom A4 that the assertion of an expression im-
plies the existence of all objects from which the expression is built. In particular,
one cannot meaningfully assert any expression involving a nominal object. This
drastically restricts the handling of nominal objects, and eliminates contradictions
from paradoxical definitions; see Section 3.7.

Thus, as usual in mathematics, we may agree that, outside of the defining axioms
A1–A27 (which we specify with special care), all formulas involving primitive
(or derived) operations implicitly assume that the objects involved and all im-
plied intermediate results exist. Exceptions from this rule are always indicated
explicitly.

The assertion of x = x says precisely that x exists, and the assertion of ¬(x = x)
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is contradictory when meaningful. On the other hand, our discussion implies
that it is impossible to write down an expression in x that holds precisely when
x is nominal, or when x is a particular nominal object. Thus nominality can be
handled only on the subject level.

Note that equating the assertion of x = 1 with that of x implies that the iden-
tity mapping on statements is almost a truth functional in the sense of Tarski

[69], whose undefinability theorem asserts that no sufficiently rich interpreted
language can represent its own semantics. In the classification by Leitgeb [48]
of properties a theory of truth should have but cannot, what fails in FMathL is
the first desirable property, namely that truth is an (everywhere defined) predi-
cate. In FMathL, this failure manifests itself in the presence of nominal objects
representing apparent assertions.

By Axiom A5, = and ∧ are logical operations on statements. Note that a test
x = n for equality between an arbitrary object x and a nominal object n results in
a nominal object that is not a statement. Similarly, as there is no axiom asserting
anything about x∧ y if neither x nor y is a statement, conjunction is useful (and
used) only for statements, and is completely indeterminate otherwise. As already
mentioned in the introduction, such a lack of complete determination is typical
for the FMathL approach to the foundations.

The operations ⇔ (iff), ⇒ (implies), ¬ (not), and ∨ (or) are defined in terms
of the postulated ones by writing, for statements x and y,

x ⇔ y for x = y, (equivalence)

x ⇒ y for x ∧ y = x, (implication)

¬x for x = 0, (negation)

x ∨ y for ¬x ∧ ¬y = 0. (disjunction)

Like ∧, the result of these operations is taken as nominal if x or y is not a
statement. A similar remark applies to all later definitions that are restricted in
their arguments.

Propositional logic. All logical operations will get their usual meaning through
the reflection rules introduced in Section 2.5.

If x is a statement, asserting ¬x means declaring x to be false. To get classical
reasoning, we postulate the following axiom. (See the discussion in Section 3.1
for a possible variant based on intuitionistic logic.)

Axiom A6.
For any statement x,

(P1) ¬1 = 0, ¬¬x = x.

The usual laws of propositional logic for the logical operations follow from these
reflection principles together with this axiom.
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2.5 Contexts

The axioms so far imply that all existing unconditionally true statements are
equal, although they need not be identical as elements of O, and all existing
unconditionally false statements are equal, too.

To discuss the validity of arguments about statements we need to formalize a bit
of the subject level (still inside the subject level) and how it is reflected on the
object level. We refer to any (meta)set of statements as a context. Σ denotes
the context consisting of all statements.

All this happens on the subject level; contexts are not sets in the object level
sense of Section 2.14. Like ≡, they are meaningful only on the subject level.

Axiom A7.
There is a closure (meta)operation that assigns to each context Γ another context
Γ, its closure, such that, for all contexts Γ, ∆,

Γ ⊆ Γ = Γ, (2.1)

Γ ⊆ ∆ implies Γ ⊆ ∆, (2.2)

and the reflection rules

0 ∈ Γ iff Γ = Σ, (false reflection) (2.3)

x ∧ y ∈ Γ iff x, y ∈ Γ, (and reflection) (2.4)

(x = y) ∈ Γ iff Γ ∪ {x} = Γ ∪ {y}, (equal reflection) (2.5)

hold for all contexts Γ and arbitrary statements x and y.

The way the closure is implemented on the subject level affects the notion of
truth. (One trivial implementation would make Σ the closure of every context
– but then there is no difference between true and false, and all contexts are
inconsistent.)

Informally, Γ is the set of all assertions that hold (for whatever reasons) in every
possible world (whatever this is) in which all statements in Γ hold. The uncer-
tainty in the parenthetical interpretation accounts for the subjective part of the
notions of truth and possibility; the reflection principle itself determines what is
objective about these.

False reflection says that in a context where a false statement holds, every state-
ment holds, so that the context is inconsistent. And reflection says that two
statements hold in some context iff their conjunction holds. Equal reflection says
that two statements are equivalent in some context iff in the context where one of
the statements is asserted exactly the same statements are true as in the context
where the other statement is asserted.
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These reflection principles – which are usually phrased (in a syntactical expo-
sition of logical systems) as pairs of natural deduction rules, using nonmath-
ematical symbols specific to logic – appear to be the minimal principles needed
for an adequate process of cumulative monotonic logical reasoning, fundamental
for doing mathematics.

No assumption is made on how to determine an appropriate context, how (or
whether) truth can be established in this context, or on how truth and provability
are related. It suffices that the notion of truth is context-dependent and that the
truth of a statement x in a given context Γ amounts to belonging to the closure
Γ, in a way such that the above properties hold.

In the terminology of Neumaier & Marginean [56], where one can find a
thorough discussion of Axiom A7 and its consequences, the axiom says that Σ
carries the structure of a classical context logic. In particular,

1 ∈ Γ, (true reflection) (2.6)

(x ⇒ y) ∈ Γ iff y ∈ Γ ∪ {x}, (imply reflection) (2.7)

x, (x ⇒ y) ∈ Γ implies y ∈ Γ (modus ponens) (2.8)

hold for all contexts Γ. It is shown in [56] that all the usual rules from classical
propositional logic are valid; in particular, 1 6= 0 (which even holds when 0 = 1),
and we can substitute equal (i.e., logically equivalent) statements for each other
without changing the validity of an assertion.

Note that the formal meaning of the notion of a statement does not coincide with
the informal meaning in ordinary language. This can be seen from an analysis
of the liar paradox (Epimenides [21]) from ca. 600 B.C., which concerns the
interpretation of the putative object

L:=“This statement is false.” (2.9)

Suppose that “This statement” refers to L (as suggested by the definition since,
naively, the quoted sentence is a statement). Then L is a statement satisfying
L = (L = 0). As a statement, L exists, and we can apply the rules of classical
logic and obtain L = ¬L, hence L = L ∧ ¬L = 0, hence L = 0, hence 0 = L =
¬L = ¬0 = 1, contradiction. Therefore “This statement” cannot formally refer
to L, and the paradox is resolved. (L may still be a meaningful statement, such
as in “Consider the statement 1 = 0. This statement is false.” Only the reference
to itself is provably meaningless.)

2.6 Equality

We now reflect the properties of equality. Informally, equality is a somewhat am-
biguous concept; it sometimes refers to identity, but more often refers to identity
up to irrelevant details or accidental properties, and thus entails an abstraction
process. For example, we typically regard two instances of the same character as
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being equal if their name, case, and (only sometimes) font is the same, no matter
which size they have, whether they are printed or handwritten, and even though
any two characters “a” differ in their position.

We capture this ambiguity by specifying equality through its properties rather
than through a reference to the identity of objects. Thus it is important to
distinguish between identity ≡ on the subject level and equality = on the object
level.

The traditional properties of equality fall into two groups: One characterizing the
fact that equality behaves like identity in the important aspects, while allowing
differences in irrelevant details.

Axiom A8.
For arbitrary existing objects x, y, and z,

(P2) x = x;
(P3) (x = y) = (y = x);
(P4) if x = y and y = z then x = z.

This axiom expresses that equality of objects is an equivalence relation. In par-
ticular, x = y if x ≡ y; but the converse is generally false. Note that by A4,
x = x is nominal (rather than true) when x is nominal!

We write

x 6= y for ¬(x = y),

x = y = z for (x = y) ∧ (y = z),

with a similar interpretation for x = y = z = w, etc.. Note that x = y = z,
(x = y) = z, and x = (y = z) have three different meanings.

The other group of properties of equality concerns the ability to substitute equal
objects in formulas.

Axiom A9.
For arbitrary objects x, y, u, and v, and arbitrary intrinsic operations ω,

(P5) x = u implies xω y = uω y;
(P6) y = v implies xω y = xω v.

