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Abstract. Renormalization is an indispensable tool for modern theoretical physics. At
the same time, it is one of the least appealing techniques, especially in cases where naive
formulations result in divergences that must be cured – a step that is often done in a
mathematically dubious way.

In this paper, it is shown how the renormalization procedure works – both in regular cases
where a naive approach is possible but renormalization significantly improves the quality
of perturbation theory, and in singular cases where it removes naive divergences. In fact,
one can see immediately that the singular situation is simply a limiting case of the regular
situation.

The paper introduces three families of toy examples, defined by special perturbations of
an arbitrary Hamiltonian with a discrete spectrum. The examples show explicitly many
of the renormalization effects arising in realistic quantum field theories such as quantum
chromodynamics: logarithmic divergences, running couplings, dimensional transmutation,
the renormalization group, and renormalization scheme dependent results at any order of
perturbation theory.

Unlike in more realistic theories, everything is derived rigorously and nonperturbatively in
terms of simple explicit formulas. Thus one can understand in detail how the infinities arise
(whenever they arise) – namely as an unphysical infinitely sensitive dependence on the bare
coupling constants. One also sees that all spurious infinities are cured automatically by
the same renormalization process that gives robust physical results in the case where no
infinities occur.
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Part I

General observations

1 Introduction

Renormalization (see, e.g., Collins [14]) is the fundamental technique that makes rela-
tivistic quantum field theories – such as quantum electrodynamics (QED), quantum chro-
modynamics (QCD), and the standard model – work. Thus it is one of the cornerstones
of current theoretical physics. But at the same time, it is one of the least appealing tech-
niques since the conventional textbook presentations look quite dubious: The basics are
typically phrased in terms of divergences that must be cured. usually, this step is done in a
purely formal, mathematically unjustified way. (An important exception, which derives the
perturbation theory for QED without meeting a single ultraviolet divergence, is the causal
approach to quantum field theory; see Grigore [33] for an overview, and for details the
book by Scharf [55].)

Less well known is the fact that the same type of divergences also arise in the naive treatment
of much simpler quantum systems, if these have a singular Hamiltonian. Renormalization
is even important when there are no singularities, as in the case of the quartic anharmonic
oscillator; see, e.g., Zamastil et al. [71]. It is also relevant for purely classical theories,
see, e.g., Gallavotti [26].

The literature contains many discussions of singular Hamiltonians and their renormaliza-
tion at many different levels of rigor; let me recommend Delamotte [15], Glazek &

Wilson [29], Rajeev [36, 49], and Wegner [64, 65]. An older but comprehensive review
by Frank & Land [23] includes many nonrelativistic examples of physical interest. A
recent thesis by Gopalakrishnan [32] gives an overview of the current state of affairs for
systems with few degrees of freedom. An exposition of more advanced, action-based non-
perturbative (approximate) renormalization techniques in quantum field theory was given
by Delamotte [16].

The present paper benefitted from the above expositions, especially from [15], which com-
plements our treatment by emphasizing the perturbative aspects. We address the renormal-
ization problem in a different manner. We aim at a nonperturbative and mathematically
rigorous understanding of renormalization, explaining the miraculous cancellations in the
traditional approach rather than taking them for a happy accident that saves us from
infinities.

By putting the basic approach into the context of finite renormalization (where there are
no divergences at all), it is shown how the renormalization procedure works, using a class
of toy problems chosen because of their calculational simplicity and tractability. Unlike in
more realistic theories, everything can be derived rigorously and nonperturbatively in terms
of simple explicit formulas. Thus one can understand in detail how the infinities arise (if
they arise) – namely as an unphysical infinitely sensitive dependence on the bare coupling
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constants. One also sees that all spurious infinities are cured automatically by the same
renormalization process that gives physical results in the case where no infinities occur. By
working with discrete spectra only we avoid the additional technical problems involved in
particle scattering.

Our model Hamiltonians have a direct physical significance only in a continuum limit (a par-
ticular sequence of models converges to the well-known singular delta function potential),
and hence have the status of toy models only. But they show many of the renormaliza-
tion effects arising in realistic quantum field theories such as quantum chromodynamics:
running coupling constants, dimensional transmutation, the renormalization group, and
renormalization scheme dependent results at any order of perturbation theory.

One can see from the present study that, in our class of problems, all fully renormalized
formulas derived in the regular case can be used in the singular case without any change.
The divergences are therefore only due to having started with a singular parameterization of
the family of models. Precisely the same is known or expected to hold for all renormalizable
quantum field theories, since only this can explain the often observed fact that very different
renormalization schemes lead to the same answers. However, in these not exactly solvable
cases, one probably cannot expect to find an explicit regular reparameterization.

Note that the need for renormalization is not specific to quantum mechanics and quantum
field theory. It appears in many problems involving highly nonlinear dynamical systems
(see, e.g., Chen et al . [12]). It is needed even for a classical anharmonic oscillators if
a convergent long-term perturbation series is desired; see, e.g., Eminhizer et al. [21].
However, all our examples will be taken from quanum mechanics.

The paper is organized as follows. Familiarity with elementary quantum mechanics in-
cluding second order perturbation theory is assumed throughout. By restricting attention
mainly to three classes of explicitly solvable toy models (type A in Section 3, type B in
Section 7, and type C in Section 12), things are kept elementary. In particular, no back-
ground in quantum field theory is required, although notions from quantum field theory are
alluded to for motivation and to provide some relevant context.

The first part discusses generalities valid for arbitrary Hamiltonians. Section 2 introduces
the basic concept of renormalization in a general informal context, and Section 3 applies it to
the simplest of all quantum systems, a 2-state system (type A model). Section 4 introduces
general aspects of perturbation theory, and Section 5 gives details of second-order pertur-
bation theory in a general framwork suitable for both the bare and the renormalized case.
Section 6 introduces the basic difficulty – ultraviolet divergences when the Hamiltonian is
singular.

The second part discusses explicit formulas for certain solvable models. Type B models are
introduced in Section 7, and Section 8 derives their explicit nonperturbative renormalized
solution. Up to this point, everything is completely straightforward and free from concep-
tual problems. Section 9 extends our discussion to a singular version of type B models
and shows that we get a rigorous nonperturbative renormalization of the spectrum of the
singular model, using cutoff regularization and a controlled limit involving only physically
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relevant parameters. Remarkably, the renormalized formulas for the regular case hold with-
out change in the singular case, as long as a simple renormalizability condition is satisfied.
We also encounter the phenomenon of dimensional transmutation characteristic for renor-
malizable field theories with dimensionless coupling constants. Section 10 shows that one
can explicitly calculate the renormalized solution in terms of a running coupling constant.
The freedom in the choice of the running coupling constant translates into the renormal-
ization group equation, a differential equation which takes here an exact and explicitly
solvable form. We then treat in Section 11 Type B models using perturbation theory and
find that, for renormalizable singular interactions, renormalized perturbation theory gives
finite results, while naive perturbation theory leads to divergent expressions at second order.
Section 12 introduces type C models, a variant of Type B that exhibits the phenomenon
of mass renormalization. The concluding Section 13 summarizes the advantages of the
presentation of renormalization along the present lines.

Explicitly excluded from this paper as too technical are models of quantum field theory
(QFT). Instead, we provide now a few pointers to the literature related to solvable models
and renormalization in QFT. There are a number of simple nonrelativistic QFT models
where renormalization issues can be studied in solvable sectors; see, e.g., Lee [43], Chiu et
al. [13], Varma & Sudarshan [62]. There are also many exactly solvable local relativistic
QFTs in 1+1 dimensions (time and one space dimension), see. e.g., Sutherland [59]
or Abdalla et al. [1]; they are closely related to Yang-Baxter equations and quantum
groups; see, e.g., Fuchs [25], Majid [44]. However, the renormalization of local relativistic
QFTs in 1+1 dimensions is quite simple since (Glimm & Jaffe [31], Baez et al. [6]) it
just amounts to shifting the Hamiltonian by normal ordering (Wilcox [68]) and deleting
the constant term. In higher dimensions, exactly solvable QFTs are very rare (quasifree
theories and certain topological field theories), and renormalization is much more technical;
see Collins [14] for the traditional version, and Salmhofer [53] for a mathematicallly
rigorous approach.

A nice, multifacetted view of the renormalization of quantum field theories in the context
of mathematics and physics in general is given in Sections 3.2, 11.5, and 15.4 of Zeidler
[72]. A history of the concept and philosophy of renormalization in quantum field theory
can be found in the book by Brown [8].

Throughout the paper, we use units such that Planck’s constant h̄ and the speed c of light
both have the value 1, unless c or h̄ are explicitly mentioned. In these units, the well-known
relations E = mc2 and E = h̄ω imply that (angular) frequencies ω are the same things as
masses m and energies E.

2 The concept of renormalization

In quantum mechanics and quantum field theory, the dynamics of a stationary system is
generally given by a Hamiltonian H, the infinitesimal generator of time translations of the
system. Any particular real quantum system can be described to experimental accuracy
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by many different Hamiltonians. The typical procedure is to take a model Hamiltonian
H(θ) parameterized by a vector θ of parameters defining particular instances of the model.
By solving the Schrödinger equation (or related dynamical equations) analytically or nu-
merically, one obtains predictions v(θ) for a vector v of experimentally accessible numbers.
The quality of the model is then determined by how well one can match v with v(θ) for a
suitable choice of θ, usually determined by some form of data fitting.

Different models differ in the form of the model Hamiltonian, often also in the number of
parameters comprising θ. Therefore, fitting the experimental data v to the computational
results vj(θj) computed from different model Hamiltonians Hj(θj) (j = 1, 2, . . .) lead in
general to estimated parameter vectors θj that may have very little to do with each other.
In particular, the parameters have no intrinsic physical relevance and have meaning only
in the context of the specific model under investigation.

This explains for example the fact that the physically unobservable quark masses param-
eterizing quark models come out very different in different quark models – compare, e.g.,
the masses in Rüster et al. [52] and Scadron et al. [54]. The official tables of quark
masses from the Particle Data Group [5] must also be viewed in the context of a specific
model; [45] explicitly warns: ”Although one often speaks loosely of quark masses as one

would of the mass of the electron or muon, any quantitative statement about the value of a

quark mass must make careful reference to the particular theoretical framework that is used

to define it. It is important to keep this scheme dependence in mind when using the quark

mass values tabulated in the data listings.”

