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Abstract

This lecture gives an introduction to reproducing kernel Hilbert

spaces and their basic properties.

Reproducing kernel Hilbert spaces and the associated coherent

states have applications in complex analysis and group theory, but

also many other fields of mathematics, statistics, and physics.

To illustrate their power it is shown how to derive simple error

estimates for numerical integration.

Then the most relevant theorems about reproducing kernel Hilbert

spaces are presented.
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Reproducing kernels
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We write φ∗ψ or 〈φ, ψ〉 for the inner product of two vectors φ, ψ

in a complex Hilbert space. The inner product is taken to be

antilinear in the first argument.

A reproducing kernel Hilbert space is a Hilbert space K
of complex-valued functions on a set Z with an involution

together with a reproducing kernel K : Z ×Z → C such that the

functions kz (z ∈ Z) defined by

kz(x) := K(x, z) (1)

span a space dense in K and satisfy

ψ(z) = k∗zψ for all ψ ∈ K, z ∈ Z. (2)

(The involution can be trivial. If Z is a complex manifold it is

complex conjugation.)
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Examples of reproducing kernels were first discussed

by Zaremba 1907 in the context of boundary value problems and

by Mercer 1909 in the context of integral equations.

The theory was systematically developed by Aronszajn 1950,

Krein 1963, and others, based on the notion of functions of

positive type.

The content of this lecture is based on very old mathematics, all

discovered before 1980.

The news are in the companion lecture today at 16:15.
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I learnt about reproducing kernels about 30 years ago

from a paper by Davis & Rabinowitz 1954 about errors in

numerical quadrature.

With time I learnt about many other applications in many fields

of mathematics, statistics, and physics.

Now I recognize that the concept of a coherent space, the

algebraic structure underlying reproducing kernel Hilbert spaces,

is one of the basic unifying concepts of large parts of mathematics

and its applications.
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Illustrative application:

Error bounds for numerical integration
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The Hardy space (Hardy 1915) is the space of complex-valued

functions analytic in the open complex unit disk and square

integrable on its boundary. An equivalent description is as the

space of power series

f(x) =
∞∑
k=0

fkx
k

with complex fk and finite
∑
|fk|2, with inner product

f∗g :=

∞∑
k=0

fkgk.

The Szegö kernel K(z, z′) := (1− zz′)−1 (Szegö 1911) is a

reproducing kernel for the Hardy space. (This is essentially the

Cauchy integral formula.)

The resulting functions kz are given by kz(x) := (1− xz)−1.
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An N -point quadrature formula of order p ≥ 0 for

approximating the integral

I(f) :=

∫ b

a

f(x)dx

over an interval [a, b] ⊂ ]− 1, 1[ is a linear functional of the form

Q(f) =
N∑
j=1

αjf(xj), xj ∈ [a, b]

such that Q(f) = I(f) for all polynomials of degree ≤ p.

Because of the reproducing kernel property, the integration error

E(f) := I(f)−Q(f) is a continuous linear functional with

E(1) = 0.
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Define Ek(z) := Ekz. Then, if CQ is a bound on ‖Ek‖ and the

range of f is contained in a disk with center cf and radius rf ,

|Ef | = |E(f − cf )| = |Ek∗(f − cf )| ≤ ‖Ek‖ ‖f − cf‖ ≤ CQrf .

Linear transformations produce error bounds for quadrature rules

over arbitrary intervals [a.b], using range enclosures for arguments

ranging over open disks whose union covers [a, b].

Given an expression for f(x), such disks can be computed using a

generalized interval arithmetic for complex disks (Henrici 1971).

The constants CQ can be precalculated for all integration formulas

of interest. Using outward rounding, this gives mathematically

rigorous and efficiently computable error bounds even with

floating-point computations (Eiermann 1989).
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Functions of positive type
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A complex n× n matrix G is Hermitian if Gjk = Gkj for

j, k = 1, . . . , n, positive semidefinite if u∗Gu ≥ 0 for all u ∈ Cn,

and conditionally semidefinite if u∗Gu ≥ 0 for all u ∈ Cn with∑
k

uk = 0.

Let Z be a nonempty set. We call a function F : Z × Z → C of

positive type (resp. conditionally positive) over Z if, for every

finite sequence z1, . . . , zn in Z, the Gram matrix of z1, . . . , zn,

i.e., the n× n-matrix G with entries

Gjk = F (zj , zk), (3)

is Hermitian and positive semidefinite (resp. conditionally

semidefinite).

In particular, every function of positive type is conditionally

positive.
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Three almost trivial results have quite nontrivial converses.

