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Abstract

The objective of optimal tearing is to maximize the number of variables eliminated

by solving univariate equations. First, a simple algorithm is presented for automatically

identifying feasible assignments: If an equation can be solved symbolically for one of

its variables, and the solution is unique, explicit, and numerically stable, then, and only

then, this equation-variable pair represents a feasible assignment. Tearing searches for

the optimal elimination order over these numerically safe feasible assignments. We

give a novel integer programming formulation of optimal tearing. Unfortunately, a

high amount of permutation symmetry can cause performance problems; therefore, we

developed a custom branch and bound algorithm. Based on the performance tests on

the COCONUT Benchmark, we consider the proposed branch and bound algorithm

practical (a) for the purposes of global optimization, and (b) in cases where systems

with the same sparsity patterns are solved repeatedly and the time spent on tearing

pays off.
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1. Introduction

Tearing (cf. [4, 21, 22, 38]) is the representation of a sparse system of nonlinear

equations

f (x) = 0, where f : Rn 7→ Rm, (1)

in a permuted form where most of the variables can be computed sequentially once a

small auxiliary system has been solved. More specifically, given permutation matrices

P and Q such that after the transformation g

h

 = P f ,

 y

z

 = Qx, (2)

gi(y, z) = 0 can be rewritten in the equivalent explicit form

yi = g̃i(y1:i−1, z) (3)

using appropriate symbolic transformations. Equation (3) implies that the sparsity pat-

tern of the Jacobian of P f is

J =

A B

C D

 , where A is lower triangular, (4)

J is therefore bordered lower triangular. Hereafter, we will refer to a particular

choice of P,Q, g, h, y, and z satisfying equations (3) and (4) as an ordering. Given an

ordering, the system of equations f (x) = 0 can be written as

g(y, z) = 0

h(y, z) = 0.
(5)

The requirement (3) that gi(y, z) = 0 can be made explicit in yi essentially means y =

ḡ(z). Substituting y into h yields h(ḡ(z), z) = 0 or

H(z) = 0. (6)

That is, the original nonlinear system of equations f (x) = 0 is reduced to the (usually

much) smaller system H(z) = 0.
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Optimal tearing is the task of finding an ordering that minimizes the border width

d := dim z (7)

of J. This objective is a popular choice [9, Sec. 8.4] and often results in a significant

speed up, although it does not guarantee any savings in computation time in the general

case. Other issues related to this objective were discussed in detail in [4], such as

ignoring that (6) can become ill-conditioned or that the objective is unaware of the

nonlinearities in (1). It is important to note that minimizing (7) is significantly different

from the objective of the so-called fill-reducing orderings which minimize the fill-in.

In the first part [4] of this two-part paper, we surveyed the methods for performing

tearing either optimally with exact methods or with greedy heuristics. The variants of

tearing were also reviewed, such as tearing methods that allow in (4) forms other than

bordered lower triangular form, or that solve small subsystems simultaneously, and

those that have objective function different from (7). Several application areas were

also discussed in [4].

2. Identifying feasible assignments

The task of optimal tearing is equivalent to maximizing the number of eliminated

variables through assignments, see (3). If the equation fi(x) = 0 of (1) can be solved

symbolically for the variable x j, and the solution is unique, explicit and numerically

stable, then, and only then, the pair (i, j) represents a feasible assignment. The more

feasible assignments we find, the more freedom we have when searching for elimina-

tion orders. This underlines the importance of a software package (computer algebra

system) for solving equations symbolically. We first discuss how we identify those re-

arrangements of the equations that give a unique and explicit solution in one variable,

and temporarily ignore the numerical stability issues. Then, we discuss how numeri-

cally troublesome functions can be recognized. We follow a conservative approach

in our implementation: Solutions are excluded from the feasible assignments if we fail

to prove uniqueness or numerically stability, even if those solutions might in fact be

unique and numerically stable.

3



2.1. Provably unique and explicit solution

In our implementation, we use SymPy [47] and attempt to solve the individual

equations of (1) for each of its variables. SymPy is a fairly mature symbolic package,

and if a closed form solution exists, SymPy often finds it. We consider only those

assignments as candidates for feasible assignments where the symbolic package returns

exactly one explicit solution. Let us consider a few examples below.

For example, for the equation

x1 − x2x3 = 0 (8)

SymPy will return

x1 = x2x3, x2 =
x1

x3
, x3 =

x1

x2
. (9)

That is, we can make (8) explicit in any of its variables; these solutions are also unique.

All three assignments are candidates for feasible assignments. They are only candidates

because we have not considered numerical issues yet; issues like division by zero will

be discussed in the next section.

In other cases, the solution may not be unique. For example, when solving

x2
1 + 2x1x2 + 1 = 0 (10)

for x1, SymPy will correctly return both

x1 = −x2 +

√
x2

2 − 1andx1 = −x2 −

√
x2

2 − 1. (11)

Even though we could make (10) explicit in x1, we still have to exclude it from the

feasible assignments because there are two solutions.

A more sophisticated implementation could do the following when faced with mul-

tiple solutions as in (11). Let us assume that x1 ≥ 0 and x2 ≥ 0 must hold: For example,

these bound constraints are also part of the input, or we deduced these lower bounds

from other constraints of the input. Then, a sophisticated implementation could deduce

that only x1 = −x2 +

√
x2

2 − 1 can hold at the solution because the other formula always

gives strictly negative values for x1 if x2 ≥ 0 but we know that x1 ≥ 0 must hold.

Some equations do not have closed-form solutions, or the symbolic package that

we use fails to produce a closed-form solution; these two cases are identical from a
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practical perspective. In our current implementation, such cases are never added to the

feasible assignments.

As discussed in Section 1, solving implicit equations is already performed in state-

of-the-art modeling systems. For the sake of this example, let us consider the case

when we are stuck with the following implicit equation:

f3(x1, x2) = 0. (12)

One can still try to solve the equation numerically for x2 and pretend that a function g

exists such that

x2 = g(x1) (13)

and add (3, 2) to the feasible assignments. Robust numeric methods are available for

solving (12) such as the Dekker-Brent method, see [15] and [10, Ch. 4]. However, we

are not aware of any modeling system that would check the uniqueness of the solution

in (12); the elimination (13) is performed with the x1 found by the numeric solver, and

other solutions, if any, are simply ignored. We never consider implicit equations as

feasible assignments in our current implementation (conservative approach).