To take a specific example, we consider the Hamiltonian

H(θ) =
p2

2m
+ V (q, θ),

describing a single (bosonic) quantum degree of freedom. Here θ is a parameter vector of
bare coefficients, and p, q are Hermitian (momentum and position) operators satisfying the
canonical commutation rules (CCR)

qp− pq = ih̄,

where h̄ is Planck’s constant. To study the discrete part of the spectrum, one often trans-
forms the Hamiltonian into one involving annihilation and creation operators a and a∗.
This can be done by defining for an arbitrary nonzero real number α and arbitrary real
numbers p0 and q0 the operator

a :=
q − q0
α

+
iα(p− p0)

2h̄

which satisfies the ”second-quantized” commutation rules

aa∗ − a∗a = 1. (1)

According to standard reasoning, this implies that we can use a basis of ladder states |k〉
(k = 0, 1, 2, . . .) satisfying

a|k〉 =
√
k |k − 1〉, a∗|k〉 =

√
k + 1 |k + 1〉.
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We may eliminate p and q from the expression for H using

p = p0 +
h̄

αi
(a− a∗), q = q0 +

α

2
(a+ a∗),

and obtain a ”second-quantized” form of the Hamiltonian,

H(θ) = H(a∗, a, θ).

We note that many different parameterizations of a polynomial expression in a∗ and a
describe precisely the same physical situation. Indeed, the above freedom in the definition of
a amounts to the freedom of performing on each of these Hamiltonians a linear Bogoliubov
transformation a→ â, defined by

â = α0 + β0a+ γ0a
∗, â∗ = α0 + β0a

∗ + γ0a,

where |β0|2 − |γ0|2 = 1 (so that the commutation rules (1) are preserved), the polynomial
degree is preserved but the lower and higher order terms in the new creation and annihila-
tion operators are completely mixed up. As a result, the coefficients can have very different
values depending on the choice of the transformation. On the other hand, a Bogoliubov
transformation is unitary and hence does not change the physics. In particular, the observ-
able information – encoded in energy differences of discrete spectra and in scattering angles
computed from the continuous spectrum – remains unaltered. The possibility of performing
arbitrary Bogoliubov transformations also shows that neither a nor â, nor their coefficients
in the resulting expression for H can have any physical significance in themselves. More
general Bogoliubov transformations are routinely used in statistical physics. They are basic
for understanding effects such as superconductivity; see, e.g., Nambu [46].

Of course, the physics contained in the models must be independent of the parameters
that happen to be used in particular models. In many cases of interest, the experimental
data can be empirically described in terms of a few physical key parameters, such as basic
observable masses and charges. These are generally different from the mass and charge
coefficients that appear in particular models. To distinguish these in a general context, we
therefore refer to the model-dependent coefficients – such as the quark masses mentioned
above – as bare parameters and to the model-independent parameters chosen for the
physical parameterization – measurable masses, charges, etc., related directly to experiment
– as renormalized or dressed parameters. (As bare persons must usually be dressed to be
socially acceptable, so bare parameters must usually be dressed – or, in modern terminology,
renormalized – to be physically acceptable.)

The purpose of renormalization is to reparameterize a given family of Hamiltonians in such
a way that one can match physical parameters in a numerically robust way. The ideal case
is the direct parameterization by a physical parameter; often, however, one reparameterizes
in terms of intermediate parameters that are sensitive to physical parameters and allow one
to determine the latter by means of simple renormalization conditions. Note that – just as
a gauge transformation – a reparametrization does not change the physics, only the form
the calculations take.

Writing the renormalized parameter vector as θren, we can express to experimental accuracy
both θren (which is part of v(θ)) as a function of θ,

θren = Tren(θ)
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and θ as a function of θren (via the data fit),

θ = T (θren).

To experimental accuracy, the two transformations T and Tren are inverse to each other.
Clearly, the physics is completely contained in the renormalized Hamiltonian

Hren(θren) := H(T (θren)).

More precisely, since two Hamiltonians differing only by a unitary transformation describe
the same physics (after a corresponding transformation of the states), the physics is deter-
miend by the equivalence class of Hamiltonians unitarily equivalent to Hren. In statistical
mechanics and quantum field theory, the process of going from H to Hren (or a unitarily
equivalent Hamiltonian) is conventionally called renormalization.

3 Type A: A 2-state system

Before treating Hamiltonians that resemble those for real systems, we illustrate the basic
principle with the simplest of all quantum systems, a 2-state system with a 2-dimensional
Hilbert space H := C

2. Let ω > 0 be the excitation frequency for moving the unperturbed
system from the ground state to the excited state. This is described by the unperturbed
Hamiltonian

H0 =

(
0 0
0 ω

)
.

Suppose that under some force of strength g, the system behaves according to the perturbed
Hamiltonian

HΛ = H0 + gVΛ

with an external potential of the form

VΛ :=

(
−1 Λ
Λ 0

)
,

where Λ > 0 is a very large number simulating what in more realistic cases will be an energy
cutoff. This defines our Type A model. We can easily work out the eigenvalues of

HΛ =

(
−g gΛ
gΛ ω

)
; (2)

they are the zeros of the characteristic equation 0 = det(E−HΛ) = (E+ g)(E−ω)− g2Λ2,
so that

E0,1 =
1

2

(
ω − g ±

√
(ω + g)2 + 4g2Λ2

)
. (3)

If Λ is very large, the formulas are extremely sensitive to changes in g since these are
magnified by the factor Λ. Such an extreme sensitivity is characteristic for a poor choice

of parameterization. We therefore consider the parameters ω and g as bare parameters in
our physical model, and look for a better parameterization. One possibility is to use as
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parameters physical data; most natural are in the present case the renormalized energies
E0 and E1. Since

E0 + E1 = ω − g, E0E1 = −gω − g2Λ2,

we find that ω = E0 + E1 + g and g must be a solution of the quadratic equation

(Λ2 + 1)g2 + (E0 + E1)g + E0E1 = 0.

Thus g and ω depend on Λ, and one sees that, given physically reasonable values of E0 and
E1, we have g = O(Λ−1) when Λ is large.

This form of the dependence suggests a simpler reparameterization in terms of a renor-
malized coupling constant gren := gΛ. Eliminating the bare coupling constant g in
favor of gren, we obtain the family of renormalized Hamiltonians

Hren
Λ =

(
−grenΛ−1 gren
gren ω

)
. (4)

Except for the reparameterization, the renormalized family of Hamiltonians is exactly equiv-
alent to the original family of Hamiltonians; Every physical situation that can be described
by a member of the original family can also be decribed as a member of the renormalized
family, and conversely.

The renormalized Hamiltonians behave perfectly for arbitrarily large Λ, since the sensitivity
under changes of gren decreases when Λ increases. Indeed, we can even perform the limit
Λ → ∞, and obtain a well-defined limiting Hamiltonian

Hren
∞ := lim

Λ→∞
HrenΛ =

(
0 gren
gren ω

)
.

This limiting renormalized Hamiltonian has the perfectly well-behaved spectrum

E0,1 =
1

2

(
ω ±

√
ω2 + 4g2ren

)
, (5)

determined from the characteristic equation 0 = det(E −Hren
∞ ) = E(E − ω)− g2ren. On the

other hand, in the original parameterization, one cannot take the limit Λ → ∞ without
getting meaningless infinites.

Thus we derived the basic idea of renormalization: It consists in reparamaterizing a given

family of Hamiltonians in a way that reduces the sensitivity with respect to the new, renor-

malized parameters. Renormalization is a practical necessity whenever a family of model
Hamiltonians depends on a very large parameter Λ (a cutoff energy or – in thermodynam-
ical calculations – a volume) and additional bare parameters, in a way that some results
computed from the model that can be compared with experiments are extremely sensitive
to changes in the bare parameters. If the model Hamiltonians match a physical situation,
such an extreme sensitivity is an artifact of the particular parameterization. By expressing
the bare parameters as appropriate functions of Λ and additional renormalized parameters,
one can usually reduce the sensitivity to a meaningful level. Moreover, in the renormalized
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family, one can often take the limit Λ → ∞, thereby simplifying the model and getting rid of
a parameter that, in the renormalized version, hardly affects the results. The specific form
of the cutoff-dependence can be freely chosen as long as certain renormalization conditions
are respected that guarantee that the limit can safely be taken after renormalization.

The renormalization procedure is especially important in cases where the physics is modelled
by a system in which arbitrarily large energy scales play a role, although the model is correct
only for small energies. In this case, the true physics is determined by an approximation
in which large energy contributions beyond an energy scale Λ are cut off, but the precise
value of the cutoff is considered irrelevant as the results should not depend significantly on
the value of the cutoff scale. However, the fit to the bare parameters is typically strongly
dependent on Λ, a clear sign for the necessity of a reparameterization.

The ability to take the limit Λ → ∞ in the reparameterized model is proof of the irrelevance
of the cutoff scale, and characterizes a successful renormalization. But at fixed renormalized
parameters, the results are in this case physically indistinguishable for large enough Λ, so
that it is irrelevant whether one takes the limit or keeps Λ finite but very large. This is in
sharp contrast to what happens at fixed bare parameters, where magnifying a large Λ by
another large factor drastically changes the observable results. Since a precise value of the
cutoff is usually impossible to obtain (whether from theory or from a fit to experimental
data), we conclude that the renormalized parameters are the ones that carry the relevant
experimental information.

Note that in our bare 2-state model, the limit of the potential does not exist as an operator
on H, and the limit of the coupling constant must be zero if we want to maintain finite en-
ergies. So the limiting problem is singular, analogous to more realistic singular interactions
present in QED or QCD. In these realistic theories, and in contrast to our 2-state model, the
unperturbed system and the postulated forces on it (defined by the interaction) are unob-
servable, hence fictional, chosen simply in order to define the phenomenologically successful
full Hamiltonian. Only the full Hamiltonian makes physical sense; in the case of QED, it is
amply justified by the fact that the renormalized results computed from the Hamiltonian
match the corresponding experimental results to extremely high accuracy. Note that the
well-known divergent expressions one gets for QED from naive (bare) second-order pertur-
bation theory have a correspondence in our 2-state problem, where in the bare setting, the
two eigenvalues E0 and E1 diverge to ±∞ as Λ → ∞.

The limiting situation becomes in some sense exact for problems where the natural formu-
lation is singular although the physical system does not exhibit a singularity. One may
compare the reparameterization that lifts the singularity by renormalization to the coor-
dinate transformation from polar coordinates to Cartesian coordinates. The singularity of
polar coordinates in the origin is removed in Cartesian coordinates, and shows up instead
in the singular behavior of the coordinate transformation.

10



4 Perturbation theory

Sincemost realistic models are not exactly solvable, one usually turns to some form of
perturbation theory to compute approximations to the results of interest. In perturbation
theory, one chooses a free (or at least an explicitly solvable) reference Hamiltonian
H0 := H0(µ), and defines the interaction

V := V (θ, µ) = H(θ)−H0(µ).

Hoping that the effect of the interaction is small, one expands the numbers of interest
into a perturbation series around the corresponding numbers computed from the reference
Hamiltonian.