Note that x = u (resp. y = v) implies that x and u (resp. y and v) exist. Thus
this axiom says that the substitution of existing equals in expressions formed with
intrinsic operations does not change equalities. Note that the metaoperation ≡
is, by design, not an intrinsic operation; and indeed, the substitution of existing
equals in formulas involving ≡ is generally not valid. On the other hand, the
substitution of objects for names representing free variables in expressions does
not require the existence of the respective objects, except when these formulas
are asserted to hold.
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2.7 Membership

We now reflect membership. The ∈ operation is suggestive of an intuitive inter-
pretation of membership in sets or classes. However, FMathL takes a different
point of view, better reflecting current mathematical practice.

In ZFC, all objects are sets, and ∈ is an everywhere defined membership relation.
In mathematics, sets have a special property called extensionality (see Section
2.14 below) that makes them differ from arbitrary objects (if these exist): Any
two sets with the same elements are equal.

If every object were a set then the only object without elements would be the
empty set. However, apart from set theory purists, mathematicians generally
think of characters and numbers as being objects not containing any elements.
At the very least, questions such as whether or not 1 ∈

√
2 are not considered to

be relevant and are nowhere systematically discussed; indeed, in the traditional
set-theoretic foundations, 1 ∈

√
2 is true or false depending on the details used

in the construction of a set-theoretic model of the real numbers, within a fixed
axiomatic system for set theory (such as ZFC). Thus the set-theoretic properties
of real numbers appear to be accidental byproducts of the construction rather
than intrinsic properties of numbers. Similar accidental properties result from
different set-theoretic models of the natural numbers; see Benacerraf [11].

Set theory thus appears more like an implementation language (with multiple
equivalent implementations) for mathematical concepts rather than as an ontol-
ogy (which would say what numbers are). (This implementation aspect has been
emphasized, e.g., by Forster [29].)

There are many other cases where objects used routinely in mathematics to the
right of an ∈ relation violate extensionality. For example, we write

√
2 ∈ R.

But in the traditional set-theoretical approach to numbers, R – the ordered field
of real numbers – is, strictly speaking, an ordered pair consisting of a field and
an ordering relation on it. Now in ZFC, an ordered pair is a set with only two
elements. Thus, considered canonically as a set, R contains only two elements,
none of which is

√
2. Expressed in a different way: Is R an uncountable set, a

field, or an ordered field? It is conventionally regarded as any of these but can,
in ZFC, be only one of them.

Such formally inconsistent multiple specifications are very frequent in a strictly
set-based approach to mathematics, present even in the most rigorous treatments
of algebra. Treating it simply as a convenient “abuse of notation” constitutes a
serious handicap for computerizing mathematics and must therefore be avoided
in a good framework of mathematics for the computer. To resolve such issues
cleanly, one needs a framework that allows the set of real numbers and the ordered
field of real numbers (which are two distinct objects) to contain exactly the same
elements.

In FMathL, we therefore separate extensivity (taken to be specific for sets) from
membership (meaningful for arbitrary existing objects). An object x may belong
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to another object Z, i.e., may satisfy x ∈ Z, without Z having to be a set, and
there may be many objects (e.g., numbers or pairs) in which there is no object.

Axiom A10.
If the objects x and Z exist then x ∈ Z is a statement. No object x satisfies
x ∈ ∅. The object x ⊔ y (together with) exists iff x and y exist, and satisfies

(P7) z ∈ x ⊔ y iff z = x or z = y.
The object Union(A) exists iff A exists, and

(P8) x ∈ Union(A) iff x ∈ B for some B ∈ A.
The object Intersect(A) exists iff A contains some object, in which case

(P9) x ∈ Intersect(A) iff x ∈ B for all B ∈ A.

The assertion of x ∈ Z reflects membership of the object x in the object Z. We
say that x is an element of Z if x ∈ Z. Thus the object ∅ has no elements.
This object will be required in Axiom A24 to be a set, and is therefore called the
empty set.

It is customary in mathematics to talk about the object x ∈ Z, meaning the
object x with x ∈ Z. We typically (but not always) use lower case letters for
objects occurring on the left of ∈, and upper case letters for objects occurring on
the right of ∈. We write

x 6∈ Z for ¬(x ∈ Z),

Z ∋ x for x ∈ Z,

x, y ∈ Z for (x ∈ Z) ∧ (y ∈ Z),

with a similar interpretation for x, y, z ∈ Z, etc.. We also write for objects x, y,
and z,

{x} for x ⊔ x,

{x, y} for x ⊔ y,

{x, y, z} for {x, y} ∪ {z}, (enumerated object)

and similarly for enumerated objects with more entries, such as {x, y, z, w}. Later,
these will be recognized to be sets if all their entries exist. If x is nominal then
{x}, {x, y}, etc., are nominal objects and no sets. If x and y exist then z ∈ {x}
iff z = x, and z ∈ {x, y} iff z = x or z = y, etc..

We also write for objects X, Y , and Z,

X ∪ Y for Union(X ⊔ Y ), (union)

X ∩ Y for Intersect(X ⊔ Y ), (intersection)

X ⊆ Y for X ∩ Y = X,

X ⊇ Y for X ∩ Y = Y,

X, Y ⊆ Z for X ⊆ Z ∧ Y ⊆ Z,

etc.. Clearly,
x ∈ X ∪ Y iff x ∈ X or x ∈ Y ;
x ∈ X ∩ Y iff x ∈ X and x ∈ Y .

(The definition of complements needs abstraction; see Section 2.12 below.)
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X ⊆ Y iff Y ⊇ X iff x ∈ X implies x ∈ Y .
⊆ is verbalized as part of or contained in (defining containment). ⊇ is
verbalized (like ∋) as contains, causing an ambiguity on the verbal level that
must be resolved from the context. X and Y are called disjoint if X∩Y contains
no object.

2.8 Numbers

We now reflect the core concept of elementary mathematics, that of a number.
Note that the metaconcept of a field is available in common mathematical lan-
guage, hence on the subject level.

Axiom A11.
The object C is called the domain of complex numbers. We say that the
object x is a (complex) number if x ∈ C. With = as equality, 0 as zero and 1 as
one, the operations +, −, ∗ restricted to C, and / restricted to C and a nonzero
denominator, C is a field. A number contained in every object Z satisfying 1 ∈ Z
and n + 1 ∈ Z for every number n ∈ Z is called a natural number. The object
N is called the domain of natural numbers and satisfies

(P10) n ∈ N iff n is a natural number.

In particular, every number exists, and the induction principle holds for families of
statements parameterized by a natural number. Nonarithmetic questions about
numbers such as whether or not 1 ∈ 2 are undecidable with the FMathL axioms;
thus 1 ∈ 2 may be true, false, or meaningless depending on the implementation,
so that none of these is an objective property of numbers.

Note that C is a field with the equality defined in O but not with identity as
equality! The field of complex metanumbers, whose equality is identity, cannot
be contained in O since O is countable on the subject level. (See Section 3.5 for
a further discussion of counterintuitive countability properties.)

We do not regard 0 as a natural number; how un-natural it is is proved by the
historical fact that the number zero was introduced (in India about 900 B.C.)
many centuries after natural numbers were in regular use (in Babylonia about
1500 B.C.). (On the other hand, FMathL will ultimately provide style options,
such that everything represented in FMathL can be printed in an external,
human-readable output format in which different conventions (e.g., that N starts
at 0) can be accommodated without resulting logical flaws.)
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We write
2 for 1 + 1, (two)

3 for 2 + 1, (three)

4 for 3 + 1, (four)

5 for 4 + 1, (five)

6 for 5 + 1, (six)

7 for 6 + 1, (seven)

8 for 7 + 1, (eight)

9 for 8 + 1, (nine)

10 for 9 + 1. (ten)

0, 1, 2, 3, 4, 5, 6, 7, 8, 9 are called the (decimal) digits.

Note that numbers are assumed to form a field, a concept – currently defined
only on the subject level – that abbreviates a number of well-known conditions
on the arithmetic operations. As usual in fields, we write

−x for 0 − x,

xy for x ∗ y,

x2 for x ∗ x.

Those concerned about the fact that not all p-adic numbers (or not all ordinal
numbers, etc.) are numbers in the present sense are reminded of the well-known
facts that a random number is not a number but a measurable function, a quan-
tum group is not a group but an algebra, and that not every skew field is a field.
The specification version of FMathL [58] will therefore not require that a com-
posite name such as “quantum group” (or “skew field” or “ordinal number”) is
an instance of the concept denoted by the noun involved (“group” or “field” or
“number”).