Proposition 1. Let Z be a subset of a Hilbert space H. Then the

functions F, F ′, F ′′ : Z × Z → C defined by

F (z, z′) := z∗z′, F ′(z, z′) := z′∗z, F ′′(z, z′) := Re z∗z′

are of positive type.

The converse is a famous theorem by Aronszajn (or Moore)

discussed later.
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Proposition 2. If F : Z × Z → C is conditionally positive then,

for any function f : Z → C and any γ ≥ 0, the function

F̃ : Z × Z → C defined by

F̃ (z, z′) := f(z) + f(z′) + γF (z, z′) for z, z′ ∈ Z (4)

is conditionally positive.

A converse is given by a theorem by Schoenberg discussed later.
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Proposition 3. Let Z be a subset of a Euclidean space H. Then

for any function g : Z → C, the function F̃ : Z × Z → C defined by

F̃ (z, z′) := g(z) + g(z′)− ‖z − z′‖2 for z, z′ ∈ Z (5)

is conditionally positive.

A converse is given by a theorem by Menger discussed later.
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Less trivial but important are the following two constructions:

Theorem 4.

(i) The pointwise product of functions of positive type on the same

set is of positive type.

(ii) The composition of a function of positive type with values in a

domain D ⊂ C with a completely positive function φ : D → C is of

positive type.

Here φ : D → C is called completely positive if φ(x) has a

convergent expansion in powers of x with real, nonnegative

coefficients.

Many other constructions are known.
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Hilbert spaces from kernels
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Theorem 5. (Moore, Aronszajn)

Let K : Z × Z → C be of positive type. Then there is a unique

Hilbert space Q of complex-valued functions on Z with the

Hermitian inner product 〈·, ·〉 (antilinear in the first component)

such that the following properties hold.

(i) Q contains the functions qz : Z → C defined for z ∈ Z by

qz(x) := K(x, z) = K(z, x). (coherent states) (6)

(ii) The space Q of finite linear combinations of the qz is dense in Q.

(iii) The following relations hold:

〈qz, qx〉 = K(z, x), (7)

ψ(z) = 〈qz, ψ〉 for all ψ ∈ Q. (reproducing kernel) (8)

(iv) For each z ∈ Z, the linear functional ιz defined by

ιzψ := ψ(z) (9)

is continuous.

18



If we define, with an arbitrary choice of an involution on Z, for

ψ ∈ Q the function ψ̃ : Z → C by

ψ̃(z) := ψ(z̃),

(8) says that H := {ψ | ψ̃ ∈ Q} is a reproducing kernel Hilbert

space with reproducing kernel K and kz = q̃z.
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A paper by Kolmogorov 1941 contains the result for the special

case where Z is countable.

Aronszajn 1943 states the theorem in full generality and gives a

detailed proof in French. His later English paper from 1950 states

the theorem on p.344 and attributes it to Moore.

Aronszajn 1950 cites on p.338 a 1935 book by Moore and a very

short notice from 1916, but the theorem does not seem to be in one

of these references.

Moore’s book discusses in Chapter III near p.182 functions of

positive type under the name positive Hermitian matrices but does

not construct a Hilbert space from them.

A book by Faraut & Korányi 1994 ascribes the theorem to a

paper by Bergman 1933, but the theorem does not seem to be

there either.
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The reproducing kernel has the following orthogonal resolution:

Proposition 6. Let ψα (α ∈ I) be an orthonormal basis for Q.

Then

K(z, w) =
∑
α∈I

ψα(z)ψα(w). (10)
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The coherent states can be characterized as follows:

Theorem 7. (Bochner 1922)

Let K : Z × Z → C be of positive type, and let Q be the space

constructed in Theorem 5. If x ∈ Z satisfies K(x, x) 6= 0 then

min{ψ∗ψ | ψ ∈ Q, ψ(x) = α} =
|α|2

K(x, x)
.

If α = K(x, x), the minimum is attained precisely at qx.
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The functions belonging to the Hilbert space have the following

characterization:

Theorem 8. (Krĕın 1963)

Let K : Z × Z → C be of positive type and ψ : Z → C. Define the

function Kε : Z × Z → C by

Kε(z, z
′) := K(z, z′)− εψ(z)ψ(z′).

(i) If ψ ∈ Q and 0 < ε ≤ ‖ψ‖−2 then Kε is of positive type.