2.2. Identifying numerically troublesome assignments

In the previous section, we ignored the question of numerical stability. For exam-

ple, if x2 or x3 happens to be 0 in (9), the corresponding formula involves division

by zero. In this section, we discuss how to recognize assignments that are potentially

troublesome. We again follow a conservative approach: We reject each formula that

we fail to prove numerically safe (even if it is always safe to evaluate in reality).

We assume that all variables have reasonable (not big M) lower and upper bounds.

From an engineering perspective, this requirement does not spoil the generality of the

method: The variables in a typical technical system are double-bounded, although often

implicitly. The physical limitations of the devices and the design typically impose

minimal and maximal throughput or load of the devices; this implies bounds on the

corresponding variables, either explicitly or implicitly. There are also natural physical

bounds, e.g., mole fractions of chemical components must be between 0 and 1, etc.
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We used the interval arithmetic implementation available in SymPy [47] to check

the numerical safety of an assignment. For the purposes of the present paper, the reader

can think of interval arithmetic [28] as a computationally cheap way to get guaranteed

(but often suboptimal) lower and upper bounds on the range of a given function over

the domain of the variables. (Extended interval arithmetic can safely work with infinity,

division by zero, etc., see [28, Ch. 4].) Let us look at some examples where we also

give the lower and upper bounds on the variables.

Example 1. If we evaluate f (x1, x2) = x1−x2
x1+x2

with interval arithmetic over x1 ∈ [3, 9]

and x2 ∈ [1, 2], we get [0.0909090, 2.0]. The true range is [0.2, 0.8]. As we can see,

interval arithmetic fulfilled its contract: The range obtained from the interval arithmetic

library indeed encloses the true range of the function but also overcovers it. Neverthe-

less, it is good enough for our purposes.

Example 2. If we evaluate g(x) = 1
x2−x+1 over x ∈ [0, 1] with interval arithmetic, we

get [0.5, ∞]. Again, the true range, [1, 4
3 ] is enclosed but overestimated. In this case,

it is possible to get the true range with interval arithmetic if one uses the equivalent

formula 4
(2x−1)2+3 for evaluating g(x).

Example 3. Finally, an example where the evaluation fails: If we evaluate log(x) over

x ∈ [−1, 1], the interval arithmetic library throws an exception and complains that

“logarithm of a negative number” was encountered.

Rule for deciding on numerical safety. We consider only those assignments as candi-

dates for feasible assignments where the symbolic package returns exactly one explicit

solution. When checking the numerical safety of an assignment, we try to evaluate the

function on the right hand side of the assignment with interval arithmetic. The eval-

uation either fails with an exception, or we get back an interval r as the result. We

consider the assignment numerically safe if and only if the evaluation did not throw an

exception and the result r ⊆ [−M,M] where we set M = 1015 as default. However we

choose the variables within their bound constraints, numerically safe assignments are

always safe to evaluate with ordinary floating-point arithmetic: The evaluation cannot

fail due to division by zero, or due to illegal function arguments, etc.
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This simple rule is admittedly not perfect. Since interval arithmetic usually overes-

timates the actual ranges, we can reject assignments that are in reality safe. However,

accurately determining numerically safe assignments is an NP-hard problem in gen-

eral [34]. In our opinion, a single function evaluation with interval arithmetic is a good

compromise.

Another issue is that the above rule does not safeguard against the final system (6)

becoming ill-conditioned, see [4]. Our novel proof of concept algorithms automati-

cally mitigate this type of conditioning problem through reparameterization or redis-

tribution [5, 7] in the context of global optimization. It is subject of future research to

make these reparameterization and redistribution algorithms practical outside the field

of global optimization.

3. Optimal tearing with integer programming

3.1. Background

We recap those sections of [4] that are essential for the integer programming ap-

proach; the reader is referred to [4] for details. We construct a bipartite graph B such

that one of its disconnected node sets corresponds to the equations (rows), the other to

the variables (columns). If a variable appears in an equation, there is an edge between

the corresponding nodes, and the two nodes are not connected otherwise. We are given

F, an arbitrary subset of edges of B but with the intent of F corresponding to the set of

feasible assignments, see Section 2.

A matching M is a subset of edges of B such that at most one edge of M is incident

on any node. After a matching has been established, we orient B as follows. We first

remove those edges from M that are not in F; the remaining edges in M are directed

towards variables, all other edges point towards equations. The resulting directed graph

has a specific cycle structure, see [4]: It is acyclic if and only if M does not involve

a maximum cardinality matching on any subgraph induced by the nodes of a simple

cycle.

We select a subset of M, called the feedback edge set, that is sufficient to reverse

(make them point towards the equations too) to make the resulting acyclic. Any of the

heuristics discussed in [3] is applicable. These heuristics can never fail but they may
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Figure 1: The steps of tearing: bipartite matching M′ → matching M after considering feasible assignments
→ orientation→ feedback edge set→ a possible elimination order.

produce a feedback edge set that is not of minimum cardinality; the proposed algorithm

will work nevertheless.

3.2. Integer programming formulation of optimal tearing

The following integer programming formulation is used in our implementation; any

feasible solution to this integer program uniquely defines a bipartite matching M.

max
y

∑
e∈F

ye (find the maximum-cardinality matching)

s.t.
∑
e∈E

ureye ≤ 1 for each r ∈ R, (each row is matched at most once)

∑
e∈E

vceye ≤ 1 for each c ∈ C, (each column is matched at most once)

∑
e∈E

aseye ≤
`s

2
− 1 for each s ∈ S (cycles are not allowed).

(14)

Here the binary variable ye is 1 iff edge e is in the matching M; the set F is an arbitrary

subset of edges of B, but with the intent of F corresponding to the set of feasible

assignments, see Sec. 2; E, R, and C denote the index sets of the edges, the rows, and

the columns, respectively; ure is 1 iff node r is incident to edge e, and 0 otherwise;

similarly, vce is 1 iff node c is incident to edge e, and 0 otherwise; S is the index set

of the simple cycles currently in the (incomplete) cycle matrix A = (ase); the entry

ase is 1 iff the edge e participates in the simple cycle s, and 0 otherwise; `s is the

length (the number of edges) of simple cycle s. The last inequality excludes maximum

cardinality matchings on all subgraphs induced by simple cycles; this ensures that after
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orienting the bipartite graph B according to the matching, the obtained directed graph

D is acyclic, see Sec. 3.1.