Rather than postulating an imaginary unit (what is special about the equation
i2 + 1 = 0 rather than, say j2 + j + 1 = 0?), we postulate properties of the
associated formation of conjugation and absolute value, which are important for
the coordinate-free work with complex numbers. Using terminology introduced
in later sections, the imaginary unit can then be defined as i := Choice({x ∈
C | x2 = −1}.

Axiom A12.
If x is a number then

x := Conj(x)

and
|x| := Abs(x)

are numbers. For any two numbers x and y,
(P11) x = x,
(P12) x + y = x + y;
(P13) xy = x y;
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(P14) | − x| = |x|;
(P15) xx = |x|2.

A number x is called real if x = x and positive if |x| = x 6= 0. Not all numbers
are real. For any nonzero number x, the number |x| is positive. If x and y are
positive numbers then x + y and xy are positive.

That not all numbers are real must be assumed in order to be able to deduce the
solvability of the equation x2 = −1.

For real numbers x and y, we write

x ≤ y for |y − x| = y − x, (less or equal)

x ≤ y ≤ z for x ≤ y ∧ y ≤ z,

and similarly for x = y ≤ z, etc..

Axiom A13.
For all numbers s and arbitrary existing objects Z,

(P16) s ∈ Low(Z) iff s is a real number with s ≤ x for all real numbers
x ∈ Z;

(P17) s ∈ Low(Z) implies s ≤ Inf(Z) and Inf(Z) ∈ Low(Z).

This axiom, which uses the convention to write f(x) for f @ x, embodies the
completeness of the real numbers as a linearly ordered field. Informally, Low(Z)
contains the lower bounds of real numbers in Z, and Inf(Z), the infimum of Z,
is the greatest lower bound of all real numbers in Z if one such bound exists.

An integer is a natural number, the number 0, or a number of the form −n,
where n is a natural number. A rational number is a number that can be
written in the form p/q with an integer p and a natural number q. A real number
that is not rational is called irrational. A complex number is the same as
a number (though sometimes the term is used to express that a number is not
real).

Note that in the traditional constructive approach to complex numbers there are
several distinct natural constructions of C from the real numbers, among them

• C is the subalgebra of real 2×2-matrices A with A11 = A22 and A12 = −A21;

• C is the quotient field of real polynomials in an indeterminate x modulo
the principal ideal generated by x2 + 1.

The two constructions have different accidental properties not inherent in the
concept of complex numbers as actually used. (Worse things can happen: In
the construction of the complex numbers I learnt as a student, the pair (1, 2)
was at the same time a representative for the number 1/2 and for the number
1 + 2i.) Hence neither can be regarded as defining the complex numbers. The
latter are generally used as uniquely determined objects characterized by their
familiar arithmetic and topological properties and nothing else – rather than by
a particular construction.
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The FMathL axioms A11–A13 select some of these properties, sufficient for de-
riving all other construction-independent properties of complex numbers. Indeed,
Neumaier [53] shows that a variant of Axioms A11–A13 (easily seen to be equiv-
alent to these) implies all usual properties of complex, real, rational, integral, and
natural numbers. Defining the algebraic structures Z, Q, and R is possible within
FMathL but requires tools that go beyond this foundational document in that
we need to reflect the concept of a structure satisfying given axioms.

On the other hand, the above constructions (and several others) are useful as
models of fields isomorphic to C and can of course be used within FMathL in
the same way as different models of the finite simple group of order 60 can be
used to illuminate its structure.

2.9 Texts

Texts, formed by concatenating symbols called characters, are the dominant com-
munication medium of mathematics. Mathematicians do not agree on the collec-
tion of characters to be used; they feel entitled to invent new characters as they
need them. Thus in the text reflection axioms, FMathL only specifies that the
decimal digits are among the characters.

Axiom A14.
We say that an object x is a character if x ∈ Char, and a text if x ∈ Text.
Digits are characters. Every character is a text. The empty text Null is a text;
it is not a character. If x and y are texts then x & y is a text, the concatenation

of x and y.

In particular, every text (and hence every character) exists.

Although our setting is intrinsically typeless, we see here that certain named
objects such as Char or Text may function as a kind of simple types if they
contain precisely the intended objects of a certain type. However, unlike in type
theories, the same object may belong to several “types” in the present sense,
without “types” being explicitly dependent upon each other.

Note that the metacharacter & is a primitive operation and hence by Axiom A3
not an object, hence not a character! The same holds for the metacharacters ∧,
=, ∈, +, etc.. This means that when reflecting (in a later paper) metatexts on
the object level, there must be some form of encoding of these metacharacters,
similar to the need for encoding a quotation mark in the usual quoting mechanism
of text inside programming languages.

Axiom A15.
We require for all texts x, y and characters c, d that
(P18) x & y = Null iff x = Null and y = Null;
(P19) x & c = y & d implies x = y and c = d;
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(P20) If Z is an object with Null ∈ Z such that x & c ∈ Z for every text x ∈ Z
and every character c, then z ∈ Z for every text z.

(P20) says that all texts are obtained from the empty text by appending charac-
ters, and is a text version of the induction principle. The cancellation laws

x & y = x & z ⇒ y = z,

x & z = y & z ⇒ x = y

can be derived from A15.

2.10 Application

In FMathL, like in combinatory logic, any object may be applied to any other
object. We recall our convention from Section 2.2 to write

f(x) for f @ x, (application)

f(x, y) for f(x)(y), (currying)

with a similar interpretation for f(x, y, z), etc.. We read f(x) as f of x or f at

x, and call it the value of f at x. We read f(x, y) as f of x and y, etc..

Axiom A16.
We say that the object f is defined on the existing object Z if x ∈ Z implies
that f(x) exists. If the object f is defined on the object Z then the image

f [Z] := f⊓⊔Z

of Z under f exists, and
(P21) z ∈ f [Z] iff f(x) = z for some x ∈ Z.

Axiom A17.
A predicate is an object f such that f(x) = 0 or f(x) = 1 whenever f(x) exists.
If the predicate f is defined on the object Z then the selection Z | f of Z through
f exists, and

(P22) x ∈ Z | f iff x ∈ Z and f(x).

The attempted assertion of a predicate f at a particular argument x is 3-valued,
with values true if f(x) = 1, false if f(x) = 0, and nominal otherwise.

(P21) and (P22) entitle us to write as customary

{f(x) | x ∈ Z} for f [Z],

{x ∈ Z | f(x)} for Z | f,

{f(x) | x ∈ Z, g(x)} for f [{x ∈ Z | g(x)}].
Note that {f(x) | x ∈ Z}, {x ∈ Z | f(x)}, or {f(x) | x ∈ Z, g(x)} may
exist even when f(x) or g(x) is nominal for some x ∈ Z, since x is a bound
variable with only syntactic meaning that can be eliminated by undoing the above
abbreviations. This is the only nontrivial way nominal objects can meaningfully
appear in asserted expressions.
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2.11 Functions

We now reflect functions, which encode mathematical transformations, and show
how expressions can be used to define such functions. This is done by means of
the object Fun whose application to an existing object f transforms it into a
function Fun(f).

Among objects, functions are distinguished by an extensionality property.

Axiom A18.
We say that the object f is a function if Fun(f) = f . For every existing object
f , the object Fun(f) is a function such that, for all objects x,

(P23) Fun(f)(x) = f(x) if f(x) exists, Fun(f)(x) is nominal otherwise.
If f and g are functions then

(P24) Fun(f) = Fun(g) iff both f(x) = g(x) for all objects x for which
f(x) and g(x) exist, and f(x) is nominal exactly when g(x) is nominal.

The assertion of Fun(f) = f implies that f exists, hence every function exists.
(P24) expresses the so-called extensionality of functions.

We use the term function with the meaning familiar from the λ-calculus. In
the traditional mathematical language, the term function may, dependent on the
context, have a different meaning. Indeed, as a point is just a member of a space,
and a vector is just a member of some vector space, so a function is just a member
of a function space. For example, the elements of the space of square integrable
functions on the reals are equivalence classes of certain maps, and the elements
of the space of rational functions of x with coefficients in some field are formal
rational expressions in x. In both cases, we do not have functions in the present
sense. We regard this as part of the context-dependent ambiguity of the common
mathematical language.

Axiom A19.
For arbitrary existing objects x, y, f , and g, and arbitrary intrinsic operations ω,
the objects Choice, Id (the identity), Const(y), and Pointwise(f ω g) are
functions satisfying, for all existing objects x and y,

(P25) x ∈ Z implies Choice(Z) ∈ Z.
(P26) Choice(Z) is nominal if Z contains no object.