For example, expansion of the eigenvalues (3) of the Hamiltonian of the 2-state model (with
θ =

(
ω
g

)
and µ = ω) gives for small g:

E0 = −g − g2Λ2

ω
+O(g3), E1 = ω +

g2Λ2

ω
+O(g3),

Note that although g is small, the second order term is small only if g ≪ Λ−1; thus the
validity of the expansion restricts g to very small values, and in the limit of an infinite
cutoff, any nonzero g gives meaningless results. This is precisely the situation that occurs
when applying perturbation theory naively to field theories like QCD. However, after renor-
malization, i.e., when expanded in the renormalized coupling constant gren, the eigenvalues
(5) satisfy

E0 = −g
2
ren

ω
+O(g4ren), E1 = ω +

g2ren
ω

+O(g4ren),

showing that the renormalized model behaves well in the sense of perturbation theory. Thus
a lot depends on the proper choice of the parameters in which perturbation theory is carried
out – the naive choice may be a very poor choice!

Naively – and especially in most introductory discussions – one chooses the reference pa-
rameters comprising µ simply as a subset of the list of bare parameters, and the reference
Hamiltonian by simply setting the remaining parameters equal to zero. But this is usually
a poor choice; the only exceptions are traditional textbook examples where the ignored
parameters are tiny and the resulting interaction V is relatively compact with respect to
H0.

In general, the freedom to choose µ arbitrarily can be exploited by following a very successful
approach to quantum computations called variational perturbation theory – see, e.g.,
Kleinert [41, 40, 39], Buckley et al. [9] –, where, for anharmonic oscillators, the value
of µ is considered to be an adjustable parameter in an approximative perturbative analysis,
which is optimized to get best approximate results. The approach is more general, however,
being based on a very general principle of minimal sensitivity of Stevenson [58]. This
principle asserts that, for any computation in which the exact results would be independent
of µ, the best choice of µ in a corresponding approximate calculation should be the one
which minimizes the sensitivity of the results to changes in µ – an expectation frequently
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born out in practice. The optimal choice is taken to be either a stationary point or an
inflection point; the resulting approximations are often much better than those from the
naive approach.

Note that the application of the principle of minimal sensitivity depends on the quantity
Q (e.g., an energy difference) whose sensitivity is made small. There are cases where the
principle breaks down. This happens when Q depends on µ in a way that Q has neither
a stationary point nor an inflection point. In these cases, some parameters in µ effectively
behave as new degrees of freedom for the approximate theory, and must be determined (as
θ) by matching experimental data.

In general, at every order in perturbation theory, the results depend on the choice of both
θ and µ. These are basically independent sets of parameters (although they may be chosen
to partially overlap): θ selects the specific instance of the model, while µ should be chosen
primarily with the aim of getting a good approximate perturbative solution. Reasonable
results can be expected only if H and H0 have a related spectrum; in particular, the spectra
must have the same topological structure in the energy range of interest. This dictates the
choice of H0.

For example, in a scattering experiment one expects a continuous spectrum, and often
chooses a multiple of the squared momentum, H0 = −µ(a − a∗)2, where µ is proportional
to a bare mass. On the other hand, for an anharmonic oscillator far below the dissociation
threshold (if one exists), one expects a discrete spectrum and usually chooses a harmonic
oscillator Hamiltonian H0 = µa∗a, where µ is a bare frequency. Apart from being consistent
with the topology of the spectrum, which requires in both cases that µ ≥ 0, the choice of
µ is in both cases completely arbitrary. But different values of µ may lead to very different
results in a truncated perturbative expansion. This seems counterintuitive at first since
after summing the full perturbation theory (assuming it converges), the results must of
course be those for H. They are therefore obviously independent of parameters in the more
or less arbitrary reference Hamiltonian H0. However, since truncating two different series
with the same limit generally gives different results, the choice of µ matters in perturbation
theory at finite order.

In the case of a single quantum degree of freedom with discrete spectrum E0 < E1 < . . .,
what is measurable (and therefore physical) are energy differences such as the excitation
energy ǫ := E1 − E0. If the model Hamiltonian contains only a single bare parameter,
we may choose the excitation energy as the single renormalized parameter, θren = ǫ. The
renormalized Hamiltonian is then expressible as a function Hren(ǫ) of the excitation energy.
Note that for any real-valued function f , the operator H0 = f(a∗a) has the eigenvalues
Ej = f(j) (j = 0, 1, 2, . . .) and corresponding eigenvectors |j〉, hence can serve as an
explicitly solvable reference Hamiltonian H0 = f(a∗a). For example, using H0 = ω0a

∗a+E0

as reference Hamiltonian, we have several free parameters (µ, p0, q0 from the transformation
to second-quantized form, ω0, and E0) for a subsequent variational perturbation theory.
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5 Renormalized perturbation theory

In this section, we give an elementary presentation of second-order perturbation theory,
in a generalized setting that allows us to treat within the same formalism both naive
perturbation theory (as presented in most textbooks) and the renormalized version.

The Hamiltonian H = H(z) may be an arbitrary infinitely differentiable operator-valued
function of a perturbation parameter z. In the typical (naive, bare) textbook treatment, z
is taken to be a coupling constant g, though in all but the simplest cases, alternative choices
are better, and may provide the renormalization needed for getting meaningful approximate
results. Moreover, in cases where there are multiple coupling constants, it is not clear what
would be the most natural expansion parameter, so not tying z to a coupling constant is
appropriate.

The motivation and primary reason for choosing z differently from a coupling constant is
the fact that the perturbative expansion of the same expression may have a very different
behavior depending on the choice of the perturbation parameter. For example, the power
series expansion

log(1 + g) =
∞∑

k=1

(−1)k−1

k
gk

converges only for |g| < 1, but if we expand in terms of z = g/(g+2), so that g = 2z/(1−z)
we get

log(1 + g) = log
(1 + z

1− z

)
=

∞∑

k=0

2

2k + 1
z2k+1,

which converges for |z| < 1, hence in the much larger domain Re g > −1. Moreover,
convergence is typically much faster. As observed by Weinberg [66], one can obtain
convergence of the perturbative expansion of arbitrary two-body problems by expanding in
terms of a z related to g by means of a suitable conformal transformation chosen to avoid
the complex singularities that limit the convergence of a power series.

We assume that the Hamiltonian H = H(z), some eigenvalue ǫ(z), and the associated
eigenvector ψ(z) can all be expanded into power series in z,

H(z) =
∞∑

j=0

zjHj, ǫ(z) =
∞∑

j=0

zjǫj, ψ(z) =
∞∑

j=0

zjψj.

Since ψ is determined only up to an arbitrary scalar multiple that may depend on z, we
may demand without loss of generality that

ψ∗
0ψj = 0 for j = 1, 2, . . . . (6)

Substituting the power series into the eigenvalue equation (ǫ(z)−H(z))ψ(z) = 0 gives the
equation

( ∞∑

j′=0

zj
′

(ǫj′ −Hj′)
)( ∞∑

j′′=0

zj
′′

ψj′′
)
= 0.
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Multiplying out the sums and comparing the coefficient of zj then gives the equations

j∑

j′=0

(ǫj′ −Hj′)ψj−j′ = 0 for j = 0, 1, 2, . . . . (7)

Setting j = 0 gives the reference eigenvalue equation

(ǫ0 −H(0))ψ0 = 0. (8)

Thus, to get started, we need to know the spectrum of the reference Hamiltonian

H0 := H(0),

or at least some of its eigenvalues and eigenvectors. For simplicity, we assume that H0 has
a discrete, nondegenerate spectrum; the general case is not much different but technically
more complicated (additional labels in the basis kets to distinguish degegenerate states;
integrals in place of sums to account for continuous spectra). We consider the diagonal
representation of H0 in a basis of normalized eigenstates |k〉 (for k in some label set K)
with

H0|k〉 = Ek|k〉, 〈k|k′〉 = δkk′ .

We refer to the eigenvalues Ek and eigenvectors |k〉 of the reference Hamiltonian H0 as bare
eigenvalues and eigenvectors, and to those of the interacting Hamiltonian H as renormal-
ized eigenvalues and eigenvectors. H0 acts on the Euclidean space H consisting of all
vectors

ψ =
∑

k

ψk|k〉 (9)

with only finitely many ψk nonzero. The orthogonality relations imply the standard inner
product

φ∗ψ =
∑

k

φkψk;

the sum is finite since almost all terms vanish. (We use the notation custumary from linear
algebra rather than Dirac’s bra-ket notation, which would write this as 〈φ|ψ〉.)

By completion, we get from H the Hilbert space Hphys of square summable vectors ψ
with finite

∑
k |ψk|2. Since the energies are unbounded, there are square summable vectors

(ψ0, ψ1, ψ2, . . .) for which the vector (E0ψ0, E1ψ1, E2ψ2, . . .) is no longer square summable.
(For example, this is the case for ψk = 1/(α+Ek) when α > 0 and Ek = ωk is the spectrum
of the harmonic oscillator.) Therefore H0 is not definable as a linear operator on Hphys,
but only on the dense subspace of Hphys consisting of the vectors ψ for which

∑ |Ekψk|2
converges. But as densely defined operators, both H0 and H are self-adjoint; hence eitH/h̄

exists for all t and we have a good quantum dynamics.

Having made our assumptions precise, we return to (8), and find (after rescaling ψ by a
z-independent constant) that

ǫ0 = Eℓ, ψ0 = |ℓ〉 (10)
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for some ℓ ∈ K. The condition (6) can now be written as

ψj =
∑

k∈K

ψjk|k〉, ψjℓ = 0. (11)

For j = 1, we obtain from (7) the equation

(ǫ0 −H0)ψ1 + (ǫ1 −H1)ψ0 = 0,

which, using (11), has the unique solution

ǫ1 = 〈ℓ|H1|ℓ〉, ψ1k =





0 if k = ℓ,

〈k|H1|ℓ〉
Eℓ − Ek

otherwise.
(12)

For j = 2, we obtain from (7) the equation

(ǫ0 −H0)ψ2 + (ǫ1 −H1)ψ1 + (ǫ2 −H2)ψ0 = 0. (13)

We may write

H2ψ0 +H1ψ1 =
∑

k∈K

αk|k〉,

where
αk := 〈k|H2ψ0 + 〈k|H1ψ1 = 〈k|H2|ℓ〉+

∑

j

ψ1j〈k|H1|j〉

= 〈k|H2|ℓ〉+
∑

j 6=ℓ

〈k|H1|j〉〈j|H1|ℓ〉
Eℓ − Ej

.
(14)

Using (11), we find that (13) has the unique solution

ǫ2 = αℓ, ψ2k =





0 if k = ℓ,

αk − ǫ1ψ1k

Eℓ − Ek
otherwise.