General-purpose integer programming solvers such as Gurobi [26] or SCIP [1] do

not have any difficulty solving (14) as long as enumerating all simple cycles is tractable.

Unfortunately, enumerating all simple cycles is typically intractable in practice; we will

consider such an example in Section 7.2.

4. Lazy constraint generation

In practice, solving the integer program (14) directly can easily become intractable

since it requires enumerating all the simple cycles of the input bipartite graph B. Un-

fortunately, even sparse graphs can have exponentially many simple cycles [42], and

such graphs appear in practice, e.g., cascades (distillation columns) can realize this

many simple cycles. The proposed method enumerates simple cycles in a lazy fashion,

and extends the cycle matrix A iteratively in the hope that only a tractable number of

simple cycles has to be enumerated until a provably optimal ordering is found. The

pseudo-code of the algorithm is given at Algorithm 1. The Python source code of the

prototype implementation is available at [2]. The computational results will be pre-

sented in Section 7.

4.1. Solving a sequence of integer programs with an incomplete cycle matrix

Let us refer to problem (14) with the complete cycle matrix as P, and let P̃(i) denote

its relaxation in iteration i where only a subset of simple cycles are included in the

cycle matrix. One can simply start with an empty cycle matrix in P̃(0); more elaborate

initializations are also possible.

The optimal solution to the relaxed problem P̃(i) gives the matching M(i); the bipar-

tite graph is oriented according to this matching as discussed in Section 3.1. Since not

all simple cycles are included in the cycle matrix, the directed graph D(i) obtained with

the orientation is not necessarily acyclic. Therefore we need to check this.

A topological sort of a directed acyclic graph G = (V, E) is a linear ordering of

all its nodes such that if G contains an edge (u, v), then u appears before v in the
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ordering [13, Sec. 22.4]. The nodes in a directed graph can be arranged in a topological

order if and only if the directed graph is acyclic [16, Sec. 14.8].

Topological sort succeeds if and only if D(i) is acyclic. If the topological sort suc-

ceeds, the algorithm has found an optimal solution to P and therefore terminates.

If the topological sort fails, D(i) has cycles. In this case, we first create a feasible

solution to P as follows. We identify a feedback edge set (tear set) T (i) ⊆ M(i) using

an appropriate heuristic, see for example [3]. The proposed algorithm is guaranteed to

make progress with any feedback edge set but the algorithm is likely to make better

progress with a T (i) of small cardinality. Reversing the edges in T (i) makes the graph

acyclic, see Sec. 3.1, and therefore the associated matching yields a feasible solution

to P. We keep track of the best feasible solution to P found.

After we have created a feasible solution to P, we improve the relaxation P̃(i) by

adding new rows to the cycle matrix A(i). The directed graph D(i) must have at least one

cycle because topological sort failed previously. The feedback edge set T (i) contains

at least one edge of every cycle in D(i) by definition; therefore, there must be at least

one edge t ∈ T (i) that participates in a cycle. For each edge t ∈ T (i) we compute the

shortest path from the head of t to the tail of t with breadth-first search (BFS). Such

a shortest path exists if and only if t participates in a cycle; we extended this shortest

path with t which then gives a simple cycle (even without chords). A new row is

appended to the cycle matrix per each simple cycle found. The cycle matrix A(i) is

guaranteed to grow at least by one row by the time we finish processing all the edges in

T (i). We then proceed with the next iteration step, starting with solving the next relaxed

problem P̃(i+1) with this extended cycle matrix A(i+1). The cycle matrix is only extended

as the algorithm runs; rows are never removed from it. As we will discuss it shortly, it

has not been observed yet that superfluous rows would accumulate in the cycle matrix,

slowing down the algorithm.

The algorithm terminates if the directed graph after the orientation becomes acyclic

(as already discussed) or the objective in a relaxed problem equals the cardinality of

the best known feasible solution to P. In both cases, the optimal solution to (14), hence

the optimal ordering of (1) is found by Algorithm 1.
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Algorithm 1: Integer programming-based algorithm with lazy constraint gener-
ation for computing the optimal tearing

Input: J, a sparse m × n matrix; B, the undirected bipartite graph associated with J, see Sec. 3.1
Output: A matching that maximizes the cardinality of the eliminated variables
# P denotes the integer program (14) with the complete cycle matrix of B

1 Set the lower bound z and the upper bound z̄ on the objective to 0 and min(m, n), respectively;
2 Let ŷ denote the best feasible solution to P found at any point during the search (incumbent solution)

;
3 Set the trivial solution ŷ = 0, realizing z = 0 ;
4 Let A(i) denote the incomplete cycle matrix in (14), giving the relaxed problem P̃(i) (i = 0, 1, . . . ) ;
5 Set A(0) to be empty ;
6 for i = 0, 1, . . . do
7 Solve the relaxed problem P̃(i); results: solution y(i), matching M(i), and objective value z(i) ;

# Optional: When the integer programming solver is invoked on the line just above,
# ŷ can be used as a starting point

8 Set the upper bound z̄ to min(z̄, z(i)) ;
9 if z equals z̄ then

10 stop, ŷ yields optimal tearing ;

11 Let D(i) denote the directed graph obtained by orienting B according to M(i), see Sec. 3.1 ;
12 if D(i) can be topologically sorted then
13 stop, y(i) yields optimal tearing ;

14 Compute a feedback edge set (tear set) T (i) ⊆ M(i) using an appropriate heuristic, e.g. [3] ;
# See Sec. 3.1: T (i) cannot be empty as D(i) must have at least one cycle, and
# reversing each edge t ∈ T (i) would make D(i) acyclic

15 Set those components of y(i) to 0 that correspond to an edge in T (i) ;
# y(i) is now a feasible solution to P

16 Let ẑ be the new objective value at y(i) ;
17 if ẑ > z then
18 Set z to ẑ ;
19 Set ŷ to y(i) ;

# Extend the cycle matrix A(i) to get A(i+1)

20 foreach t ∈ T (i) do
21 Find a shortest path p from the head of t to the tail of t with breadth-first search (BFS) in