(P25), the axiom of global choice, allows us to choose a distinguished element
from an object, provided that there is such an element: x := Choice(A) is the
formal version of “Let x be some distinguished element from A”; the element
x ∈ A is distinguished by writing this. In particular, Choice({x}) = x if x
exists, and Choice({x}) is nominal otherwise. Note that for existing x and y
it is undecided whether Choice({x, y}) is x or y – different implementations of
the mathematical framework might make different distinguished choices, if they
decide the problem at all.
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Axiom A20.
(P27) Id(x) = x;
(P28) Const(y)(x) = y;
(P29) Pointwise(f ω g)(x) = f(x) ω g(x) if f(x) ω g(x) exists,

Pointwise(f ω g)(x) is nominal otherwise.
Note that for nominal objects x, the object Id(x) is nominal and does not satisfy
Id(x) = x, and Const(x)(y) is nominal and does not satisfy Const(x)(y) = x.
Thus Id is the identity function on existent objects (only), and Const(x) the
function with constant value x for existing arguments (only).

This axiom allows us (among other uses) to define the composition ◦ (after) of
objects by writing

f ◦ g for Pointwise(Const(f)(g)).

Indeed, the conventional composition formula

(f ◦ g)(x) = f(g(x))

follows from

(f ◦ g)(x) = Pointwise(Const(f)(g))(x)

= Pointwise(Const(f) @ g)(x)

= Const(f)(x) @ g(x) = f @ g(x) = f(g(x)).

2.12 Abstraction

Abstraction – the creation of a function from an expression – is probably the
most difficult, but also the most powerful basic principle in mathematics. It is
indispensable for reflecting the interpretation of expressions as functions in which
we can substitute variables by objects, and accounts to a large extent for the
flexibility of the mathematical language.

Id, Const, and Pointwise are similar to the combinators I, K, and S in
combinatory logic, and play an analogous role. As in the λ-calculus, they allow
us to give a precise formal semantics for what it means to define a function by
an expression.

We write E
∣

∣

∣

z=x

for the expression obtained from E by replacing each occurrence

of the variable z by x.

2.12.1 Theorem. For every expression E and every variable z, there is a unique,

constructively defined function f such that f(x) = E(x) for every object x for

which E(x) exists and f(x) is nominal otherwise.

Here E(x) is the conventional abbreviation for E
∣

∣

∣

z=x

(); the dependence on the

choice of the variable z is suppressed.
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Proof. That there is at most one such function follows from the extensionality of
functions. Therefore we only need to show existence.

For an expression of length 1, the expression E is a name. If this name is z
then f := Id satisfies f(x) = Id(x) = x = E(x); otherwise, f = Const(E())
satisfies f(x) = Const(E())(x) = E() = E(x). Thus the assertion holds for all
expressions of length 1. Now suppose that the assertion holds for all expressions of
length < L. If E is an expression of length L > 1 then it has the form (E ′ ω E ′′)
with subexpressions E ′ and E ′′ of length < L, and we have uniquely defined
functions f ′ and f ′′ satisfying f ′(x) = E ′(x) and f ′′(x) = E ′′(x). Therefore,
the function f := Pointwise(f ′ ω f ′′) satisfies f(x) = Pointwise(f ′ ω f ′′)(x) =
f ′(x) ω f ′′(x) = E ′(x) ω E ′′(x) = E(x). Thus f(x) = E(x). By induction, the
assertion holds for expressions of arbitrary length. ⊓⊔

A standard substitution shows that the theorem also extends to expressions in-
volving defined operations, as long as all defined operations that occur are de-
fined in terms of an expression, without reference to words or a metaconcept.
Using currying, everything easily extends to definitions of functions f of the form
f(x, y) := E(x, y), etc..

Definition by abstraction. In the λ-calculus, the function f from Theorem
2.12.1 is denoted by

f := λz.E

Mathematicians usually do not use the λ-notation outside of λ-calculus. Instead,
they refer to the function f from Theorem 2.12.1 as the function defined by

f(x) := E(x)

for every object x for which E(x) is defined, and write

{E(x) | x ∈ Z} for (λz.E)[Z],

{x ∈ Z | E(x)} for Z | (λz.E),

{x ∈ Z | A(x), B(x)} for {x ∈ Z | A(x) ∧ B(x)},

etc., thus eliminating the need of explicit abstraction with the λ-notation. Using
these conventions significantly enhances readability. For example, the left hand
side of

{x ∈ X | x ∈ Y } = X | (λx.(x ∈ Y )) = Pointwise(Id ∈ Const(Y ))

is much more expressive than the term involving the λ-expression or the explicit
construction involving the combinators, as it immediately reveals the meaning of
the expression as the intersection of X and Y . Essentially the same argument
allows us to reflect complementation. For arbitrary objects X and Y , we write

X \ Y for {x ∈ X | x 6∈ Y }, (complement)

Clearly,
x ∈ X \ Y iff x ∈ X and x 6∈ Y .
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The explicit representation of the function f from Theorem 2.12.1 by an explicit
abbreviating definition quickly gets incomprehensible. For example, if f is an
object, the object g := λx.(f(x) = 0 ⇒ x = 0) can be constructed as

g := Pointwise

(

Pointwise(f = Const(0)) ⇒ Pointwise(Id = Const(0))
)

.

Indeed,

g(x) = Pointwise

(

Pointwise(f = Const(0)) ⇒ Pointwise(Id = Const(0))
)

(x)

=
(

Pointwise(f = Const(0))(x) ⇒ Pointwise(Id = Const(0))(x)
)

=
(

f(x) = Const(0)(x) ⇒ Id(x) = Const(0)(x)
)

= (f(x) = 0 ⇒ x = 0).

In practice, one therefore never creates the explicit formula exhibiting the fully
expanded definition of an object defined by means of constructions justified by
defined abbreviations and proved existence theorems. This is analogous to the
practice that one virtually never writes out natural numbers such as 8 or 109

in terms of their nearly incomprehensible explicit construction with a successor
operation.

We now discuss further results that show the power of abstraction. Abstraction
enables us to prove that no object contains all other objects:

2.12.2 Theorem. For every object Z, there is an object z with z 6∈ Z.

Proof. The proof is the well-known argument by Russell [65] that, applied to
naive set theory, leads to contradiction. By Axiom A16, the object z := {x ∈ Z |
x 6∈ x} exists. By (P22), x ∈ z iff x ∈ Z and x 6∈ x. Applied to x = z, this shows
that z ∈ z iff z ∈ Z and z 6∈ z. Now either z ∈ z or z 6∈ z, and in both cases we
conclude that z ∈ Z is false. Hence z 6∈ Z. ⊓⊔

Abstraction also allows us to define the restriction f
∣

∣

∣

Z

of an object f to an

object Z by

f
∣

∣

∣

Z

(x) := Choice({y ∈ f [Z] | x ∈ Z ∧ y = f(x)}),
The restriction to Z of the function f = λz.E is generally referred to as the
function g defined (on Z) by

g(x) := E(x) for x ∈ Z

whenever E(x) is defined.

Abstraction also allows us to define various forms of functions defined by case
distinctions. For example, if Y contains all a(x) and b(x) with x ∈ Z then

f(x) := Choice

({

y ∈ Y
∣

∣

∣
(y = a(x) ∧ c(x) = 1) ∨ (y = b(x) ∧ c(x) = 2)

})∣

∣

∣

Z

defines the function with

f(x) =

{

a(x) if c(x) = 1,
b(x) if c(x) = 2,

and f(x) is nominal otherwise.
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2.13 Categories

The concept of a mathematical structure is captured in the notion of a cate-
gory. Informally, a category is a transitive directed graph whose vertices (certain
objects) may be connected by arbitrarily many directed edges (called arrows).
Transitivity says that two arrows can be composed to a third arrow (their prod-
uct) if the tail (domain) of the first arrow agrees with the tip (codomain) of
the second arrow. In many (but not all) categories, the vertices are structured
sets and the arrows are structure-preserving mappings from their domain to their
codomain; cf. Axiom A25 below.

We write
IdA for Id (A);

f : A → B for f ∈ (A → B),

f, g : A → B for f : A → B ∧ g : A → B,

with a similar interpretation for f, g, h : A → B, etc..