(15)

This determines the eigenvalue ǫ(z) and the eigenvector ψ(z) with an error of order O(z3).

In many cases of interest (and the only case we consider later), the family of Hamiltonians
is given in the form

H = Bc =
∑

s

B(s)c(s) (16)

with finitely many bare coefficients c(s) and corresponding operators B(s) ∈ Lin(H,H∗),
and there is no prespecified bare Hamiltonian. In this case, we reparameterize the vector c
whose components are the c(s) in terms of a power series

c = c(z) =
∑

zjcj,

so that the power series coefficients of H = Bc(z) are

Hj = Bcj (j = 0, 1, 2, . . .).
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In concrete calculations, c0 must be chosen such that H0 = Bc0 has a known spectral
resolution. This typically forces some components of c0 to vanish,

c
(s)
0 = 0 for s ∈ S0.

The independent parameters are the c
(s)
0 with s 6∈ S0 (typically defining masses) and the

c
(s)
1 with s ∈ S0 (typically defining charges or other coupling constants).

The remaining coefficients c
(s)
j can be freely chosen; we refer to them as calibration terms.

Note that truncation at second (or any higher) order produces approximations that depend
(often very strongly) on the choice of the calibration parameters since the discarded higher
order terms are not independent of them; cf. Epelbaum & Gegelia [22].

In naive perturbation theory, all calibration terms are taken as zero, and we essentially
get the bare parameterization; the expansion parameter z simply scales the coupling con-
stants and can be set to z = 1. However, the bare parameterization is frequently far too
sensitive to be of practical use. In renormalized perturbation theory, the calibration
terms c

(s)
j are therefore chosen such that the sensitivity is reduced to an acceptable level.

At first sight, it would seem that renormalized perturbation theory is completely unpredic-
tive since the finite-order results depend on the choice of the arbitrary calibration terms.
However, the situation is completely analogous to that in variational perturbation theory
mentioned before, which leads to highly accurate prediction provided the free parameters
are chosen from a region of parameter space where the results do not vary much. One way
of achieving this is by specific choices cancelling the most sensitive terms in the perturbative
expansion; this is the standard practice in quantum field theory, where the calibration terms
are generally referred to as counterterms. Alternatively, the calibration terms can often
be determined numerically by means of the principle of minimal sensitivity explained in
Section 4. (For a specific example in the context of similarity renormalization, see Glazek

& Mlynik [27].)

6 Singular Hamiltonians and their treatment

In nonrelativistic quantum mechanics, renormalizing transformations can be computed for
sufficiently regular Hamiltonians with traditional perturbation theory, posing no particular
conceptual difficulties. However, in case of singular Hamiltonians and in relativistic quan-
tum field theory (where all interactions are singular due to causality requirements), naively
mimicking the regular perturbation theory introduces troubling aspects, so-called ultravi-
olet (UV) divergences. (There may also be so-called infrared divergences, but only if
there are long range interactions or massless particles.) These divergences only show up
when doing (as done in most quantum field theory textbooks) the analysis in a formal way,
disregarding topological issues about the convergence of the terms involved. The reason
is that – in a model with an additional parameter that regularizes the singularities – the
appropriate bare parameters to achieve experimental accuracy are either huge or essentially
zero. Thus in the formal limit where the regularization is turned off, the bare parameters
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diverge or vanish. Therefore a correct treatment must not take the limit before all results
of interest have been renormalized.

Heisenberg & Pauli [37] noticed in 1929 the first divergences in quantum field theory;
in the following years, many more divergences were encountered. In 1934, Dirac [18] and
Weisskopf [67] used bare QED to calculate the second-order corrections to the Compton
effect. It was noted that the second order correction was infinite, which puzzled the physics
community for a long time. This was all the more puzzling as the first order results were
in reasonable agreement with measurements. This difficulty of quantum electrodynamics,
where the spectrum is continuous and describes scattering, matches well with our model
thah (for simplicity) had a discrete spectrum: our first order perturbation formulas (12)
make sense for almost arbitrary interactions, while the coefficients αk in (14) needed for
the second-order result (15) may easily blow up in singular cases.

History oscillated between attempts to get rid of the divergences and attempts to alter the
basis of quantum field theory – until it was finally discovered how to tame the infinities by
regularization and renormalization. It took almost twenty years until, in 1948, Schwinger

[56] found the correct approach to get UV finite results, using the newly created renormal-
ized QED that restored confidence in quantum field theory, and for which Feynman, Tomon-
aga and Schwinger received the Nobel prize. The same techniques, suitably extended, were
later shown to apply to a large class of renormalizable theories, including QCD and the
standard model. (It should be mentioned that QED also suffers from infrared divergences.
These are related to the large distance behavior and occur only in field theories with mass-
less particles or long-range nonlocal interactions. They are not cured by renormalization
and are outside of the scope of the present article. Currently, the most adequate treatment
of infrared divergences in QED uses coherent state techniques; see Kulish & Faddeev

[42] and Steinmann [57].)

A perturbative approach to renormalized Hamiltonians (as opposed to the renormalized
scattering theory developed by Tomonaga, Feynman, and Schwinger) was developed first
for the special case of QED in almost forgotten papers by Dyson [19] (cf. Walhout

[63]). It was later rediscovered and popularized by Glazek & Wilson [29] under the
name of similarity renormalization. In the framework of similarity renormalization,
one goes from a formal but ill-defined Hamiltonian to a better defined Hamiltonian by
means of formally unitary similarity transformations. These similarity transformations are
also ill-defined, as they intertwine between ill-defined and well-behaving objects. But they
can be handled rigorously by regularization, postponing the limit to the stage where the
renormalization has been completed. The renormalized Hamiltonian is then defined as a
limit of the similarity-transformed regularized Hamiltonians.

From a mathematically rigorous point of view, singular Hamiltonians are no longer densely
defined self-adjoint operators in a Hilbert space but only so-called quadratic forms. In
quantum field theory, we are given a family of such singular Hamiltonians H(g) depending
on a vector of coupling constants. Since only self-adjoint Hamiltonians have a good spectral
theory and hence a well-defined dynamics via the solution of the Schrödinger equation, the
question to be addressed is how one can associate in a canonical way with a family H(g)
of quadratic forms a family of renormalized self-adjoint Hamiltonians.
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This problem is unsolved in full generality, and in particular for QED. Available in case of
QED is only a rigorous perturbative treatment (see, e.g., Salmhofer [53]), which leaves
convergence questions open. Indeed, it is generally believed since the analysis by Dyson

[20]) that the perturbation series obtained is only asymptotic; thus its sum has no well-
defined mathematical content. But the problem is solved satisfactorily in many simpler
instances (Case [11], Frank & Land [23], Jackiw [38], and Gupta [35] are some of
many possible references) in terms of so-called self-adjoint extensions (see, e.g., Reed

& Simon [51, Theorem X.2], Bonneau et al. [7], Thirring [60, Section 2.5], Albeverio

et al. [4]), though this latter technique is not always equivalent to renormalization (Cam-

blong et al. [10], Gopalakrishnan [32]). Another interesting and now very popular
regularization technique is dimensional regularization; again, it is not always equiva-
lent to standard renormalization techniques involving an energy cutoff; see Phillips et al.
[48].

In relativistic quantum field theories, and in particular for QED and QCD, the picture
of renormalization usually drawn is dominated by the fact that one must usually work
perturbatively; easily accessible explicitly solvable models exist only in one space and one
time dimension, and are far from being representative for the general case.

However, renormalization problems involving divergences – if done in a naive way – already
occur in much simpler situations. In the remainder of this paper, we therefore discuss in
detail a class of toy examples, first in the regular case and then in the singular case. Every-
thing is fully transparent since both the regular and the singular case are explicitly solvable.
This allows us to derive closed nonperturbative formulas, and to avoid the technical frame-
work of self-adjoint extensions. By comparing (in Section 11) the nonperturbative results
with the results from formal (in the singular case ill-defined) perturbation theory, we can
see why things go wrong in the naive approach.

Part II

Solvable models

7 Type B: Separable potentials

We now introduce our models of Type B. They generalize a model introduced in a forgotten
paper by Trubatch [61] to understand the renormalization process, and later used by
Glazek & Wilson [28] in the context of similarity renormalization. They are also related
to the free Hamiltonian perturbed by a separable potential [24, 69, 70], modified in that
the continuous spectrum has been replaced by a discrete one. We use the notation from
Section 5.

Let H0 be an arbitrary reference Hamiltonian with a discrete, nondegenerate spectrum of
eigenvalues Ek (k ∈ K), where K is a countably infinite index set. We assume that the
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spectrum is unbounded but bounded below, and that the set of accumulation points of the
spectrum is bounded. By shifting the Hamiltonian by a multiple of the identity if necessary,
we may assume that

inf
k∈K

Ek = 0, sup
k∈K

Ek = ∞. (17)

As special cases, we consider for a fixed frequency ω > 0 the harmonic oscillator spec-
trum

Ek := kω, k ∈ K := {0, 1, 2, 3, . . .}, (18)

which has a ground state with energy E0 = 0, and for a fixed number q > 1 the geometric
spectrum

Ek := qkω, k ∈ K := {. . . ,−2,−1, 0, 1, 2, . . .} (19)

(cf. [29]), which has no ground state as infinitely many eigenvalues cluster at E = 0.

Type B models have an interacting Hamiltonian of the form

H := H0 − gee∗ , (20)

where g is some nonnegative parameter indicating the strength of an attractive force, e ∈ H

is a fixed vector with real ek, so that e = e, and e∗ ∈ H
∗ is the linear functional which

maps ψ to e∗(ψ) := e∗ψ. (In Dirac notation, one would write ψ = |ψ〉, e = |e〉 and e∗ = 〈e|;
however, we use the Dirac notation only to label basis vectors. The present notation is
more in the spirit of Heisenberg’s matrix quantum mechanics, where vectors are considered
as infinite column vectors, and their adjoints as infinite row vectors.)

Ultimately, for arbitrary values of g, the renormalized eigenvalues and eigenvectors will be in
one-to-one correspondence with the bare eigenvalues, and hence can be indexed uniquely by
an index k. In the traditional perturbative procedure where g is small, this is assumed from
the start, given that the spectrum is nondegenerate for g = 0 and depends continuously on
g. However, we aim at a nonperturbative solution for general g ≥ 0, hence we cannot make
this assumption but have to prove it during the course of the analysis. (In finite dimensions,
one could settle this by counting the total number of eigenvalues. But in infinite dimension,
such an argument does not guarantee that all eigenvalues have been found.)