D(i) ;
22 if such a path p exists then
23 Turn the path p into a simple cycle s by adding the edge t to p ;
24 Add a new row r to the cycle matrix corresponding to s if r is not already in the

matrix ;

# At this point A(i+1) is guaranteed to have at least one additional row compared to A(i)

4.2. Finite termination

The proposed algorithm must terminate in a finite number of steps. In each iteration

that does not terminate the algorithm, we are guaranteed to make progress because we

extend the cycle matrix by at least one row and the number of simple cycles, i.e., the

maximum number of rows that the cycle matrix can have, is finite. In the worst case,

all simple cycles have to be enumerated, however, we are not aware of any challenging
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graph that would trigger this worst-case (or a near worst-case) behavior. (A trivial

example would be a graph with a single simple cycle: Although all simple cycles have

to be enumerated, it is not a challenge.)

Even though it is not guaranteed, the gap between the lower and upper bound on the

optimum can shrink in each iteration: Beside making progress by extending the cycle

matrix, we may also find a better feasible solution to P by solving the feedback edge set

problem, and the objective of the relaxed problem may also improve as the cycle matrix

grows. Focusing only on the worst-case behavior (i.e., having to enumerate all the sim-

ple cycles) is neither a realistic view of the practical performance of the algorithm nor

does it reveal why the algorithm can become impractical on certain problem instances:

It is the permutation symmetry that can make Algorithm 1 impractical in certain cases.

By permutation symmetry we mean the following: Given a Hessenberg form that

corresponds to a feasible solution of (14), there are typically many row permutations

(bipartite matchings) that, after an appropriate column permutation, realize the same

upper envelope. The cost only depends on the upper envelope.

4.3. Near minimal cycle matrix

Since the algorithm only adds rows to the cycle matrix but never removes any of

them, it is reasonable to ask whether superfluous rows can accumulate in the cycle

matrix as the algorithm runs. Numerical experiments were carried out whose goal was

to find a minimal subset of rows in the cycle matrix such that the solution to (14) with

this minimal cycle matrix still gives the optimal solution to P.

In one set of experiments, the complete undirected bipartite graph (corresponding

to the fully dense n× n matrix) was used. The complete bipartite graph admits a trivial

solution, and the branch and bound algorithm of Section 6 with (18) will solve these

problems instantaneously, on the root node of the search tree. However, the complete

bipartite graph is quite challenging for Algorithm 1 which makes this graph appropriate

for experimenting. By the time Algorithm 1 finds the optimal solution, the cycle matrix

has
(

n
2

)2
rows for n = 2 : 12 where n is the problem size; that is, the cycle matrix has

O(n4) rows on termination.

After Algorithm 1 terminated, the following additional constraint was appended to
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the integer program (14) to render it infeasible:∑
k∈F

yk ≥ z∗ + 1, (15)

where z∗ is the objective value at the optimal solution to P. Then, Gurobi was invoked

on this infeasible integer program to compute the Irreducible Inconsistent Subsystem

(IIS). In general, an IIS is a subset of the constraints and variable bounds of the original

model. If all constraints in the model except those in the IIS are removed, the model

is still infeasible. However, further removing any one member of the IIS produces

a feasible result. For this example, Gurobi could not find any superfluous row for

n = 2 : 8. The computations took more than 3 hours for n = 8, and n > 8 have not been

checked.

It could happen that Algorithm 1 generates a cycle matrix that cannot be reduced

further but one could generate a cycle matrix with fewer rows by considering all the

simple cycles in the undirected bipartite graph. The same experiment was repeated

accordingly with the complete cycle matrix for n = 2 : 6, where it was still tractable

to enumerate all the simple cycles. Gurobi again could not find a cycle matrix having

fewer rows than the one that Algorithm 1 had generated.

Similar numerical experiments were carried out with those graphs in our test set

where the IIS computation was tractable. Algorithm 1 never accumulated a significant

number of superfluous rows for the examples tried; performance degradation due to

superfluous rows in the cycle matrix never occurred.

5. Heuristics for ordering to lower Hessenberg form

This section introduces Algorithms 2 and 3 that form the basis of the rest of the pa-

per. We first consider irreducible square matrices. As discussed in [4], a square matrix

is irreducible if and only if the fine Dulmage-Mendelsohn decomposition [18–20, 33]

generates a single block (the entire matrix itself is the block) with zero-free diagonal.

The Dulmage-Mendelsohn decomposition is also referred to as block lower triangular

decomposition or BLT decomposition, since it outputs a block lower triangular form if

the input matrix is square and structurally nonsingular. More recent overviews of the
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Dulmage-Mendelsohn decomposition method are available e.g., in [41], [17, Ch. 6],

and [14, Ch. 7].

A lower Hessenberg form is a block lower triangular matrix but with fully dense

rectangular blocks on the diagonal, rather than square blocks. Consequently, the height

of the columns is nonincreasing. Since the matrix is assumed to be irreducible, the first

entry in each column is either on or above the diagonal.

Let the matrix A ∈ Rn×n be an irreducible matrix. In order to relate this section to

tearing, the matrix A of this section can be considered as the Jacobian of (1). Further-

more, it is assumed that each equation in (1) can be made explicit in any of its variables

with appropriate symbolic transformations.

We closely follow the presentation of Fletcher and Hall [24] in our discussion here.

Two heuristic algorithms for permuting A to lower Hessenberg form are discussed.

Both of these algorithms progressively remove rows and columns from A; the matrix

that remains when some rows and columns have been removed is called the active

submatrix, see Figures 2–3. It is called the active submatrix since it is within this

submatrix where further permutations take place. The whole matrix is active when

the algorithm starts, and the active submatrix is empty on termination. The indices

of the removed rows and columns are assembled in the permutation vectors ρ and κ,

respectively, in the order they were removed; see Figure 2. The pair π = (ρ, κ) will be

referred to as incomplete permutation. The incomplete permutation unambiguously

determines the active submatrix; the active submatrix unambiguously determines the

removed row and column indices but not their order. For each row i in the active

submatrix, let ri(π) denote the number of nonzero entries. Similarly, let c j(π) be the

number of nonzero entries in column j of the active submatrix. Hereafter ri = ri(π) and

c j = c j(π) will be referred to as row count and column count, respectively.