Axiom A21.
An object f is called an arrow from Dom(f), the domain of f , to Cod(f), the
codomain of f , if Dom(f) and Cod(f) exist. The arrow product g ⋄ f of two
arrows g and f exists iff Dom(g) = Cod(f) and is then an arrow from Dom(f)
to Cod(g). For any object A, the identity IdA on A exists. For arrows f, g, h
and objects A,B,C,D,

(P30) f : A → B iff Dom(f) = A and Cod(f) = B;
(P31) if f : A → B, g : B → C, h : C → D then h ⋄ (g ⋄ f) = (h ⋄ g) ⋄ f ;
(P32) IdA : A → A.
(P33) f : A → B implies IdB ⋄ f = f and f ⋄ IdA = f .

It is customary in mathematics to talk about the arrow f : A → B, meaning the
arrow f with f : A → B.

Axiom A22.
An object C is called a category if Hom(C) exists. The elements of Hom(C) are
called homomorphisms (or C-morphisms) of the category C. An object A is
called a structure of the category C if C(A) = A. For every structure A of the
category C, the object IdA is a homomorphism of C. For every homomorphism
f of the category C, the objects Dom(f) and Cod(f) are structures of C. For
any category C, any object A, and any two arrows f, g,

(P34) A ∈ C iff C(A) = A;
(P35) C(A) ∈ C iff C(A) exists;
(P36) f, g ∈ Hom(C) implies g ⋄ f ∈ Hom(C) if g ⋄ f exists.

Note that, in FMathL, a category contains all its objects. This is possible
without difficulties since ∈ is not extensive. Thus FMathL does not need a
separate Ob operator.

If C(A) exists, it is the structure of category C associated with the object A.
The nature of this association depends on the category and must be postulated
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in each case; see, e.g., the case of the category Set introduced in Section 2.14
below. In many cases, A → C(A) is an appropriate forgetful functor.

Many categories are given the characteristic name conventionally attached to
their structures. For example, the structures of the category Set are called sets,
the structures of the category Group (not introduced here) are called groups,
etc..

Axiom A23.
We say that the object Z is small if Z ∈ Small. If Z is small and Y ⊆ Z then
Y is small. If Z is small and f is defined on Z then the image f [Z] is small. If
Z is small and C is a category then C(Z) is small if it exists.

In particular, every small object exists.

2.14 Sets

The concept of a set is reflected by the following axiom.

Axiom A24.
An object A is called a set if Set(A) = A. We say that A is a subset of the
object Z if A is a set and A ⊆ Z. The object Set is a category satisfying

(P37) Set(A) = (A | Const(1));
(P38) If A and B are sets then A = B iff x ∈ A ⇔ x ∈ B.

The empty set ∅ is a set. If the objects x and y exist then {x, y} is a set. If A is
a set and every B ∈ A is a set then Union(A) is a set. If the object f is defined
on the set A then the image f [A] of A under f and the set restriction A | f of A
by f are sets.

Every set exists since the assertion of Set(A) = A implies the existence of A.
(P38) expresses the basic property of sets, their extensionality.

If A is a set, there is a set B with B 6∈ A. This is proved exactly as in Theorem
2.12.2. Thus no set contains all sets.

Axiom A25.
An object f ∈ Hom(Set) is called a map (or mapping); it is called a map

from the set A to the object Z if f : A → Z. In this case, f [A] is called the
range of the map f . For any two maps f, g : A → Z,

(P39) f = g iff f(x) = g(x) for all x ∈ A;
(P40) f(x) exists iff x ∈ A;
(P41) x ∈ A implies f(x) ∈ Z;
(P42) h ⋄ f = h ◦ f if Z is a set and h : Z → Y ;

(P43) IdA = Id

∣

∣

∣

A

.
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(P39) is the extensionality of maps.

A map f : A → Z is called injective if f(x) = f(y) implies x = y, surjective if
f [A] = Cod(f), and bijective if it is injective and surjective.

Note that the notions of a map and a function differ in FMathL: Unlike a map,
a function does not have the concepts of domain or codomain associated with
it. In particular, the notions of surjectivity and bijectivity make sense only for
maps and not for functions. Since f = g implies Cod(f) = Cod(g), two maps
f : A → Z and g : A → Y are different if Z 6= Y even when f(x) = g(x) for

all x ∈ A, while the associated functions f
∣

∣

∣

A

and g
∣

∣

∣

A

are equal. To go from a

function to a corresponding map, we need an additional axiom:

Axiom A26.
If f is defined on the set A and f [A] ⊆ Z then g := Map(A,Z, f) is the arrow
g : A → Z with g(x) = f(x) for all x ∈ A.

(Remember that Map(A,Z, f) = Map(A)(Z)(f) by currying.)

Nevertheless, consistent with current practice, we loosely identify g with f on the
informal language level, and thus allow the use of f : A → Z to also (ambiguously)
refer to a function f defined on A with values in Z.

Tuples and Cartesian products. If m and n are natural numbers, we write

{m : n} for {x ∈ N | m ≤ x ≤ n}, (range of natural numbers)

k = m, . . . , n for k ∈ {m : n}.

If n is a natural number or zero, an n-tuple is a function t for which t(x) exists
iff x ∈ {1 : n}. For k = 1, . . . , n, one writes tk in place of t(k), and calls tk the
k-th (or first if k = 1, second if k = 2, third if k = 3) entry of t. In terms of the
entries, one writes t = (t1, . . . , tn). A 2-tuple t is called a pair, and one writes
t = (t1, t2). A 3-tuple t is called a triple, and one writes t = (t1, t2, t3); etc.. For
any existing object Z, the domain

Z×k := ({1 : k} → Z)

consists of all k-tuples with entries in Z; it is a set if Z is a set. An n-ary relation

on an existing object Z is an object R with R ⊆ Z One writes nullary, unary,
binary, and ternary for n-ary when n = 0, 1, 2, 3, respectively.

For arbitrary existing objects X and Y , we define their Cartesian product

X × Y := {(x, y) ∈ (X ∪ Y )×2 | x ∈ X, y ∈ Y };

in particular, Z×2 = Z × Z if Z exists. Similarly, we define

X × Y × Z := {(x, y, z) ∈ (X ∪ Y ∪ Z)×3 | x ∈ X, y ∈ Y, z ∈ Z},
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etc., so that Z×3 = Z × Z × Z, etc.. Note that X × Y × Z, (X × Y ) × Z, and
X × (Y × Z) are different. We write

{f(x, y) | x, y ∈ Z} for {f(t1, t2) | t ∈ Z×2},
{f(x, y) | x ∈ X, y ∈ Y } for {f(t1, t2) | t ∈ X × Y },

and similarly for related expressions.

Axiom A27.
If Z is a small object and A is a small set then A → Z is a set. If Z is a small
object then Subsets(Z) is a set satisfying

(P44) B ∈ Subsets(Z) iff B ⊆ Z;
(P45) Union(Subsets(Z)) = Set(Z);
(P46) Subsets(Text) is small.

Thus Set(Z) is the set consisting of all elements of the small object Z.

The reason why we require Subsets(Text) to be small is that this enables us
to reflect all arguments about context logic given in Neumaier & Marginean

[56], and thus constitutes a minimal requirement to reflect and reason about the
FMathL foundations in FMathL itself. Note that C can be proved to be part
of an image of Subsets(Text), hence is small, too.
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Chapter 3

Completing the foundations

3.1 Mathematical frameworks

With Axiom A27, our axiom system is complete. Any mathematical structure
satisfying these axioms will be called a mathematical framework. Informally,
a mathematical framework O may be viewed as a kind of metacategory of all
categories. Indeed, the objects and arrows of O form a category on the subject
level, with considerable additional structure.

It turns out, and will be shown in a subsequent paper (Neumaier & Schodl [57],
that one can reflect the full machinery used to define mathematical frameworks
inside each particular mathematical framework; cf. Section 3.4 below. In each
subject level where a mathematical framework is given, the FMathL mathe-
matical framework is the particular, distinguished implementation of a mathe-
matical framework constructed inside the given mathematical framework accord-
ing to the description given in [57].

Negation laws derived. We could have defined an intuitionistic mathematical
framework in which Axiom A6 is replaced by ¬0 = 1 and a disjunction satisfying
or reflection, i.e., x∨ y ∈ Γ iff x ∈ Γ or y ∈ Γ, instead of being defined in terms
of ∧.

However, a slight modification of an argument of Goodman & Myhill [32]
shows that this already implies the negation laws of Axiom A6. Indeed, 0 = ¬1

follows directly from the reflexivity of equality.

