Chapter 3

Towards a Self-reflective, Context-aware Semantic
Representation of Mathematical Specifications

Peter Schodl and Arnold Neumaier and Kevin Kofler and Feremmn&s and Hermann Schichl

Abstract We discuss a framework for the representation and proags$§imathematics developed within
and for the MOSMATH project. The MOSMATH project aims to create a software system that is able
to translate optimization problems from an almost natumablage to the algebraic modeling language
AMPL. As part of a greater vision (the FMathL project), thiarhework is designed both to serve the
optimization-oriented MSMATH project, and to provide a basis for the much more general RMat
project.

We introduce the semantic memory, a data structure to repragmantic information, a type system to
define and assign types to data, and the semantic virtualinea¢BVM), a low level, Turing-complete
programming system that processes data represented iarttamsc memory.

Two features that set our approach apart from other framesnane the possibility to reflect every major
part of the system within the system itself, and the emplasibe context-awareness of mathematics.
Arguments are given why this framework appears to be weteduor the representation and processing
of arbitrary mathematics. It is discussed which matherahtiontent the framework is currently able to
represent and interface.

Acknowledgments.

Support by the Austrian Science Fund (FWF) under contracteuri®20631 is gratefully acknowledged.

3.1 The MOSMATH project

The project “a modeling system for mathematics”dBIMATH), currently carried out at the University
of Vienna, aims to create a modeling system for the spedificaif models for the numerical work in
optimization in a form that is natural for the working mattegivian. The specified model is represented

Peter Schodl
Fakulét fur Mathematik, Universét Wien, Nordbergstr. 15, A-1090 Wien, Austria, e-mail: psrodl@univie.ac.at

Arnold Neumaier
Fakultt fur Mathematik, Universit Wien, Nordbergstr. 15, A-1090 Wien, Austria, e-mail: arnodtimaier@univie.ac.at

Kevin Kofler
Fakultt fur Mathematik, Universét Wien, Nordbergstr. 15, A-1090 Wien, Austria, e-mail: kekirfler@chello.at

Ferenc Domes
Fakultt fur Mathematik, Universit Wien, Nordbergstr. 15, A-1090 Wien, Austria, e-mail: ferdomes@univie.ac.at

Hermann Schichl
Fakultt fur Mathematik, Universét Wien, Nordbergstr. 15, A-1090 Wien, Austria, e-mail: hermsacimchl@univie.ac.at

17

18 Peter Schodl and Arnold Neumaier and Kevin Kofler and FePemoes and Hermann Schichl

and processed inside a framework and can then be commuahicateimerical solvers or other systems.
While the input format is a controlled natural language (jiket Naproche [6] and MathNat [9], but with a
different target), it is designed to be as expressive andgralds currently feasible. This paper summarizes
the work done in our group, with emphasis on the content oPthie thesis of the first author.

The user benefits from this input format in multiple ways: Thest obvious advantage is that a user is
not forced to learn an algebraic modeling language and carhesusual natural mathematical language,
which is learned and practiced by every mathematician, coenscientist, physicist, and engineer.

In addition, this kind of specification of a model is the leasbr prone, and the most natural way to com-
municate a model. Once represented in the framework, nrilbiptputs in different modeling languages
(or even descriptions in different natural languages) @aowt mean extra work for the user if appropriate
transformation modules are available.

The MOSMATH project makes use of or connects to several already existiftggare systems:

IATEX: Being the de facto standard in the mathematical commuoitglecades, the syntax of the input
will be a subset ofATEX.

Markup languages: Texts written in markup languages likelXdve highly structured and easily ma-
chine readable, e.g., XML employs a tree structure repteden text form. We make use of the tool
LaTeXML [33] to produce an XML document from &TEX input, which can then be translated into
records in our data structure.

Algebraic modeling languages: To be able to access a widetyaf solvers, the algebraic modeling
language AMPL [7] is used the primary target language. Orntb@®feasons for this choice is existing
software that converts AMPL to other modeling languages.

The Grammatical Framework [25]: A programming language rfartilingual grammar applications,
which allows us to produce grammatically correct senteircesultiple languages.

Naproche [6]: An interface from a controlled natural langeido proof checking software, which can be
used to interface proof checkers.

TPTP [34]: The library “Thousands of problems for theorerovers” provides facilities to interface
interactive theorem provers.

The thesis of Peter@&10oDL [26] will comprise the main topics of this paper in greatgori and detail.

3.2 Vision: The FMathL project

The MOSMATH project is embedded into a far more ambitious long-ternowisi the FMathL project,
described in the extensive FMathL web Siteor a summary, see [23]).