Several heuristics have been proposed to permute A to one of the desirable forms

(bordered block lower triangular, spiked lower triangular, lower Hessenberg form) dis-

cussed in [4], e.g., the Hellerman-Rarick family of ordering algorithms, see [23, 29, 30]

and [17, Ch. 8], and the ordering algorithms of Stadtherr and Wood [44, 45]. Although

there are subtle differences among these ordering algorithms, they all fit the same pat-

tern when viewed from a sufficiently high level of abstraction [24]; they only seem to
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Active
sub-
matrix

ρ

κ

Figure 2: The reordered matrix after applying an incomplete permutation π = (ρ, κ).

differ in the heuristics applied to break the ties on line 4 in Algorithm 2.

Algorithm 2: Heuristic for ordering to Hessenberg form [24]
Input: A, a sparse irreducible matrix
Output: A permuted to lower Hessenberg form

1 set A as the active submatrix;
2 repeat
44 find a row in the active submatrix with minimum row count;
5 put all columns which intersect this row to the left and consider them as removed;
6 update row counts in the active submatrix;
7 put all rows with zero row count to the top and consider them as removed;
8 until all rows and columns are removed;

We note that Algorithm 2 resembles the well-known minimum degree ordering

algorithm for symmetric matrices [49, scheme 2], which in turn is a Markowitz order-

ing [37] applied to a symmetric problem. The reader is referred to [17, Sections 7.2 and 7.3]

for a concise review of these other ordering algorithms, and to [25] for a review on the

evolution of the minimum degree ordering algorithms.

Algorithm 3, the two-sided algorithm of [24], is an extension of Algorithm 2. Fig-

ure 3 shows an intermediate stage of the algorithm. The idea of working from both

ends and iteratively removing all rows and columns that have a single nonzero entry
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already shows up in [35] as early as 1966, and later became known as forward and

backward triangularization [36]. Cellier’s matching rule [11, 48] also show similarities

with Algorithm 3.

Algorithm 3: The two-sided algorithm of [24] for ordering to Hessenberg form
(heuristic)

Input: A, a sparse irreducible matrix
Output: A permuted to lower Hessenberg form

1 set A as the active submatrix;
2 repeat
3 find either a min-row-count row or a min-column-count column, whichever has fewer entries ;
4 if a row is chosen then
5 proceed as in Algorithm 2 ;

6 if a column is chosen then
7 remove all rows which intersect this column ;
8 update column counts ;
9 remove all columns with zero column count ;

10 until all rows and columns are removed;

Active
sub-
matrix

Remove
min-row-count rows

Remove
min-column-count columns

Figure 3: An intermediate stage of the two-sided algorithm for ordering to Hessenberg form.

We have discussed these algorithms here because they form the basis of the rest of

the present paper:

1. In the custom branch and bound algorithm of Section 6, instead of breaking

ties according to some heuristic as on line 4, all possibilities are systematically

considered. The lower bounding procedure of Section 6.2, accompanying the

custom branch and bound algorithm, was inspired by Algorithm 3.
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2. Beside inspiration, Algorithm 2 is also used in the branch and bound algorithm

of Section 6 to find a good feasible at the root node.
3. Although the integer programming approach of Section 4 does not require it,

both Algorithm 2 and 3 can be used for generating a good initial point.

Rectangular and reducible matrices in lower Hessenberg form. This is our extension

of the lower Hessenberg forms to the under- and over-determined cases. A is assumed

to be a full rank m × n matrix.

If m ≥ n, we order A into the form

AT

AB

 where AT ∈ Rn×n is a structurally non-

singular lower Hessenberg form. If m ≤ n, we order A into the form [AL AR] where

AR ∈ Rm×m is a structurally nonsingular lower Hessenberg form. Note that neither AT

nor AR is required to be irreducible; they are only required to have structural full rank.

See [4] at the Dulmage-Mendelsohn decomposition on finding the structural rank of

a matrix. As we showed in [4], decomposing these matrices further into smaller irre-

ducible matrices could result in more guessed variables in tearing.

We can obtain such lower Hessenberg forms as follows. If m > n, we run Algo-

rithm 3 but we always choose rows; if m < n, we run Algorithm 3 but we always choose

columns.

6. Optimal tearing by a custom branch and bound algorithm

The proposed algorithm is similar to Algorithm 2 but instead of breaking ties ac-

cording to some heuristic as on line 4 of Algorithm 2, the proposed algorithm considers

all possibilities in a branch and bound algorithm. The idea is certainly not new, see

e.g. [12].

Simplifying assumptions. Let A ∈ Rm×n denote the Jacobian of the system (1). (It is a

deviation from the notations of Section 1 regarding A.) It is assumed in this section that

A has full structural column rank if m ≥ n, and A has full structural row rank if m ≤ n.

In short, A is structurally a full rank matrix. See [4] at the Dulmage-Mendelsohn

decomposition how this assumption can be checked. For the sake of simplicity, it is

assumed in this section that each equation in (1) can be made explicit in any of its

variables with appropriate symbolic transformations.
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6.1. The proposed branch and bound algorithm

The reader is referred to Section 5 regarding the definition of the active submatrix,

permutation π = (ρ, κ), row count ri = ri(π) and column count c j = c j(π). We say that

we eliminate a row if we solve the corresponding equation in (1) for one of its variables

and then remove the row and all intersecting columns from the active submatrix. The

cost of eliminating row i, or simply the row cost of row i, is the number of variables

that still need to be guessed when we eliminate row i. In terms of the row count,

the cost of row i is max(0, ri − 1): According to our assumption, each equation can

be symbolically transformed into an assignment to any of its remaining unknowns,

meaning that at most ri − 1 variables need to be guessed when row i is eliminated. The

cost

z = z(ρ) (16)

of an incomplete or complete permutation π = (ρ, κ) is the sum of all row costs when

the rows are eliminated one-by-one along the upper envelope, in the order determined

by ρ. If the permutation is incomplete, the elimination (and the summation of the row

costs) stops at the end of ρ, and the active submatrix remains. The proposed algorithm

seeks a minimum cost permutation π that brings A into lower Hessenberg form.