To prove the double negation law ¬¬p = p for statements p, using only intuition-
istically valid arguments, let p be a statement satisfying ¬¬p. To show that p
holds, we define two maps f, g : {0,1} → {0,1} by

f(x) := p ∨ ¬x, g(x) := p ∨ x for x ∈ {0,1},

and consider the function c defined by

c(f) := Choice({x ∈ {0,1} | f(x)}).

55
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Since f(0) holds, f(c(f)) holds, hence p ∨ ¬c(f) by definition of f . Similarly,
since g(1) holds, g(c(g)) holds, hence p∨ c(g) by definition of g. Combining both
conclusions, we get p∨ (¬c(f)∧ c(g)). Thus p (and hence Axiom A6) holds if we
can show that

z := ¬c(f) ∧ c(g)

is false. We show this by contradiction, and therefore assume that z holds. Then
c(f) = 0 and c(g) = 1, hence f = g is false. But if p holds then f(x) = 1 = g(x)
for x = 0 and x = 1, hence f = g by extensivity of maps, contradiction. Thus
p is false. Thus our assumption that z holds implies ¬p. But ¬¬p implies that
¬p = 0. Hence z implies 0, contradiction.

3.2 Foundations for mathematics

Mathematics may be considered as the science and art of precise concepts and
their relations. It plays a fundamental role in many aspects of modern human
life, because precise concepts are needed and usefully employed to predict and
control the complexities of our present culture.

While current automatic theorem provers fail upon the slightest slip of the pen,
mathematics as it is practiced today is very robust. It is nearly independent of
changes in foundations, conflicts in details, sloppiness of exposition, small errors
and inaccuracies, etc..

We learn even from slightly incorrect theories. Most standard works contain mis-
takes, but are nevertheless extremely useful and influential. When the intuition
behind a mathematical text is correct, the correct interpretation of the text can
usually be inferred, so that readers can reconstruct a correct version if they are
sufficiently interested.

This calls for an explanation. In my opinion, mathematics is intelligible and
trustworthy because of its everywhere locally verifiable context, which is due
to its organization as an extensive deduction graph that tolerates weak links
and allows one to identify these. Indeed, often mathematicians only read key
statements and try to prove them for themselves without recourse to the original
proof – the latter only serves as a backup in case the own proof attempts failed.

The modular nature of mathematics makes it robust even against consistency
problems in the foundations. The fact that one can work fruitfully in inconsistent
systems and get meaningful mathematics distinguishes mathematics from logic.
It was exemplified by the development and usefulness of naive set theory in the
period 1874–1899, before its inconsistency was discovered. The reason is that
theory and proofs connect concepts rather than build up a unique logical building.
Also, while working towards a proof by contradiction, one always works in an
inconsistent system!

Thus, even if somewhere something fails, it will not affect everything but only a
small part of the whole edifice. Therefore, not the logical proof – anyway available
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only for a tiny fraction of today’s mathematical edifice – but the mathematical
proof is the essence of the reliability of mathematics in the real world.

By Gödel’s second incompleteness theorem, since mathematics contains Peano
arithmetic, we cannot even in principle know of any mathematical definition
whether it makes sense in the sense of not producing a contradiction: Even
definitions leading to conservative extensions of a theory need to assume on trust
that the theory one starts with is consistent in the first place. We only can know
when something fails to make sense.

One therefore generally simply assumes that definitions are consistent. If a con-
tradiction is found, one inspects the deduction graph to identify a likely weak
link that should not have been trusted. Also, typically, one tries to isolate the
contradiction into a simple paradox, so that one understands it and can guard
the remaining theory from falling prey to the same paradox. After some repair
work that usually succeeds, the mathematical edifice stands again unthreatened.

Communicating mathematics. The communication of mathematics between
two different subjects poses a problem since these generally have implemented
the object level in different ways. This is obviously the case in human-machine
communication, where the fundamental differences between human brains and
silicon computers must be bridged.

It is also the case with human thinking, where each brain constitutes an operating
system with slightly different hardware. The implementation of mathematics in
a human brain is achieved through an education process that may produce in
different people quite different implementations of the concepts, and hence lead
to quite different, subjective elements in the intuition about these concepts and
their relations. (Are your real numbers infinitely long decimal numbers? nested
sequences of intervals? equivalence classes of Cauchy sequences? Dedekind cuts?
particularly nice surreal numbers? or something else?)

How is it then possible that subjects (whether humans or machines) with very
different subject levels can communicate objectively? As we know, it works to a
considerable extent in ordinary life, though imperfect communication often gives
rise to misunderstandings. It works much better in mathematics, due to its highly
structured approach, optimized for clear communicability.

It seems to me that communication works in science (which includes mathematics
as the science of precise concepts and their relations) since scientific statements
are heavily constrained. The assumption that all scientific statements made by
subject X are goal-directed and meaningful for subject X in their context, with
a meaning closely reproducible in the subject level of any educated receiving
subject Y , is a severe constraint on texts serving as such statements. We all notice
occasional misunderstandings if our communication partner responds to one of
our statements in a way that does not make sense, and good communication
skills include the ability to notice such misunderstandings and to have protocols
for exposing, discussing, and overcoming them. Understanding – i.e., a common
internal representation of the objects of discourse in both partners of what has
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been communicated – is achieved when the subsequent communication shows that
no further misunderstandings occur.

In mathematics, where all communication is based on a finite formal basis, such
an understanding can be achieved in finitely many steps.

In particular, communication is easy if the communication subjects agree on a
common mathematical framework, so that both subject levels agree on the object
level as far as necessary, by satisfying the specifications. Learning this common
mathematical framework is a finite task for humans, and programming a computer
to understand this mathematical framework is a finite task, too.

Therefore, the object level defined by the FMathL axioms for a mathematical
framework may indeed be considered to be objective, in the sense that it makes
unambiguous communication possible.

Foundations of mathematics. The foundations of mathematics may similarly
be regarded as the science and philosophy of the natural laws by which math-
ematicians define and reason successfully. Thus we may suppose that there is
some underlying substance of precisely communicable concepts to be modelled
by FMathL.

FMathL tries to define a language sufficient to express all objectively commu-
nicable mathematical concepts. In the FMathL sense, objectively commu-

nicable concepts are objects that are provably existent in the mathematical
framework of nameable objects discussed in Section 3.5. They exist in many pos-
sible (subjective) implementations, but their essence – given by the way they are
embedded in this framework – is unique up to isomorphism, and hence objective.

This essence may be regarded by those with a disposition towards a Platonic
view of mathematics as constituting the Platonic world of ideas, i.e., of ob-
jectively communicable concepts. Indeed, a number of Platonic dialogues, e.g.,
Hippias major and Hippias minor, can easily be viewed as teaching precision in
the communication of abstract concepts, with Socrates as the teacher who, ac-
cording to his victim Hippias, dissects the language into “scrapings and shavings
of discourse, divided into bits” (Plato [63]) in order to find out what precisely
is agreed upon, and occasionally gets into deadlocks. – Hippias: “I cannot agree
with you, Socrates, in that.” Socrates: “Nor I with myself, Hippias; but that
appears at the moment to be the inevitable result of our argument” (Plato [64]).
– The deadlocks are due to a confusion of different concepts with the same name.
The ambiguity of language has been a difficulty from the start. . . .

The FMathL setting of the Platonic world is thus slightly different from that
discussed by Penrose [61]: He thinks of the physical world, the world of Pla-
tonic forms, and the world of the human mind as being three separate worlds. In
FMathL, the world of the human (or electronic) mind is modelled as a multi-
plicity of subject levels, while the world of Platonic forms is what is common to
the object levels represented inside these subject levels.
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As in physics, our view of this underlying reality may turn out to be inadequate
as new evidence is discovered – in mathematics in the form of contradictions in
present axiom systems, or of new, more powerful concepts. The old views must
then be repaired by modifying them to account for the new evidence.

As physicists know that the deepest layers of Nature always remain unknown, so
mathematicians know (and can even prove) that the deepest layers of the realm
of mathematical thought (or Platonic reality) always remain obscure. However,
the belief that reality is consistent (after all, it exists and works!) drives the belief
in the existence of a repaired view whenever the currently accepted view is found
inadequate. This replaces the lack of consistency proofs that, by Gödel’s second
incompleteness theorem, is unavoidable for foundations in which one can do all
standard mathematics.

In the words of Bourbaki [13], “we believe that mathematics is destined to sur-
vive, and that the essential parts of this majestic edifice will never collapse as a
result of the sudden appearance of a contradiction; but we cannot pretend that
this opinion rests on anything more than experience.”