Therefore we begin our analysis for g 6= 0 with an arbitrary unlabelled renormalized eigen-
vector ψ of H with renormalized eigenvalue E. Then Hψ = Eψ, giving

(H0 − E)ψ = γEe ,

where
γE = ge∗ψ. (21)

Decomposing with respect to the basis vectors |k〉 we find

(Ek − E)ψk = γEek for all k ∈ K. (22)

To analyze this equation, we distinguish two cases.

Case 1. For all ℓ with eℓ = 0, we see immediately that |ℓ〉 is an eigenvector with eigenvalue
E = Eℓ and γE = 0, and the corresponding eigenspace is 1-dimensional since all Ek are
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distinct. Conversely, suppose that E = Eℓ for some ℓ. Then γEeℓ = 0. If eℓ 6= 0 then
γE = 0, and we find (Ek−Eℓ)ψk = 0 for all k, so that ψk is only nonzero for k = ℓ, and ψ is
a multiple of |ℓ〉. But then (21) implies ψℓ = 0, so that ψ = 0, contradicting the assumption
that ψ is an eigenvector. Thus

E = Eℓ iff eℓ = 0.

Thus the eigenvalue structure of H agrees with that of H0 whenever eℓ = 0, i.e., for all but
finitely many values of ℓ. In particular, for large energies and near accumulation points of
the bare spectrum that do not belong to the bare spectrum, the Hamiltonian H behaves
like the free Hamiltonian. Thus we see that the interaction term −gee∗ in the Hamiltonian
only influences states whose energy is bounded and bounded away from the accumulation
points of the bare spectrum (unless these belong to the bare spectrum).

Case 2. If Ek − E 6= 0 for all k, then

ψk =
γEek
Ek − E

. (23)

The value of γE is fixed (up to an irrelevant phase) by the condition that ψ is normalized,
giving

γE =
(∑

k

e2k
(Ek − E)2

)−1/2

. (24)

In particular, this implies that the eigenvalue E is simple. Inserting (23) into (21) gives the
characteristic equation

g
∑

k

e2k
Ek − E

= 1. (25)

By the derivation, E is a renormalized eigenvalue if and only if it satisfies this equation;
then its associated renormalized eigenstate is given by (23). Note that since e ∈ H, all but
finitely many ek vanish; thus the above sums are finite.

Let k = k0 be the index with smallest Ek among those with ek 6= 0. For E < Ek0 , the
left hand side of (25) is monotone increasing in E, and varies from 0 to ∞; therefore there
is a unique solution E = Ek0(g) < Ek0 of the characteristic equation. Between any two
adjacent values of Ek with ek 6= 0, the left hand side is also monotone increasing in E, and
varies from −∞ to ∞; between these bounds, there is therefore also a unique eigenvalue of
the form considered in Case 2. Moreover, by monitoring signs, this eigenvalue can easily
be determined by a bisection procedure. We call the eigenvalues covered by Case 2 the
sliding eigenvalues.

By counting eigenvalues for small g, it is easily seen that the effect of the interaction is to
move the bare eigenvalues Ek for all k with ek 6= 0 to slightly smaller, physical energies given
by the corresponding renormalized eigenvalues E = Ek(g), consistent with the assumption
of an attractive potential.

Thus we have a fairly complete picture of how the renormalized spectrum (i.e., the spectrum
of the interacting Hamiltonian) looks like for a general model of Type B.
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Figure 1: The spectrum of H = H0 − gee∗ in dependence on the bare coupling constant g.

Figure 1 shows a renormalized spectrum in dependence on the bare coupling constant g for
the case of the harmonic spectrum (18) with ω = 1 and e10 = 1, ek = 0 for k > 10, and
ek = κ for k = 0 : 9. For κ = 0, only the 10th eigenvalue would slide; for the case κ = 0.03
shown in the figure, this is still visible approximately as a sequence of avoided crossings,
forced by the properties derived above.

8 Explicit renormalized nonperturbative formulas

We now consider the case when g is tiny and
∑

Ek 6=0 e
2
k/Ek is large. In this case, the left hand

side of (25) changes extremely slowly with E < Ek0 when the equation is approximately
satisfied. As a result, the smallest sliding eigenvalue Ek0(g) is extremely sensitive to the
choice of g. (For tiny g, this is also the case for the other sliding eigenvalues, though this
is not so easy to see.)

Thus an even slightly inaccurate bare coupling constant contains no longer any relevant
information about the smallest sliding eigenvalue, and renormalization is called for. Given
the form of the characteristic equation, we therefore express the bare coupling constant g
in terms of a number ∆, and choose as reparameterization

g = g(∆) :=
(∑

k

e2k
Ek +∆

)−1

. (26)

For ∆ > −Ek0 , the right-hand side of (26) is strictly increasing in ∆, covering the range
from zero to infinity. Therefore, the equation g = g(∆) has a unique solution ∆ = ∆(g) in
this range, which can easily be found by a bisection procedure. Thus the parametrization
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of our family of Hamiltonians by g > 0 or by ∆ > −Ek0 are equivalent. Note that the bare
case now corresponds to the limit ∆ → −Ek0 .

In terms of the renormalized shift parameter ∆ rather than the bare coupling constant g,
the Hamiltonian takes the renormalized form

H = Hren(∆) := H0 − g(∆)ee∗.

Inserting (26) into (25), multiplied by g−1 gives

∑

k

e2k
Ek +∆

=
∑

k

e2k
Ek − E

. (27)

In particular, we see that this holds for E = −∆. In particular, if ∆ > 0 then −∆ must be
the smallest renormalized eigenvalue. Thus, in this case, ∆ has the physical interpretation
as the shift in the ground state energy. We therefore refer to ∆ as the shift parameter. In
a continuum limit, where the bare Hamiltonian describes a free particle with a continuous
spectrum, ∆ would be the binding energy of the unique bound state created by the potential.
Thus in this case, the shift parameter has a direct physical interpretation. (This would not
be the case in situations such as QED or QCD where the bare particles cannot be observed
at all, and only energy differences are physical.)

In general, taking differences and simplifying a little, we find

Σ∆(E) :=
∑

k

e2k(E +∆)

(Ek +∆)(Ek − E)
= 0 (28)

as renormalized characteristic equation for the nontrivial eigenvalues. The bare cou-
pling constant g has been eliminated from the characteristic equation in favor of the renor-
malized shift parameter, which has a direct interpretation in terms of the spectrum. We
stress that the result is nonperturbative, i.e., the renormalized formulas work for an ar-
bitrary shift parameter ∆, not – as perturbative results – only in the case of weak coupling.

With this reparameterization, our problem has become computationally much more robust.
The previously sensitive eigenvalue E = −∆ is found immediately as the zero of the numer-
ator. As before, one can deduce from (28) that between any two adjacent values of Eℓ with
eℓ 6= 0, there is a unique eigenvalue Eℓ(∆), which can be easily determined by a bisection
procedure. They are squeezed in between two bare eigenvalues, and not very sensitive to
changes in ∆.

From (23) and (24), we find that the renormalized eigenvectors take the form

|ℓ〉ren :=

{
ψ(Eℓ(∆)) if eℓ 6= 0,
|ℓ〉 otherwise,

(29)

where ψ(E) is the normalized vector with components

ψk(E) =
ekγE
Ek − E

, γE =
(∑

k

e2k
(Ek − E)2

)−1/2

. (30)
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Of course, the eigenvectors form a complete orthonormal system and hence a basis of
the Hilbert space Hphys. Their orthogonality can be checked directly by noting that for
renormalized eigenvalues E and E ′,

(E − E ′)ψ(E ′)∗ψ(E)

γEγE′

=
∑

k

e2k(E − E ′)

(Ek − E)(Ek − E ′)

=
∑

k

e2k
Ek +∆

( E +∆

Ek − E
− E ′ +∆

Ek − E ′

)

= Σ∆(E)− Σ∆(E
′) = 0.

In terms of the adjoints 〈ℓ|ren of the renormalized eigenvectors, the renormalized Hamilto-
nian takes the form

H = Hren(∆) :=
∑

ℓ

Eℓ(∆)|ℓ〉ren〈ℓ|ren. (31)

We now give closed formulas for the resolvent

G = G(E) := (E −H)−1,

where E is not an eigenvalue of H, in terms of the shift parameter. Introducing

r∗ := ge∗G (32)

and the reference resolvent

G0 := G0(E) := (E −H0)
−1,

we have
G0 = G0(E −H)G = G0(E −H0 + gee∗)G

= G0(E −H0)G+G0er
∗ = G+G0er

∗,

giving
G = G0 −G0er

∗. (33)

Now (32) gives g−1r∗ = e∗G = e∗G0 − e∗G0er
∗. Noting that

g−1 + e∗G0e =
∑

k

e2k
Ek +∆

−
∑

k

e2k
Ek − E

= −Σ∆(E) 6= 0,

we find that Σ∆(E)r
∗ = −e∗G0 = −(G0e)

∗. Solving for r∗ and inserting the result into
(33), we find the closed formula

(E −H)−1 = G(E) = G0 +G0eΣ∆(E)
−1(G0e)

∗. (34)

This formula nicely exhibits the fact that the eigenvalues ofH, i.e., the poles of the resolvent,
are the zeros of the characteristic function Σ∆(E). These were excluded from the argument
since G(E) is not defined at the eigenvalues. Nevertheless, corresponding (unnormalized)
eigenvectors are visible in the resolvent formula (34) as the vectors G0(E)e = (E −H0)

−1e
for E = Eℓ(∆).
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Indeed, this is related to a feature of resolvents of arbitrary Hamiltonians. In general, if

(E −H)−1 = (E − Ek)
−1Pk +Gk(E)

with Gk(E) regular at E = Ek then, taking the limit E → Ek in the relation

(E −H)Pk = (E − Ek)(1− (E −H)Gk(E))

gives (Ek−H)Pk = 0, so that all vectors in the image of Pk are eigenvectors of H belonging
to the eigenvalue Ek. (The spectral theorem implies that the Pk are projectors to the
eigenspace defined by the eigenvalue Ek and that PkGk(E) = Gk(E)Pk = 0.)

9 Nonperturbative singular renormalization

We now extend the class of Type B models to incorporate more singular cases, which
in naive perturbation theory would lead to divergences. We want to give the model with
Hamiltonian (20) an interpretation in cases where e is a vector with infinitely many nonzero
components. A free quantum particle moving on a compact symmetric space has as Hamil-
tonian the corresponding Laplace operator, which has a discrete spectrum; an additional
point interaction corresponds to a rank 1 change of this form, with a singular δ-potential.
See, e.g., Adhikari & Frederico [2], though they discuss motion in noncompact flat
space, where the spectum is continuous and must therefore be interpreted in terms of scat-
tering states.