A lower bound on the cost of the best possible complete permutation that still may

be achievable given an incomplete permutation (ρ, κ) is

ˆ
z(ρ) = z(ρ) + min

i
(max(0, ri − 1)), (17)

since z(ρ) has already been spent, and at least mini(max(0, ri − 1)) guesses has to

be made in order to continue the elimination. This lower bound is also sharp in the

following sense: It can happen that all the other remaining rows can be iteratively

eliminated at zero cost after having eliminated the minimum cost row.

Distinguishing features. We now give the specific details that make the proposed method

a custom branch and bound algorithm.

1. The search tree is traversed in depth-first search order.

2. The best-first search rule is applied when branching; the score of a node is
ˆ
z(ρ), as

defined by (17). The lowest score node is explored first, breaking ties arbitrarily.

18



An efficient implementation of the best-first search is possible with a min-priority

queue [13, Sec. 6.5].

3. An initial feasible solution is computed with Algorithm 2 before the branch and

bound search starts. A lower bound on the optimal cost elimination is computed

based on the rules of Section 6.2 (run only once).

4. When a new complete permutation is found (a leaf node is reached by the branch

and bound search), a procedure is run with this complete permutation to im-

prove the lower bound on the optimal cost. This procedure will be discussed in

Section 6.3.

5. The algorithm keeps tracks of the trailing submatrices that have already been

fully discovered during the depth-first search. Whenever we encounter an active

submatrix that has already been discovered, we just retrieve its optimal ordering

and cost from the bookkeeping.

6. The ‘back-track rule’ of Hernandez& Sargent [31] was applied to discard entire

subtrees of the branch and bound search tree by excluding sequences that cannot

possibly produce strictly lower cost solutions than the already found ones. The

reader is referred to [31] for further details.

7. The bipartite graph, corresponding to the sparse matrix to be ordered, can be-

come disconnected. Whenever this happens, the connected components are pro-

cessed independently.

The source code of the Python prototype implementation is available at [2]. The com-

putational results will be presented in Section 7.

6.2. Lower bounds based on the minimum row and column counts

The input of the lower bound deducing algorithm is an m × n matrix A. Let z∗

denote the cost of the optimal ordering of A. In our numerical experience, the following

approaches proved to be helpful:

• lower bounds based on the minimum row and column counts,

• relaxation by partitioning the columns of A (called column slice relaxation).

This section describes the former, the next section will address the latter approach.
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We start with the case when m ≥ n. In any ordering, the cost of eliminating the first

row cannot be less than the minimum of all the row costs in the entire matrix A, that is,

we have the following lower bound on z∗:

z∗ ≥ min
i

ri − 1, where i ∈ row indices of A, and m ≥ n. (18)

A simple consequence of (18) is that a square nonsingular matrix A (m = n) cannot be

put into lower triangular form if the minimum row count is at least 2. As far as we can

tell, basically the same idea appears in [12]

Let us now focus on the case when m ≤ n. We have to guess at least n−m variables

in any permutation: A variable is either guessed or assigned, and we can perform at

most as many assignments as there are equations. Since each guessed variable costs 1

according to our definition of the cost function, we want to assign to as many variables

as possible using our m equations. Therefore, we form a nonsingular m × m submatrix

of A, and our goal is to find a cost optimal lower Hessenberg form in this submatrix.

The remaining part of A is an m× (n−m) matrix; it only contains variables that have to

be guessed anyway because we have used up all our equations to perform eliminations

in the other square submatrix. That is, we form a partition of A as follows: A = [AL AR]

where AR is the sought cost optimal m × m lower Hessenberg form, and AL contains

the left over columns that have to be guessed because we have no remaining equations

to form assignments to those variables. We can think of it as running the two-sided

algorithm of Fletcher and Hall [24] but we always choose columns so that AR will be a

lower Hessenberg form. See also Figure 3 and Algorithm 3.

If the last column of the full rank, Hessenberg form matrix AR has c` entries in an

arbitrary ordering of A, i.e., the column count of the last column is c`, the elimination

cost associated with AR is at least c` − 1. The proof is given in the Appendix. The

minimum column count over all the columns in A (and not just in AR) is an obvious a

lower bound on c`:

c` ≥ min
j

c j, where j ∈ column indices of A. (19)

We can now give a lower bound on z∗:

z∗ ≥ min
j

c j − 1 + (n − m), where j ∈ column indices of A, and m ≤ n. (20)
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Here, the first term on the right-hand side is the lower bound on the elimination cost

in AR, and the second term accounts for the variables that we have to guess in AL

regardless of AR.

The inequality (18) gives a sharp lower bound in the sense that after removing

the row with the minimum count, it can happen that all the remaining rows can be

iteratively eliminated at zero cost in A. The same holds for (20): After removing

the minimum cost column in A, it is possible that the active submatrix in AR can be

permuted to lower triangular form (has zero cost). Besides being sharp, (18) and (20)

are available at no additional implementation effort and in constant time: An efficient

implementation of the algorithm has to keep track of the minimum row and/or column

count anyway, e.g., with a min-heap data structure [13, Ch. 6].

6.3. Column slice relaxation

Let Ã denote an arbitrarily chosen column slice of A. The columns in Ã must

be either guessed or eliminated , and Ã has all the rows that can possibly used for

elimination. By computing the optimal elimination cost for Ã, we lower bound the

elimination cost for the columns in Ã in the optimal cost elimination of A: The columns

not in Ã only impose further constraints on the elimination order but those constraints

are ignored (relaxation). We get a lower bound on the optimal elimination cost of A

if the columns of A are partitioned, and the optimal elimination cost for each column

slice is computed and then accumulated. In practice, it is usually not worth computing

the optimal elimination cost for the slices; therefore, we only compute a lower bound

in each slice, e.g. as discussed in Section 6.2.

Although any column partition of A can be used for relaxation, the usefulness of

the deduced lower bound greatly depends on the choice of the column partition. In our

numerical experience, the following blocking procedure gives useful results on certain

problem instances. We walk along the upper envelope of the Hessenberg form: We

always step either to the right or downwards, and we always move as long as we can

before having to change the direction. We partition the matrix both horizontally and

vertically whenever we are about to step more than one to the right. In other words:

We partition the ordered matrix right before those places where non-zero cost row
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eliminations happen. This gives the partition shown in Figure 4. This partitioning

Figure 4: Partitioning the Hessenberg form at the places where variables had to be guessed.

technique proved to be useful for the problem shown on the left of Figure 4, whereas it

does not produce useful lower bounds for the problem shown on the right of Figure 4.