Thus foundations of mathematics are not like the foundations of a building, which
crashes if its foundations are found defective, but rather like the roots of a tree,
which grow and get improved and refined as the tree grows.

As in all natural sciences, the adequacy of the FMathL mathematical framework
as a foundation of mathematics, i.e., its consistency and sufficient generality, is
given an empirical justification only.

The consistency of the FMathL mathematical framework has not been inves-
tigated so far, apart from checking that the traditional paradoxes do not cause
harm. At present, I am also not completely sure (though confident) that all stan-
dard mathematics can be developed in the FMathL mathematical framework.

Future versions of FMathL will have outgrown deficiencies that the current
version still might have.

Strengthening the FMathL mathematical framework by requiring additional
distinguished objects and/or additional assumptions (e.g., that every set is small)
is of course possible in the same way as, for example, in set theory, the existence
of inaccessible cardinals may be assumed in addition to ZFC.

3.3 Infinity

An object Z is called infinite if no object f exists such that

Z ⊆ f [{x ∈ N | x ≤ n}]

for some number n. For example, C, N, and Text are infinite.
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On the other hand, FMathL regards all objects – among them the distinguished
objects, statements, numbers, texts, functions, and sets – as finite (i.e., finitely
describable) things on the subject level. The finite description of objects is ac-
complished through (abbreviations for) finite expressions in a few “free” variables,
as follows.

The metaset of the strings denoting expressions for the elements of the free mathe-
matical framework in these variables is countable and becomes a mathematical
framework Oname – a framework of nameable objects – by declaring intrinsic
operations on these strings in the natural way, and by interpreting the assertion
of a string as saying that, in the free mathematical framework, the expression
corresponding to the string is equal to 1, the true statement. While this can-
not always be decided constructively, any proved assertion can be checked for
correctness.

It is clear that all mathematics that can be expressed in some mathematical
framework can be expressed in a framework of nameable objects. This holds even
when – relaxing Axiom A1 – our original mathematical framework O of objects
were an uncountable metaset: One would obtain the countable mathematical
framework Oname of nameable objects in which everything expressible in O can
be equivalently expressed. This is the FMathL version of the Löwenheim-Skolem
theorem, and justifies a posteriori the countability assumption in Axiom A1.

The unnameable part of the metaset of objects is irrelevant (i.e., subjective,
implementation-dependent) for mathematics since one cannot refer to it objec-
tively. Reflecting Wittgenstein [72], who said, “Wovon man nicht sprechen
kann, darüber muß man schweigen” – of what one cannot talk about, one must
be silent –, FMathL makes this observation part of the foundations.

Thus, in a mathematical framework of nameable objects, all objects are metafi-
nite, although some of them are infinite. (When object level and subject level
are not distinguished, this can be seen as a variant of Skolem’s paradox discussed
in Section 3.5.) This makes standard mathematics as constructive as anything
dealing with the infinite can be.

In such a constructively obtained mathematical framework of nameable objects,
membership is a form of “mental” association rather than “physical” containment.
Note that the mind referred to in “mental” may be that of a human or that of a
machine. This allows for example the finite distinguished object C, the domain of
complex numbers, to “contain” (i.e., be mentally associated with via ∈) infinitely
many elements.

This constructive interpretation eliminates the ghost of actual, “completed” rather
than “potential” infinity from the foundations of mathematics.
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3.4 Reflection levels

In this section, we give a short preview of the reflection process to be described
in more detail in Neumaier & Schodl [57] and Neumaier et al. [58], since
this is relevant for the understanding of the present document.

The paper [57] first defines a canonical set O1 of reflected objects; these are
special objects designed to play the role of a reflected object level inside the object
level, whereas the object level serves as a reflected subject level.

The reflected objects are then given the algebraic structure of a mathematical
framework. The particular mathematical framework constructed in this way is
called the FMathl mathematical framework. It is objectively defined, exists
exactly once in each subject level with a specified object level, and has in each
subject level precisely the same nameable properties.

Then the notion of an expression is reflected. This enables the representation
of all metaexpressions as expressions inside the object level. We obtain a set E

of objects called expressions. We then reflect, in [58], a language that has all
terminology needed to express the axioms for a mathematical framework and the
implied definitions from the present document, so that all axioms and definitions
can be represented as reflected objects that we may call reflected axioms and
reflected definitions.

Therefore, we may regard O1 as a subject level in its own right. The original
subject is still needed to perform activities in this new subject level, but its
language has changed since it now uses texts formalized in O1 rather than in the
former subject level. (See also Neumaier [55] for an informal exposition of such
a reflection process.)

Since every subject level contains a unique FMathL mathematical framework,
O1 contains one, too, which we denote by O2. Proceeding inductively, we can
construct a hierarchy of frameworks Ok (k = 1, 2, 3, . . .) such that Ok+1 is the
unique FMathL mathematical framework in Ok, regarded as a subject level.

As a result, we have an infinite hierarchy of functionally equivalent object levels
Ok nested in the helical (almost cyclical) manner characteristic for the reflection
of foundations. Thus it is possible to reason objectively about anything in the
subject level of relevance to the object level, by reflecting it inside the object
level, and to reason objectively about this reasoning process by reflecting it, too,
going as deep into the hierarchy as is needed for a particular investigation.

Helicity refers to the fact that while in each framework Ok, regarded on its own,
one has identical names and properties for every object. However, as Ok+1 is
contained in Ok, the reflected objects in Ok+1 also have different names and
properties when considered as objects from Ok. Of course, the differences are of
exactly the same nature as those between concepts and metaconcepts.

Note that there is no level above the original subject level we started with, since
this is fixed by the implementation inside the subject possessing the hierarchy
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of object levels. Thus, in contrast to the hierarchies constructed by Tarski [69]
or Kripke [43] that employ infinitely many and hence questionable language
extensions, the FMathL hierarchy is built inside a fixed subject level, hence has
no associated ontological problems.

3.5 Countability

An object Z is called countable if there is an object f such that Z ⊆ f [N].

The well-known diagonal argument of Cantor [16] shows that Subsets(Text)
is not countable. Since Subsets(Text) is small by (P46), there exist uncount-
able sets on the object level, for example Set(Subsets(Text)).

Within our metacountable metaset of objects one can define on the object level
uncountable sets such as the reals, but the concept of a countable set does not
coincide with that of a metacountable set: The metaset of objects contained
in the set Set(Subsets(Text)) is metacountable since it is a subset of the
metacountable set O of all objects.

This discrepancy between the notions of countable and metacountable demon-
strates an unavoidable limitation of reflection of the subject level inside the object
level. It must be present in any formalization of mathematics in first order pred-
icate logic, since then the Löwenheim-Skolem theorem guarantees the existence
of a countable model.

The confusion that arises when one tries to equate countability and metacount-
ability is known as Skolem’s paradox although the discussion of these phenom-
ena in Skolem [68] is devoid of any air of paradox. Indeed, Cantor’s diagonal ar-
gument showing the uncountability of Subsets(Text) only amounts to showing
the nonexistence of a bijection between the natural numbers and the real num-
bers. It says nothing about a metabijection between the corresponding metasets,
which, as we just did, is easy to construct.

We conclude that there are intrinsic reasons preventing that the object level can
faithfully represent the subject level; it can only reflect it in an imperfect way. As
we shall see in the companion paper [57], we can achieve reflection in the sense
of an isomorphic embedding of the part of the subject level needed to express
the properties of the object level. But as we have seen here, we cannot achieve
agreement of the concepts for arbitrary objects. This is another manifestation of
the incompleteness results of Gödel and the undefinability results of Tarski.

Cardinal numbers. Note that on the basis of the above alone it is undecid-
able whether or not the set Subsets(Subsets(Text)) is small. Thus FMathL

makes no assumptions about the existence of more than two infinite cardinals,
namely those of Text, Subsets(Text). Already the cardinal number of the
set Subsets(Subsets(Text)), i.e., the “set” of equivalence classes of objects
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in bijection with Subsets(Subsets(Text)), cannot be formed without further
assumptions.

The restricted hirarchy of sets in FMathL resembles the “countable mathemat-
ics” of Friedman [27] and the “pocket set theory” of Holmes [35, 36]. But
FMathL is slightly more generous and allows the continuum to be small in or-
der that one can naturally reflect the development of context logic in Neumaier

& Marginean [56].