As a more elementary example, if one takes as reference Hamiltonian that of a harmonic
oscillator

H0 =
p2

2m
+
ks
2
q2

with positive massm and stiffness constant ks where q is multiplication by x and p = −ih̄∂x,
and a nonlocal interaction V defined on sufficiently fast decaying wave functions ψ by

(V ψ)(x) := −gu(x)
∫
dx′u(x′)ψ(x′)

for some given continuous real-valued function u, then the Schrödinger equation with Hamil-
tonian H = H0 + V is an integro-differential equation. The problem with ks > 0 has the
Type B form when expanded in the bare eigenstates, but typically infinitely many entries
in e are nonzero and significant. (In the limiting case ks → 0 of vanishing stiffness, the
bare spectrum becomes continuous, and we recover models discussed by Friedrichs [24],
Yamaguchi [69, 70]; cf. also Thirring [60, Example 3.4.13].) An even more special lim-
iting case, often treated in the literature, is the case ks = 0, u(x) → δ(x), where V tends
to multiplication by −gδ(x) since, in the limit, (V ψ)(x) = −gδ(x)ψ(0) = −gδ(x)ψ(x),
corresponding to a free particle subject to an attractive force with an infinitesimally short
range. Thus we shall consider the more general case where e is a vector with infinitely many
nonzero components, corresponding to an interaction that significantly affects all energies,
not only a few ones. Then our treatment of the regular case needs to be modified. This
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can be seen from the fact that the sum in the naively accepted expression (26) diverges to
+∞ if the decay law

∑ e2k
∆0 + Ek

<∞ (35)

is violated for some fixed ∆0 > −E0, so that g(∆) = 0 independent of the value of ∆. One
speaks of ultraviolet (resp. infrared) divergence if the part of the sum corresponding
to huge (resp. tiny) energies, is divergent. In terms of our sensitivity analysis above,
the spectrum has become infinitely sensitive with respect to the bare parameter; the only
sensible value for the bare coupling constant is g = 0, and the information about the shift
parameter has been lost. As we shall see in Section 11, this causes the breakdown of naive
perturbation theory; so the latter is not applicable. Instead, the lost degree of freedom
must be recovered by a more careful procedure. It turns out that renormalization (which
reduced the sensitivity already in the regular case) achieves this without any difficulties.

In rigorous terms, the situation is essentially the same as before only as long as e ∈ Hphys.
But when e 6∈ Hphys, we leave the realm of our previously well-defined situation. For
example, if ψ ∈ H and e∗ψ 6= 0 then the vector Hψ = H0ψ − g(e∗ψ)e is not normalizable,
so Hψ 6∈ Hphys. Thus H maps only the subspace H′ of ψ with e∗ψ = 0 (where it agrees with
H0) into the Hilbert space Hphys. But H

′ is no longer dense in Hphys. Thus, when e 6∈ Hphys,
we have a singular situation not covered by the standard theory, and the manipulations we
did in the regular case are no longer valid.

We therefore need to extend our formal basis. To give a rigorous meaning to the formal
expression defining the Hamiltonian (20) in the case e ∈ Hphys, we note that the product

e∗ψ :=
∑

e∗kψk =
∑

ψk 6=0

e∗kψk

is still well-defined for any ψ ∈ H since the sum is finite no matter how many components
of e vanish. Therefore e∗ ∈ H

∗, and the matrix elements

φ∗H(g)ψ = φ∗H0ψ − gφ∗ee∗ψ

are well-defined for all φ, ψ ∈ H. Thus one can make rigorous sense of the Hamiltonian as a
symmetric bilinear form or, in the traditional terminology, a quadratic form on H. This
is precisely the situation that arises naturally in quantum field theory, though with more
complex Hamiltonians.

Equivalently, we may consider the Hamiltonian as a Hermitian linear operator H(g) ∈
Lin(H,H∗) mapping each φ ∈ H to a φ-dependent linear functional λ := H(g)φ in the dual
space H∗. This is consistently done by requiring that λ maps ψ ∈ H to the complex number
λ∗ψ := φ∗H(g)ψ.

For general e ∈ H
∗, the Hamiltonians H(g) are well-defined mathematical objects, but

they are too singular to be regarded as self-adjoint operators. However, using a limiting
procedure, we can associate with the family H(g) a family of renormalized self-adjoint
Hamiltonians.
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To motivate how we proceeed, we first reason heuristically in terms of a physicist, who
observes that huge energies and tiny energy differences are not observable anyway. Thus
the model should be trusted only below some large energy threshold Λ > 0, called an
ultraviolet cutoff, and for energy differences above some tiny infrared cutoff λ > 0
(which, for simplicity, we take to be of order O(Λ−1)). Thus we can as well approximate
the singular Hamiltonian by a regularized one which has in place of e a regularized eΛ ∈ H

defined by

(eΛ)k =

{
ek if k ∈ KΛ,
0 otherwise,

whereKΛ is a finite subset of the setK of eigenvalue labels that approachesK as the cutoff is
removed (Λ → ∞). Since one expects that the coupling constant g best fitting experimental
data depends on the chosen cutoff, we use a cutoff-dependent running coupling constant
g = gΛ. Such a running coupling constant cannot have a physical meaning since it depends
on the artificial cutoff Λ; hence it is regarded as a bare, unphysical parameter. For a useful
model, the results that can be compared with experiments must be essentially independent
of the precise behavior at very large energies. Thus all results, and in particular the energy
differences, should be insensitive to changes in Λ once this is large enough. This is the case
if they have a well-defined limit for Λ → ∞. We should therefore choose the dependence
of gΛ on the cutoff in a way that ensures this behavior. This is completely analogous to
the reasoning in quantum field theory, where one calculates the effective physical coupling
constants as a function of the cut-off energy.

With these heuristic considerations in mind, we treat our Hamiltonian rigorously as the
limit of the family of regularized Hamiltonians

HΛ := H0 − gΛeΛe
∗
Λ.

and define the spectrum of H as the limit of the corresponding regularized spectra. To have
a well-defined limit, it turns out that we need to assume the decay condition

∑ e2k
(∆0 + Ek)2

<∞ (36)

for some ∆0 > −E0. (The resulting condition is easily seen to be independent of the specific
choice of ∆0.) We say that the family of Hamiltonians (20) is renormalizable if (36)
holds. This condition still demands the absence of infrared divergences but is considerably
less demanding than the condition (35) for the regular case, permitting a large class of
models with ultraviolet divergences to be handled. Stronger ultraviolet divergences cannot
be tamed by a limiting procedure and therefore lead to non-renormalizable models.

Since each HΛ is regular, our old analysis applies with eΛ in place of e. In particular, by
construction, our regularized Hamiltonians behave for energies above Λ like the free Hamil-
tonian. As in the regular case, we have a choice in what we regard to be the independent
constant parameterizing our family of theories. So far, the shift parameter ∆ is a function
of g and Λ, defining a nonlinear consistency relation between ∆, g, and Λ. But since it lead
to more robust formulas in the regular case, we shall treat instead ∆ (which, unlike g, has
a physical meaning) as relevant parameter, and use this relation to express the coupling
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constant g in terms of ∆ and Λ. Thus the coupling constant becomes both cutoff-dependent
and dependent on the energy shift. As before – see (26), we find the coupling constant as
a function

g = gΛ(∆) :=
( Λ∑

k=1

e2k
Ek +∆

)−1

(37)

of a shift parameter ∆. Our regularized Hamiltonian thus becomes

HΛ(∆) = H0 − gΛ(∆)eΛe
∗
Λ. (38)

Note that a natural dependence on the cutoff Λ appeared; so we can hope to get away
without a cutoff dependence of ∆. We are interested in the limit Λ → ∞.

For example, in case of the harmonic spectrum (18), we find from (37) that

gΛ(∆) ≈
(∫ Λ

0

dk

kω +∆

)−1

= ω
/
log

Λω +∆

∆
,

gΛ(∆) goes to zero as the cutoff is removed (Λ → ∞). In case of the geometric spectrum
(19), we find similarly (using α = log q and the substitution x = qk = eαk) that

gΛ(∆) ≈
(∫ log Λ/α

log λ/α

dk

eαkω +∆

)−1

=
(∫ Λ

λ

dx

αx(xω +∆)

)−1

= α∆
/
log

ω +∆/λ

ω +∆/Λ
.

Again, gΛ(∆) goes to zero as the cutoff is removed (Λ → ∞ and λ → 0). Note that other
families of Hamiltonians may have more complex asymptotic behavior for Λ → ∞. Indeed
gΛ may approach asymptotically a periodic or chaotic function of Λ; see, e.g. Glazek &

Wilson [30].

We now consider the regularized version of the renormalized characteristic equation (28),

ΣΛ,∆(E) :=
∑

k∈KΛ

e2k(E +∆)

(Ek +∆)(Ek − E)
= 0.

If ∆ > 0 and E is different from the bare eigenvalues and their accumulation points, this
equation has a well-defined limit as the cutoff is removed. Indeed, for Λ → ∞, we get

Σ∆(E) :=
∑

k∈K

e2k(E +∆)

(Ek +∆)(Ek − E)
= 0; (39)

the sum is dominated by a multiple of
∑
e2k/E

2
k , hence is absolutely convergent under our

decay assumption (36). Analyzing the equation as before, we find that apart from the
ground state energy E0(∆) = −∆, there is for each ℓ > 0 a unique eigenvalue Eℓ(∆)
between the bare eigenvalue Eℓ and the bare eigenvalue immediately above it, determined
as the solution of the renormalized characteristic equation Σ∆(E) = 0 in this interval.

In suggestive but formally ill-defined terms we may summarize our discussion by saying
that the condition

e∗(∆0 +H0)
−1e = ∞
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(informal for the rigorous condition (35)) signals the need for renormalization while
the weaker condition

e∗(∆0 +H0)
−1e = ∞

(informal for the rigorous condition (36)) signals renormalizability.

Singular Type B models illustrate an interesting phenomenon typical for renormalization in
relativistic quantum field theories. This is the fact that no matter which dimension the bare
coupling constant has, the renormalized theory is always parameterized by a parameter with
the dimension of energy. If (as in massless QCD) all coupling constants are dimensionless,
this phenomenon – called dimensional transmutation – is puzzling at first sight since
an energy scale appears through renormalization although the bare Hamiltonians are scale
invariant.

In type B models, dimensional transmutation finds its natural expression in the fact that,
by construction, the shift parameter ∆ always has the dimension of energy, whereas the
dimension of the bare coupling constant depends on the dimension of e. In particular, g is
dimensionless if we take e to have components ek =

√
Ek; this is consistent with our decay

condition (36) provided that
∑

min(M−2Ek, E
−1
k ) < ∞. E.g., this holds for the geometric

spectrum (19). Indeed, this particular case of a Type B model was discussed by Glazek &

Wilson [29] from a purely numerical point of view to illustrate the technique of similarity
renormalization.