The pattern on the left would be a very challenging pattern for the algorithm without

this lower bounding procedure; however, the algorithm proves optimality immediately

on the root node with this column slice relaxation.

7. Computational results

The computations were carried out with the following hardware and software con-

figuration. Processor: Intel(R) Core(TM) i5-3320M CPU at 2.60GHz; operating sys-

tem: Ubuntu 14.04.3 LTS with 3.13.0-67-generic kernel; the state-of-the-art integer

programming solver Gurobi [26] was called through its API from Python 2.7.6.; the

graph library NetworkX [27] 1.9.1 was used.

7.1. Checking correctness with brute-force and randomized testing

The algorithms proposed in Sections 4 and 6 were first cross-checked as follows.

All bipartite graphs with bipartite node set of cardinality n = 1 . . . 6 were generated

with nauty [39]. The cost of the optimal tearing was computed for each graph with

both algorithms, then cross-checked for equality. A similar cross-checking was carried

out with random bipartite graphs of random size (bipartite node sets of cardinality
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7 . . . 30) and varying sparsity, generated with networkx [8, 27]. The algorithms agreed

in all tested cases.

7.2. Ordering the steady-state model of a distillation column

The bipartite graph corresponding to the steady-state model equations of the distil-

lation column of [32] (with N = 50 stages) has 1350 nodes in each bipartite node set,

3419 edges out of which 2902 are considered as feasible assignments. The undirected

graph has more the 107 simple cycles (possibly several orders of magnitude more);

enumerating all of them is not tractable in reasonable time. The algorithm of Section 4

has nevertheless no difficulty finding and proving the optimal ordering in 2.5 seconds.

The optimal tearing has cost 53 and the final cycle matrix had 285 rows when the al-

gorithm terminated. As this example shows, size is not an appropriate measure of the

difficulty.

7.3. Performance on the COCONUT Benchmark

The need for highly structured matrices. It is not tractable to perform a brute-force

search for matrices that trigger poor performance: The search space is already too

large for n = 7. The randomized tests revealed that the integer programming approach

of Section 4 can become impractical (too slow) if the graph is dense and the cardinality

of at least one of the two bipartite node sets exceeds 12. See also Section 4.3 where

tests with full graphs were carried out. However, apart from this, even the randomized

tests did not prove to be useful for finding matrices that lead to poor performance of

the algorithms. Hand-crafted, highly structured matrices, such as the one on the right

of Figure 4, cause significantly worse performance in the custom branch and bound

algorithm than any of the 10 000 randomly generated matrices of the same size.

In order to find highly structured sparsity patterns that are difficult to order opti-

mally, a series of experiments were carried out with the COCONUT Benchmark [43],

a collection of test problems. Since the present paper focuses on systems of equations,

and the COCONUT Benchmark consists of optimization problems, compromises had

to be made. It will be discussed in the corresponding paragraphs how an appropriate

subset of the COCONUT Benchmark was selected.
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Initial row order: running the algorithm 12 times. It has been observed with highly

structured matrices that changing the initial order of the rows of the input matrix can

lead to significant variation in performance. To avoid such biases, each matrix has been

ordered 12 times in our tests: Each matrix was ordered starting with the original row

order (1.), then with the reverse of the original row order (2.), and with 10 random row

permutations (3–12). We consider a problem solved if the custom branch and bound

algorithm can prove optimality in 10 seconds in all 12 cases; we consider the tearing

suboptimal otherwise. It is important to emphasize that even if the algorithm fails to

prove optimality, it delivers a reasonable ordering together with a rigorous lower bound

on the cost of the optimal tearing. We now describe the experiments in details.

Ordering the Jacobian of the equality constraints. A subset of the COCONUT Bench-

mark was selected in this experiment, consisting of 316 problems, where (a) the prob-

lems do not have any inequality constraints, (b) the problems have at least 8 equality

constraints, (c) the Jacobian of the constraints is not full. The rationale for these re-

quirements is as follows. Extending the proposed method to inequality constraints will

be the subject of another paper; therefore, we excluded all problems having inequal-

ities. The reason for the size requirement (b) is that below this size, one can easily

enumerate and evaluate all the possibilities in a brute-force fashion. Adding these

problems to the performance test does not add any value since neither of the proposed

algorithms have any difficulty solving them. As for requirement (c), the proposed cus-

tom branch and bound algorithm solves the case of the full matrix immediately on the

root node; moreover, there is nothing to be gained with tearing if the Jacobian is full.

The results are summarized in Table 1; the corresponding subset of the COCONUT

Benchmark and the Python source code for reproducing the computations are available

at [2].

Ordering the Jacobian of the first-order optimality conditions. Solving the first-order

optimality conditions involves solving a system of equations [40, Ch. 12.3]. In this

experiment, the structural sparsity pattern of this system was ordered:

K =

 H JT

J I

 , (21)
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Table 1: Five-number summary of the problem size distributions when ordering the Jacobian of the equality
constraints with a time-limit of 10 seconds. Optimal means that the branch and bound algorithm of Section 6
could prove optimality of the tearing found in all 12 runs; the result is considered suboptimal otherwise. See
the text for details.

Number of rows
min lower quartile median upper quartile max count

All problems 8 19 160 2000 14000 316
Optimal 8 11 55 990 13800 225
Suboptimal 25 237 1024 3375 14000 91

where H ∈ Rn×n is the Lagrangian Hessian, and J ∈ Rm×n is the Jacobian of the equality

constraints. Note that K is symmetric but neither of the algorithms exploit it.

Similarly to the previous tests, a subset of the COCONUT Benchmark was selected

such that (a) the problems do not have any inequality constraints, (b) the corresponding

K has at least 8 rows (and therefore at least 8 columns), (c) neither H nor J is full, (d) H

is not empty, (e) K has full structural rank. There are 376 such problems. The results

are summarized in Table 2; the corresponding subset of the COCONUT Benchmark

and the Python source code for reproducing the computations are available at [2].