The motivation for this lack of commitment is that most of mathematics outside
axiomatic set theory does not need more. In the few cases where it is needed,
one can simply make further assumptions about sets considered to be small. We
could have added an axiom that whenever Z is small then Subsets(Z) is small,
bringing the system closer to traditional set theory, but outside of set theory
itself (which, in FMathL, has only the same status as group theory – the study
of mathematical systems satisfying certain axioms) this is needed too rarely to
justify assuming it at the basis of mathematics in general.

3.6 Quantifiers

In this section, we reflect quantification, to recover the usual mathematical ap-
paratus of background notation.

We define the quantifiers ∀, ∃, ∃≤1, and ∃1 by writing, for any two existing
objects Z and f ,

∀x ∈ Z : f(x) for (Z | f) = Z,

∃x ∈ Z : f(x) for Set(Z | f) 6= ∅,
∃≤1x ∈ Z : f(x) for ∀x ∈ Z : ∀y ∈ Z : f(x) = f(y) ⇒ x = y,

∃1x ∈ Z : f(x) for (∃x ∈ Z : f(x)) ∧ (∃≤1x ∈ Z : f(x)).

Therefore, formulas with quantifiers function in FMathL simply as mnemonic
shorthand for some frequently occurring subexpressions rather than constituents
from an independent background from predicate logic. The introduction of quan-
tifiers does not change the basic propositional character of the FMathL logic.

Their traditional meaning, apparent in the verbalization “for all x ∈ Z, we have”
for ∀x ∈ Z : , “for some x ∈ Z, we have” or “there is some x ∈ Z with” for
∃x ∈ Z : , “there is at most one x ∈ Z with” for ∃≤1x ∈ Z : , and “there is a
unique x ∈ Z with” for ∃1x ∈ Z : , can be deduced from the function axioms
(P22), (P26), and (P25): If the object f is defined on the set Z, we have

∀x ∈ Z : f(x) iff x ∈ Z implies f(x) = 1, (for all reflection)
∃x ∈ Z : f(x) iff f(x) = 1 for some x ∈ Z, (exist reflection)
∃≤1x ∈ Z : f(x) iff x, y ∈ Z and f(x) = f(y) = 1 imply x = y,

(at most reflection)
∃1x ∈ Z : f(x) iff ∃x ∈ Z : f(x) and ∃≤1x ∈ Z : f(x). (unique reflection)
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Note that on the object level, we can quantify only over elements from some ob-
ject. Since FMathL does not have a notion of unrestricted quantification (“∀x”
or “∃x”), the FMathL logic is not quite a first order predicate logic. It could be
considered as a kind of higher order logic with all objects as types (so that be-
longing to a type is not decidable in general), but it is most natural thought of a
quantifier-free predicate logic (i.e., a propositional logic with variables for mathe-
matical objects) of a similar nature as the ε-calculus of Hilbert & Bernays

[34].

3.7 Paradoxes

In FMathL, a paradox is a definition from which some nominal object can be
constructed. In this section, we give some formal background and then give a few
typical examples.

Often, paradoxes are related to certain self-referential definitions. A self-refer-

ential definition is a formula

u := E(u), (3.1)

where E is an expression and E(x) = E
∣

∣

∣

z=x

().

Note the difference to the kinds of definitions we had so far: definition by ab-
breviation, which assigns a name to an object given by a formula, and definition
by abstraction, which defines a function through λ-notation. In both cases, the
variable whose meaning was defined did not occur on the right-hand side of the
definition. In contrast, in a self-referential definition, the variable whose meaning
is defined appears both on the left-hand side and on the right-hand side. As a
result, a self-referential definition entails the assumption that an object with the
property u = E(u) exists. Whether or not this assumption is justified must be
investigated by arguments, leading to so-called fixed-point theorems.

An object u satisfying u = E(u) is called a fixed point of the expression E with
respect to the substituted variable z. In general, there may be no, just one, or
several fixed points. The expression E is called fixed-point free with respect to
the substituted variable z if no such fixed-point exists.

Clearly, the self-referential definition u := E(u) makes sense only when E has
a fixed point. But it is easy to find expressions that have no fixed points; thus
corresponding self-referential definitions may define at best a nominal object.
An example is the expression z = 0, where the corresponding self-referential
definition leads to the liar paradox L := (L = 0) discussed in Section 2.5.

Under certain assumptions, the existence of a fixed point can be established,
however, constructively; this is possible when the self-referential definition has
a recursive interpretation in terms of a well-founded relation, in which case an
inductive existence proof can be given. As an example we prove here the following
recursion theorem.
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3.7.1 Theorem. For existing objects Z and e, let E be an expression such that

E(x, n) ∈ Z for all x ∈ Z and n ∈ N. Then there is a unique function f : N → Z
such that

f(1) = e,

f(n + 1) = E(f(n), n) for n ∈ N.

Proof. The object

X := {Y ⊆ N × Z | (1, e) ∈ Y,∀t ∈ Y : (t1 + 1, E(t2, t1) ∈ Y }

contains the object N × Z. Hence Intersect(X) is nonempty, and

f(x) := Choice({t2 ∈ Z | t ∈ Intersect(X), t1 = x}

defines a function with the required property. Uniqueness follows easily by in-
duction. ⊓⊔

One generally refers to the function f constructed in the proof as the function f
defined by

f(1) := e,

f(n + 1) := E(f(n), n) for n ∈ N.

On the other hand, if the self-referential definition is intrinsically circular, i.e.,
cannot be interpreted as a recursion, the status of the defined variable is intrin-
sically unclear. An example is the trivial self-referential definition L := L, which
says nothing at all about L. But in some circular cases, namely for paradoxes
such as the liar paradox, one can definitely prove that a corresponding object, if
it exists, must be nominal.

Yablo’s paradox. As an example of a nontrivial self-referential definition we
consider the paradox of Yablo [73] (1993). It can be formalized as the definition

S := λk.(∀j ∈ N : j > k ⇒ ¬S(j)). (3.2)

This formalization shows that the paradox involves self-reference on the level of
the sequence S, contrary to the title of Yablo’s paper. (His informal version
superficially looks free of self-reference since the sequence is mentioned only in
passing.)

Assuming that S exists, one derives a contradiction as follows: S(k) holds iff S(j)
is false for all natural numbers j > k. If S(k) holds for some natural number k
then ¬S(j) for all natural numbers j > k, but, upon ignoring the case j = k + 1,
this implies that S(k + 1) holds, contradiction. Thus S(k) is false for all natural
numbers. But this implies that S(1) holds, contradiction. Therefore S must be
nominal.
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Hilbert’s paradox. We now consider a paradox by Hilbert [33] (1905) (cf.
Kahle [37]). By our previous theory, the object λx.(x @ x = 0), i.e., the function
H defined by

H(x) := (x @ x = 0),

is well-defined in FMathL. If we evaluate H at the argument x = H, we find
that H(H) = (H(H) = 0), a formula that is a variant of the liar paradox (2.9).
The argument given there implies that L := H(H) is nominal, and hence H(H)
is nominal since by definition, H is a function.

In the unrestricted λ-calculus with identity (which Hilbert implicitly employed
although the concept was formally defined only much later by Church [18]), we
would have obtained a contradiction.

Hilbert’s paradox is a functional variant of the well-known set-theoretic paradox
by Russell. Indeed, if we identify in naive set theory a set R with its characteristic
function r, satisfying r(x) = 1 if x ∈ R and r(x) = 0 otherwise, the Russell
set R := {x | x 6∈ x} (a formula we cannot form in FMathL) becomes R =
{x | x(x) = 0}, and its characteristic function is H. In this sense, H is the
characteristic function of the Russell set.

Hilbert’s paradox shows that not all paradoxes have a self-referential nature; self-
application may have a similar effect. Indeed, as any fixed-point free expression
E leads to a paradox with the self-referential definition u := E(u), so it leads to
a paradox with the following self-applicative but not self-referential construction.

3.7.2 Theorem. Suppose that E is fixed-point free, and let f be the object

defined by

f(x) := E(x(x)).

Then f(f) is nominal.

Proof. If x := f(f) exists then f exists, and x = f(f) = E(f(f)) = E(x),
contradicting the assumption. Hence f(f) does not exist and is nominal. ⊓⊔
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[66] M. Schönfinkel, Über die Bausteine der mathematischen Logik, Math. An-
nalen, 92 (1924), 305–316. English translation: On the building blocks of
mathematical logic, pp. 355–366 in: From Frege to Gödel: A Source Book
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10

Yablo’s paradox, 65

Zermelo–Fraenkel set theory, 10
zero, 41
ZFC, 10