The eigenvectors are still given by the formulas (29)–(30), which survive the limit. Assum-
ing (36), the sums are absolutely convergent, so that |ℓ〉ren ∈ Hphys. Their orthogonality
and completeness follows by taking the limit in the completeness relations for the regu-
larized eigenvectors. Thus even in the singular case, the renormalized eigenvectors |ℓ〉ren
form an orthonormal basis, in terms of which we can define the self-adjoint renormalized
Hamiltonian Hren(∆) by

Hren(∆) :=
∑

ℓ

Eℓ(∆)ψren
ℓ 〈ℓ|ren.

Note that one can also regularize the problem by replacing e with an arbitrary family of
eΛ ∈ H whose weak limit for Λ → ∞ is e, and take the limit after all renormalizations
have been performed. It is straightforward to verify that the results are independent of the
details of the regularization.

We conclude that all aspects of the singular case have been successfully renormalized, without

any approximation and with full mathematical rigor. We simply take the renormalized
formulas from the regular case but interpret the sums now as infinite series. Under our
decay condition (36), these sums are absolutely convergent, so the problems from a naive
approach using the bare coupling constant have disappeared.

As an alternative to our procedure one could have invoked the Trotter–Kato theorem from
functional analysis (see, e.g., Reed & Simon [50, Theorem VIII.22]) to reconstruct a self-
adjoint renormalized Hamiltonian from the renormalized resolvent (34). Indeed, the latter
process generalizes to much more complex systems than Type B models; see Dimock &
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Rajeev [17, 49]. An approach based on nonstandardd analysis, where infinitesimals are
allowed, is given by Albeverio et al. [3]. A resolvent-based renormalization technique for
singular multicenter Hamiltonians is given in Grossmann et al. [34].

Our treatment leaves open the question whether in a suitable sense

Hren(∆) = lim
Λ→∞

HΛ(∆).

10 The renormalization group

The renormalization group makes its appearance whenever there are multiple ways of per-
forming the renormalization, depending on one or more additional parameters that can be
freely chosen. In the conventional treatment, the free parameter is an energy scale which
defines the renormalization prescription used. The freedom in the choice of this parameter
is analogous to the free choice of the bare frequency µ in the variational perturbation the-
ory for the anharmonic oscillator mentioned in the introduction. Choosing it correctly may
make the difference between a useless and a successful approximation scheme.

So far, we discussed renormalization in terms of physical parameters of the theory. In our
models, the shift parameter ∆ corresponds to a binding energy that must be obtained from
experiment; in quantum field theories basic physical parameters are masses and charges of
elementary or composite particles. In theories more complex than our toy examples, it is
not always convenient to renormalize directly in terms of physical parameters. Instead, one
often introduces other parameterizations through appropriate renormalization conditions
that are more convenient computationally. These parameterizations, and therefore the
renormalized coupling constants, typically depend on an additional parameter, and lead to
so-called running coupling constants.

To see how these can arise in our models of Type B, we first consider the regular case and
rewrite the unrenormalized characteristic equation (25) in the form Σ(E) = 0, where

Σ(E) := g−1 + e∗(E −H0)
−1e

Like in the transition from (25) to (28), the sensitive part of Σ(E) can be cancelled if,
instead of using the physical binding energy,

We now shift the constant g−1 by a constant of the form e∗(M + H0)
−1e, where M is an

arbitrary parameter satisfying M > −E0 so that M + H0 is invertible. We refer to the
parameter M as the renormalization scale; it has the units of energy. The result of
the shift is a cancellation of the sensitive part of Σ(E), like in the transition from (25)
to (28), although we now parameterize the system by the arbitrary (hence unphysical)
renormalization scale in place of the physical binding energy. To see this we introduce the
renormalized coupling constant

gM :=
g

1− ge∗(M +H0)−1e
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depending on the renormalization scale M , chosen such that the denominator is nonzero.
Since

g−1
M = g−1 − e∗(M +H0)

−1e, (40)

we find

Σ(E) = g−1
M + e∗(M +H0)

−1e+ e∗(E −H0)
−1e

= g−1
M + e∗(M +H0)

−1(E −H0 +M +H0)(E −H0)
−1e

= g−1
M + (M + E)e∗(M +H0)

−1(E −H0)
−1e = g−1

M ΣM(E),

with
ΣM(E) := 1 + gM(M + E)e∗(M +H0)

−1(E −H0)
−1e.

Therefore the characteristic equation (25) is equivalent to the renormalized character-
istic equation

ΣM(E) = 0 (41)

for any value M > −E0. For a reasonable value of M , (41) is much more robust than
the original characteristic equation (corresponding to M = ∞) since large bare eigenvalues
appear squared in the denominator of ΣM(E) when expressed in the bare eigenbasis. The
bare coupling constant can be recovered by solving (40) for g, giving

g =
gM

1 + gMe∗(M +H0)−1e
. (42)

Since the renormalization scaleM is arbitrary, the measurable results of the renormalization
– hence the eigenvalue differences and (since the smallest eigenvalue is renormalized to zero)
the solutions of the renormalized characteristic equation – must be independent of the choice
ofM . This is possible since the renormalized coupling constant gM depends onM in a very
specific way.

One way to describe this independence is in terms of an associated renormalization group,
which specifies how the renormalized coupling constant changes when M is changed. By
taking differences in (40), we find

g−1
M g−1

M ′(gM − gM ′) = g−1
M ′ − g−1

M = e∗(M +H0)
−1e− e∗(M ′ +H0)

−1e
= (e∗(M +H0)

−1(M ′ +H0 − (M +H0)(M
′ +H0)

−1e
= (M ′ −M)e∗(M +H0)

−1(M ′ +H0)
−1e = (M ′ −M)e∗MeM ′ ,

with
eM := (M +H0)

−1e. (43)

If we multiply by gMgM ′/(M − M ′) and take the limit M ′ → M , we get the so-called
renormalization group equation

dgM
dM

= −g2Me∗MeM . (44)

The word ”group” just signals the well-known fact that any sufficiently regular autonomous
differential equation generates a flow and with it a one-parameter group of transformations.
In a renormalization scheme with multiple free parameters in place of the renormalization
scale M we would get instead a multiparameter renormalization group.
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It is now easy to see that renormalizable singular cases can be handled by the same formula,
using regularization and the limit removing the cutoff to derive it in the singular case, except
that the bare coupling constant (42) now becomes infinitesimally small. In particular,
the renormalized formulas make sense under the same decay condition as our previous
renormalized results in terms of the physical binding energy ∆.

As our derivation shows, the renormalization group equation essentially expresses the fact
– equivalent to (40) – that

g−1 = g−1
M + e∗(M +H0)

−1e (45)

is independent of M . However, in the singular case, (45) is meaningless, while the renor-
malization group equation still makes sense and is fully justified by regularization followed
by the limit that removes the cutoff.

In the analogous situation in QED and QCD, one also has an energy (or temperature)
scale M which together with the renormalized coupling constants) the renormalization
prescription used. As in the present case, the exact results (which are now inaccessible,
unlike in our models) should be independent of M . But the results computable with low
order perturbation theory depend on M in an essential way, and choosing M in the order
of the energies of interest usually gives much better results than other choices of M . The
dependence on M is far more implicit than for our models, but one can still construct
perturbatively a renormalization group equation, providing a differential equation for how
the terms of interest change with M .

11 Perturbation theory for type B models

In the context of renormalized perturbation theory, the infinite accuracy results are indepen-
dent of z and the choice of the calibration terms, once as many independent renormalization
conditions are prescribed as there are variable coefficients in (16). Again, we can get by
differentiation of the resulting identitites corresponding renormalization group equations.
Note that the choices made may strongly affect the results at every order of perturbation
theory!

In this section, we use type B models to compare our nonperturbative results with those
of second-order perturbation theory. This relates the discussion so far to the standard
perturbative approach to renormalization.

For type B models, where H = H0 − gee∗, there is only one independent coupling constant
g, and we choose the reference Hamiltonian as H0. Thus, in the notation of Section 5, we
have

B(0) = H0, B(1) = −ee∗, c(0)(z) = 1, c(1) = g(z) =
∞∑

j=1

γjz
j,

so that

c0 =

(
1

0

)
, cj =

(
0

γj

)
, Hj = −γjee∗ for j > 0.
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Therefore, the ℓth perturbed eigenvalue is

ǫ(z) = ǫℓ(z) =
∞∑

j=0

ǫjz
j ,

where by (10), (12), and (15),

ǫ0 = Eℓ, ǫ1 = 〈ℓ|H1|ℓ〉 = −γ1e2ℓ , (46)

ǫ2 = αℓ = 〈ℓ|H2|ℓ〉+
∑

j 6=ℓ

|〈j|H1|ℓ〉|2
Eℓ − Ej

= −γ2e2ℓ + γ21e
2
ℓ

∑

j 6=ℓ

e2j
Eℓ − Ej

. (47)

Renormalized perturbation theory based on binding energy. If we expand in the
physical shift parameter z = ∆, i.e., minus the lowest renormalized eigenvalue, we know
(without invoking our closed formulas) that, for ℓ = 0, we have ǫ(z) = −∆ = −z, hence

ǫ0 = E0 = 0, ǫ1 = −1, ǫj = 0 for j > 1.

This fixes the expansion coefficients, giving

γ1 =
1

e20
, γ2 =

1

e40

∑

j 6=0

e2j
E0 − Ej

, . . . . (48)

Using this in the formulas for ℓ > 0, we find for the ℓth renormalized eigenvalue

Êℓ = Eℓ + ǫ1∆+ ǫ2∆
2 +O(∆3)

the expansion coefficients

ǫ1 = −e
2
ℓ

e20
,

ǫ2 = −e
2
ℓ

e40

∑

j 6=0

e2j
E0 − Ej

+
e2ℓ
e40

∑

j 6=ℓ

e2j
Eℓ − Ej

=
e2ℓ
e40

( e20 + e2ℓ
Eℓ − E0

+
∑

j 6=0,ℓ

e2j(E0 − Eℓ)

(E0 − Ej)(Eℓ − Ej)

)
.

The expression for ǫ2 is convergent under the same conditions (36) as the nonperturbative
formulas, and shows that renormalized perturbation theory indeed gives a good perturbative
interpretation to Hamiltonians with singular interactions, at least for Type B models. The
fact that (48) diverges has no observable consequence.

Thus the renormalized perturbation theory is well-defined, and the approximation makes
sense, at least in the regime where z is small enough that the higher order terms can
be safely neglected. This is the situation that holds in QED, when z is taken to be the
renormalized (rather than bare) electron charge; the above renormalized sums correspond to
(after renormalization) convergent integrals in scattering calculations for QED. In QCD, the
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renormalized coupling constant is small only for very large energies, and a nonperturbative
approach is needed to get useful renormalized results at low energies.