Table 2: Five-number summary of the problem size distributions when ordering the Jacobian of the first-
order optimality conditions (see Equation (21)) with a time-limit of 10 seconds. Optimal means that the
branch and bound algorithm of Section 6 could prove optimality of the tearing found in all 12 runs; the result
is considered suboptimal otherwise. See the text for details.

Number of rows of K
min lower quartile median upper quartile max count

All problems 8 18 176 2509 33997 376
Optimal 8 12 18 29 30002 183
Suboptimal 29 351 2048 10399 33997 193

8. Conclusions

Two exact algorithms for tearing were proposed in the present paper: (i) an algo-

rithm based on integer programming, and (ii) a custom branch and bound algorithm.

The integer programming based approach has no difficulty finding and proving the opti-
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mal ordering of the steady-state model equations of the distillation column of [32] with

N = 50 stages corresponding to a matrix with 1350 rows and 1350 columns (Sec. 7.2).

Despite this success, the integer programming approach tends to be impractical for

dense matrices if the number of rows exceeds 12. The cause of the inefficiency is per-

mutation symmetry: Given a Hessenberg form that corresponds to a feasible solution

of the integer program (14), there are typically many row permutations that, after an

appropriate column permutation, realize the same upper envelope, but the cost only

depends on the upper envelope. One could dynamically add further constraints to the

integer program (14) to break this permutation symmetry (similarly to how the cycle

matrix is extended). However, we decided to follow another approach to mitigate this

issue.

While the integer programming approach solves the problem of tearing indirectly

(the solution of (14) only gives a bipartite matching), the custom branch and bound

algorithm tackles tearing by constructing the Hessenberg form directly. This more

natural formulation and the full control over the branch and bound search facilitates

improvements such as organizing the search (best-first and depth-first search), better

relaxations that yield better lower bounds (Sections 6.2 and 6.3), avoiding repeated

work by memoization (keeping track of the explored submatrices), exploiting indepen-

dent subproblems (the bipartite graph becoming disconnected), implementing custom

exclusion rules (the back-track rule of [31]), etc. Based on the performance on the

COCONUT Benchmark, see Section 7.3, we consider the proposed branch and bound

algorithm practical for the purposes of global optimization [5–7], and in cases where

systems with the same sparsity pattern are solved repeatedly and the time spent on

tearing pays off. Even if the algorithm fails to prove optimality within the user-defined

time limit, it delivers a reasonable ordering together with a rigorous lower bound on

the cost of the optimal tearing.

Future work. The proposed branch and bound algorithm can probably be improved

further with a more sophisticated implementation. Examples include the followings.

Extending the two-sided algorithm of Fletcher & Hall [24], and putting it into a

branch and bound context would most likely lead to significant improvements both in
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speed and robustness. The two-sided algorithm could also be used to improve the lower

bound. Another example for improvements is a simplifier that transforms the problem

into an equivalent problem that is easier to solve. The branch and bound algorithm of

Section 6 does not have any simplifier. Simplifications are, e.g., removing full rows

and full columns, removing duplicate rows and duplicate columns (duplicate: have the

same sparsity pattern), removing dominated rows and columns, etc. After solving the

simplified problem, one then has to reconstruct the solution to the original problem.

These simplifications, together with the exclusion rule of [31], enforce partial order

among the rows, and therefore attenuate the harmful effects of permutation symmetry.

While analyzing the sparsity patterns where the proposed method failed to prove

optimality in 10 seconds, it become obvious that a robust implementation also needs

strong global information derived from properties of the entire graph. The details of

how such global information can be derived and used are another subject for future

research. In any case, patterns like the one on the right of Figure 4, which currently

triggers poor performance as the size is increased, should be solved immediately on the

root node if global information is used.

As discussed in [4], the current objective of tearing has issues. Future research

should target better objective functions. An appealing candidate is to decompose the

problem into smaller subproblems while minimizing the largest subproblem size [46].

Finally, independently of all the prospective research directions listed so far, improving

the currently very conservative method of finding feasible assignments (c.f. Section 2)

would give more freedom for any future tearing algorithm, hence it would lead to

potentially better orderings.
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Appendix A The upper envelope and its relation to the row and column counts

In a square lower Hessenberg form, the first nonzero entries of the columns form

the upper envelope. We say that we walk the envelope, when we walk from the top

left corner to the bottom right corner along the (upper) envelope as follows: We always

step either to the right or downwards, and we always move as long as we can before

having to change the direction. The row count ri is the number of steps we make to the

right on the top of row i. Now we walk the envelope in reverse, that is, from the bottom

right corner to the top left corner, then the column count c j is the number of steps that

we make upwards immediately before column j. See also Figure 5.

2

2

1

3

2

1

2

1

3 2 1 2 2 1 2 1

Figure 5: Left: Walking the upper envelope from the top left corner to the bottom right corner gives the row
counts. Right: Walking from the bottom right corner to the top left corner gives the column counts.

Appendix B Lower bound on the minimum cost ordering

For the full rank matrix A ∈ Rn×n we derive the following inequality:

z∗ ≥ min
j

c j − 1, where j ∈ column indices of A; (22)

z∗ denotes the optimal cost ordering of A to lower Hessenberg form, and the cost de-

fined as in Section 6; c j is the column count of column j, see Section 5. Furthermore,

we define x+ as

x+ = max(0, x).
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Since A is a square matrix, we have∑
i

ri =
∑

j

c j = n, (23)

see also Appendix A.

With these notations, the cost z of a given permutation to lower Hessenberg form is

z =
∑

i

(ri − 1)+ (24)

according to our definition. Since

(ri − 1)+ ≥ ri − 1 (25)

it follows that

z =
∑

i

(ri − 1)+ ≥

∑
i

(ri − 1)

+

=

∑
i

ri

 − n)

+

. (26)

From (23) we have ∑
i

ri

 − n)

+

=


∑

j

c j

 − n)

+

. (27)

Let

c = min
j

c j, (28)

and with c we can continue as follows:
∑

j

c j

 − n)

+

≥

[
n
(
min

j
c j

)
− n

]+

= (nc − n)+ = n(c − 1)+ ≥ c − 1. (29)

To summarize (24)–(29):

z ≥ c − 1 = min
j

c j − 1; (30)

that is, we have proved (22).
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