(ii) If Kε is of positive type for some ε > 0 then ψ ∈ Q.
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Conditionally positive functions
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Conditionally positive functions have the following

characterizations:

Theorem 9. (Schoenberg 1942)

If F is conditionally positive then the function Pa, defined for any

a ∈ Z by

Pa(z, z′) := F (z, z′)− F (z, a)− F (a, z′) + F (a, a), (11)

is of positive type. Conversely, if a map F : Z ×Z → C is such that

if Pa is of positive type for some a ∈ Z then F is conditionally

positive.
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Theorem 10. (i) A map F : Z × Z → C is conditionally positive

iff there is an embedding z → qz of Z into a Euclidean space H
such that

F (z, z′) = f(z) + f(z′) + q∗zqz′ (12)

holds for some f : Z → C.

(ii) (Menger 1928)

A map F : Z × Z → C satisfying F (z, z′) = F (z′, z) for z, z′ ∈ Z is

conditionally positive iff there is an embedding z → qz of Z into a

real Euclidean space such that

F (z, z′) = g(z) + g(z′)− ‖qz − qz′‖2 (13)

holds for some g : Z → R.
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The Berezin–Wallach set
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Many reproducing kernels of interest have the exponential form

discussed in the following theorem.

Theorem 11. (Schoenberg 1942, Herz 1962, Horn 1969)

(i) If F : Z × Z → C ∪ {−∞} is conditionally positive then, for all

β > 0,

K(z, z′) := eβF (z,z′) (14)

(where e−∞ := 0) is of positive type.

(ii) Let F : Z × Z → C ∪ {−∞}. If there is a sequence of positive

numbers βk converging to 0 such that

Kk(z, z′) := eβkF (z,z′)

is of positive type for all k then F is conditionally positive.

Here a function F : Z × Z → C ∪ {−∞} is called conditionally positive if

(i) either F takes only infinite values,

(ii) or there is an equivalence relation ≡ on Z such that F is conditionally

positive on each equivalence class, and F (z, z′) = −∞ whenever z 6≡ z′.
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The Berezin–Wallach set of a mapping F : Z × Z → C ∪ {∞} is

the set W (F ) of nonnegative real numbers β for which

K(z, z′) := eβF (z,z′) (15)

is of positive type.

This set was introduced by Wallach 1979 in the context of

representations of Lie groups. But already earlier, Berezin 1975

computed the Berezin–Wallach set for the case when −F is the

Kähler potential of a Siegel domain.
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Theorem 12. (i) The Berezin–Wallach set W (F ) is a closed set

containing 0.

(ii) W (F ) contains with β and β′ their sum and hence all linear

combinations with nonnegative integral coefficients.

(iii) If W (F ) contains an open set it contains all sufficiently large

positive real numbers.

(iv) If F is conditionally positive then W (F ) contains all

nonnegative real numbers.

(v) If 0 is a limit point of W (F ) then F is conditionally positive.
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Coherent spaces and coherent manifolds
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Coherent spaces and coherent manifolds

are the subject of the following Mathematical Kolloquium lecture.

A coherent space is a nonempty set Z with a distinguished

function K : Z × Z → C of positive type called the coherent

product.

A coherent manifold is a smooth (= C∞) real manifold Z

with a smooth coherent product K : Z × Z → C with which

Z is a coherent space.

Thus coherent spaces abstract the essential algebra needed

to define a reproducing kernel Hilbert space.

On the other hand, coherent manifolds have the additional

structure needed to be able to interpret objects related to

reproducing kernel Hilbert space in a geometric way.
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Coherent spaces are closely related to

(i) Christoffel–Darboux kernels for orthogonal polynomials,

(ii) Euclidean representations of finite geometries,

(iii) zonal spherical functions on symmetric spaces,

(iv) coherent states for Lie groups acting on homogeneous spaces,

(v) unitary representations of groups,

(vi) abstract harmonic analysis,

(vii) states of C∗-algebras in functional analysis,

(viii) reproducing kernel Hilbert spaces in complex analysis,

(ix) Pick–Nevanlinna interpolation theory,

(x) transfer functions in control theory,

(xi) positive definite kernels for radial basis functions,

(xii) positive definite kernels in data mining,
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and

(xiii) positive definite functions in probability theory,

(xvi) exponential families in probability theory and statistics,

(xv) the theory of random matrices,

(xvi) Hida distributions for white noise analysis,

(xvii) Kähler manifolds and geometric quantization,

(xviii) coherent states in quantum mechanics,

(xix) squeezed states in quantum optics,

(xx) inverse scattering in quantum mechanics,

(xxi) Hartree–Fock equations in quantum chemistry,

(xxii) mean field calculations in statistical mechanics,

(xxiii) path integrals in quantum mechanics,

(xxiv) functional integrals in quantum field theory,

(xxv) integrable quantum systems.
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Thank you for your attention!

For the slides and for more details on the mathematics see

http://www.mat.univie.ac.at/~neum/cohSpaces.html
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