Renormalized perturbation theory based on renormalized coupling. The renor-
malized coupling constant approach can easily be combined with renormalized perturbation
theory by using z = gM as the expansion parameter. From (40), we find

g−1 = z−1 + σM ,

where

σM := g−1 − z−1 = g−1 − g−1
M = e∗(M +H0)

−1e =
∑

j

e2j
M + Ej

.

Therefore
g =

z

1 + σMz
= z − σMz

2 +O(z3),

so that
γ1 = 1, γ2 = −σM .

Now we find for the ℓth renormalized eigenvalue

Êℓ = Eℓ + ǫ1gM + ǫ2g
2
M +O(g3M)

the values
ǫ0 = Eℓ, ǫ1 = −e2ℓ ,

ǫ2 = ǫ2(M) = e2ℓ

(∑

j

e2j
M + Ej

+
∑

j 6=ℓ

e2j
Eℓ − Ej

)

= e2ℓ

( e2ℓ
M + Eℓ

+
∑

j 6=ℓ

e2j(M + Eℓ)

(Eℓ − Ej)(M + Ej)

)
.

The second formula has a good limit in the renormalizable case. This shows that successful
renormalization is not tied to a parameterization in terms of parameters with a direct

physical meaning.

Naive perturbation theory. On the other hand, using the bare expansion parameter
z = g, we have γ1 = 1, γj = 0 for j > 1, hence

ǫ(z) = Eℓ − ge2ℓ + g2
∑

j 6=ℓ

e2ℓe
2
j

Eℓ − Ej
+O(g3).

In this expansion, the coefficient of g2 diverges for many combinations of bare energies
and ej’s for which the renormalized version converges; in particular, this happens for the
harmonic oscillator Ek = kω perturbed using ek = 1 for all k.

Thus renormalized perturbation theory is far superior. The divergences resulting for sin-
gular interactions from a naive (bare) perturbation theory in second (and higher) order are
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simply due to a poor choice of the expansion parameter, which creates a representation of
the quantities of interest as a sum of divergent coefficients. It is like trying to take the limit

lim
Λ→∞

2Λ2

Λ2 − 1
= 2

by rewriting it in the divergent form

lim
Λ→∞

Λ2

Λ− 1
− lim

Λ→∞

Λ2

Λ + 1
= ∞−∞.

12 Type C: Mass renormalization

This section discusses another family of exactly solvable problems, which require an addi-
tional phenomenon common to QED and QCD: mass renormalization.

Type C models have a Hamiltonian of the form

H =

(
ω0 ge∗

ge H ′

)
, (49)

where the ground state energy ω0 > 0 plays the role of a mass, and H ′ is a self-adjoint
Hamiltonian with spectrum > ω0, diagonal in a basis where e only has finitely many nonzero
components. A continuum limit of the above problem arises naturally in an exactly solvable
sector of the Lee model (Lee [43]), a simplified nonrelativistic model for a quantum field
theory.

Writing ψ =
(
ψ0

ψ′

)
, we can rewrite the eigenvalue problem Hψ = Eψ as

(E − ω0)ψ0 − ge∗ψ′ = 0, (50)

−geψ0 + (E −H ′)ψ′ = 0. (51)

Assuming that ψ0 6= 0, we can normalize the eigenvector such that ψ0 = 1, and find that

ψ′ = g(E −H ′)−1e, ψ =

(
1

g(E −H ′)−1e

)
. (52)

Substituting this into (50) gives the characteristic equation

E − ω0 − g2e∗(E −H ′)−1e = 0 (53)

as the condition for E being an eigenvalue. Thus we found an explicit solution as for type
B models. Again, we may express the coupling constant g in terms of the eigenvalue shift
∆ := ω0 − ω, where ω is the smallest renormalized eigenvalue. Replacing E in (53) by
ω = ω0 −∆ and assuming that ∆ > 0, we may solve this for g, and find

g = ±
√

∆

e∗(∆− ω0 +H ′)−1e
.
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But when H ′ has a harmonic spectrum and all ej → 1 then g → 0 independent of ∆,
and ψ/‖ψ‖ →

(
1
0

)
independent of the eigenvalue. Thus, in the singular case, the simple

renormalization procedure for models of Type B collapses the eigenvalue problem in an
unphysical way.

This is characteristic of many problems with a Hamiltonian more complex than Type C and
occurs whenever the original problem formulation has not enough parameters to embed the
family of Hamiltonians into one with a good singular limit. Thus our previous recipe for
the nonperturbative case was incomplete, as it had assumed that there was only a single
relevant constant to be renormalized. The argument just given revealed that this is indeed
too restrictive, and realistic theories need more general recipes. For example, in QED,
it is not enough to renormalize the coupling constant (usually called the “bare electron
charge”), but one also needs to renormalize the “bare mass” (mass renormalization),
and also factors arising from scaling the electron field and the photon field (wave function
renormalization), before one arrives at a renormalizable family.

In the case of (49), we realize that H depends naturally not only on the parameter g but also
on ω0, and thus is part of a natural 2-parameter family of Hamiltonians. In this particular
case, it turns out that renormalizing only the bare mass ω0 is already sufficient. Thus we
solve (53) for ω0, with ω in place of E, keeping g fixed, and find

ω0 = ω − g2e∗(ω −H ′)−1e, ψ =

(
1

g(E −H ′)−1e

)
.

When H ′ has a harmonic spectrum and all ej → 1 (but also in many other cases where
the original problem becomes singular), the bare mass ω0 diverges, but ψ has a good,
normalizable limit for all E not in the spectrum of H ′. In terms of the renormalized mass,
the characteristic equation becomes

0 = E − ω + g2e∗(ω −H ′)−1e− g2e∗(E −H ′)−1e
= E − ω + g2e∗((ω −H ′)−1 − (E −H ′)−1)e
= (E − ω)(1 + g2e∗(E −H ′)−1(ω −H ′)−1e).

Therefore, the renormalized eigenvalues distinct from ω are the solutions of the renormalized
characteristic equation

g−2 + e∗(E −H ′)−1(ω −H ′)−1e = 0, (54)

which again makes sense for many singular problems, including the case of a harmonic
spectrum and all ej = 1. Thus we performed a successful mass renormalization.

13 Conclusions

We have shown that one can understand renormalization and the need for it at a very low
level of sophistication (hence much earlier in the physics education), and that it is useful
even in nonsingular situations.
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Our description of renormalized perturbation theory is a systematic way of doing what
is commonly done on an ad hoc basis. It may drastically improve standard perturbation
theory, not only in cases where it is indispensible since interactions are singular, but in
many other contexts, even for the anharmonic oscillator.

We have shown that one can do renormalization nonperturbatively with very simple models,
and sees there everything (including the renormalization group) in closed form – while one
usually sees it for the first time in a course on quantum field theory, where it is perceived
as very puzzling. In particular, one can see that a singular renormalizable theory is as
respectable as a theory not needing renormalization, in that it has a well-defined spectrum
with an associated complete system of eigenvectors.

Thus the paper shows that the need for renormalization is not a defect of a theory but a
legitimate way to construct quantum theories that are not easily constructed by giving an
explicit Hamiltonian.

We also provided explicit, closed-form examples of renormalization groups and renormalized
coupling constants depending on a renormalization scale, giving more insight into their
meaning. The renormalization scale plays a similar role as a gauge field: One needs it for
a valid description, but one can change its value by applying a transformation from the
renormalization group without altering the physics, in the same way as one can change the
value of a gauge field by applying a transformation from the gauge group.

Finally, we have shown how the failure of bare perturbation theory is overcome by renormal-
ized perturbation theory, without any of the usual nonsense, where one has to pretend that
expansions with infinite coefficients make sense asymptotically after resumming infinitely
many infinities.

We may summarize the insights obtained as follows:

Renormalization approximates (in a first step) an original, bare (and often ill-defined) the-
ory by a family of theories depending on bare parameters g, the regularization prescription
R and an energy scale Λ beyond which the regularization strongly affects the formulation.
These approximate theories are matched by a regularization prescription, which fixes the
bare parameters in a way (depending on R and Λ) that makes sure that a small number of
physical parameters ∆ (predictions of the theories) agree. This is the renormalization step;
these parameters are renormalized (= physical, measurable).

After this matching, we have a well-defined familiy of approximate theories T (∆, R,Λ)
producing observables depending on the regularization and the energy scale but agreeing
in the renormalized parameters.

In a second step, the regularization is undone by taking the limit of no regularization at all.
The regularization is deemed successful if this limit leads to results that are no longer very
sensitive to ∆. In this case we obtain a family of renormalized theories T (∆) that – as no
regularization is present anymore – describe the same family of physical theories, but now
parameterized by physical parameters ∆. Thus, all measurable predictions are identical
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and independent of the renormalization scheme. Moreover, if the original family of theories
was singular and ill-defined, the renormalized family of theories is free of this defect.

However, instead of posing the renormalized theory directly in terms of physical parameters
∆, it is often simpler to cast the renormalized theories in terms of unphysical parameters
M (a renormalization scale) and gM (the renormalized coupling constants) from which all
physical predictions may be computed without severe sensitivity. At finite Λ, the renor-
malized couplings gM are in one-to-one correspondence with the bare couplings g in a
way depending on the renormalization scale M resulting from the freedom in choosing the
renormalization prescription. Since M cannot affect the measurable, physical results, the
dependence of gM on M must be such that no measurable prediction changes when M is
changed. This results in a differential equations known as the renormalization group.

Of course, the above holds under the assumption that the predictions are those of the
exact theory. In practice, one must make additional approximations to get computable
predictions, and these still have a residual dependence onM that should vanish in the limit
of better and better approximations. This is the reason why – although in theory each
value of M is as good as any other – one must choose M for a particular application to be
close to the enery relevant for the prediction in question.
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[67] V. Weisskopf, Über die Selbstenergie des Elektrons, Z. für Physik 89 (1934), 27–39.

[68] R. M. Wilcox, Exponential Operators and Parameter Differentiation in Quantum
Physics, J. Math. Phys. 8 (1967), 962–982.

[69] Y. Yamaguchi, Two-nucleon problem when the potential is nonlocal but separable. I,
Phys. Rev. 95 (1954), 1628–1634.

[70] Y. Yamaguchi and Y. Yamaguchi, Two-nucleon problem when the potential is nonlocal
but separable. II, Phys. Rev. 95, 1635–1643 (1954).

[71] J. Zamastil, J. Czek and L. Skala, Renormalized Perturbation Theory for Quartic
Anharmonic Oscillator, Ann. Physics 276 (1999), 39–63.

[72] E. Zeidler, Quantum field theory 1. Basics in mathematics and physics, Springer, Berlin
2006.

41