While the MOSMATH project creates an interface for optimization problemsnigdated in almost natural
mathematical language, the vision of the FMathL projectnisaatomatic general purpose mathematical
research system that combines the indefatigability, @aoyuand speed of a computer with the ability to
interact at the level of a good mathematics student. Fornoalats would be specified in FMathL close to
how they would be communicated informally when describimgnt in a lecture or paper: with functions,
sets, operators, measures, quantifiers, tables, casesttah loops, indices, diagrams, etc.

FMathL aims at providing mathematical content and proofises as easily as Google provides web
services, Matlab provides numerical services, and Mattieenar Maple provide symbolic services. A
mathematical assistant based on the FMathL framework dhiamibble to solve standard exercises, intel-
ligently search a universal database of mathematical ledyd, check the represented mathematics for
correctness, and aid the author in routine mathematicat.\ildre only extra work the user would have to
do is during parse time of the written document, when possihibiguities have to be resolved.

Important planned features of FMathL include the following

1 The FMathL web site is available http://www.mat.univie.ac.at/ ~neum/FMathL.html

3 Towards a Self-reflective, Context-aware Semantic Reptatsem of Mathematical Specifications 19

e It has both a “workbench” character where people store theik locally, as well as a “wiki” character
where work can be shared worldwide.

e It supportsfull formalization, but does ndbrceit upon the user.

e |tincorporates techniques from artificial intelligence.

e |t communicates with the user in a natural way.

e The language is extensible, notions can be defined as usdialitithen be understood.
e To deal with ambiguities, the system makes use of contektf@mation.

By complementing existing approaches to mathematical keaiye management, the FMathL project will
contribute towards the development of:

e The QED project [3]: FMathL would come with a database of basathematics, preferably completely
formalized. In addition, the natural interface would maketcibuting to the QED project easier.

e A universal mathematical database: envisioned, e.g.NDREWS[1] and partially realized in theorem
provers with a big library (such as MIZAR [35]), where theylyogerve a single purpose.

e An assistant in the sense of ADMSH [36] that saves the researcher’s time and takes routineheif t
shoulders —in the classroom, in research, and in industry.

e A checker not only for grammar but also for the semanticaleminess of mathematical text.
e Automatic translation of mathematical content into vasioatural languages.

While FMathL reaches far beyond & MATH, we expect that the framework of thed®MATH project
will serve as a first step towards the FMathL project. The FNatroject will also benefit from MSMATH
in the sense that once & MATH is integrated into FMathL, it will make FMathL usable in thestricted
domain of optimization long before the full capabilitieskiflathL are reached.

3.3 Data structure: The semantic memory

The semantic memory is a framework designed for the reptasen of arbitrary mathematical content,
based on a computer-oriented setting of formal concepysisdlGANTER & WILLE [8]). In particular, our
goal was to be able to represent mathematical expressi@ibematical natural language, and grammars
in a natural way in the semantic memory. (We are aware ofiegisanguages and software systems to
represent mathematics, but found them inadequate for @ls geee [14], [15].)

We assume an unrestricted setalfjects . Objects may, but need not hamames i.e., alphanumeric
strings not beginning with a digit, by which the user referaih objectEmpty is the name of an object.
Furthermore objects may, but need not haxternal values, i.e., data of arbitrary form, associated with
the object, but stored outside the semantic memory.

Variable objects are variables in the usual sense, ranging over the set oftsbjaut since alphanumeric
strings may refer to objects, we refer to variable objecsastring beginning with a hasH)(followed by
some alphanumeric string. Usually, we will use suggestitiags for variables, e.g., for an object that is
intended to be a handle, we ugeandle or#h.

A semantic mappingassigns to two objecth and#f a unique objecte which isEmpty if #h or #f is
Empty. We call an equation of the forh.#f=#e with #h, #f , and#e notEmpty a semantic unit or
sem. We call#h thehandle, #f thefield, and#e theentry of the sem.

The semantic unit is the smallest piece of information ingamantic mapping. It is intended to be both
low level and natural to the human. Depending on the contleatintuitive meaning of a se#h.#f=#e
often is “the#f of #h is#e”, e.g.,formula27.label=CauchySchwarz would intuitively mean that
thelabel of formula27 is CauchySchwarz . A sem can also express a unary predicBte) could

be expressed & x=True . Since sems are “readable” in this intuitive sense, maatmg information in

20 Peter Schodl and Arnold Neumaier and Kevin Kofler and FePemoes and Hermann Schichl

the SM is easier and more transparent than in other low lgrgtéms like a Turing machine or a register
machine.

The SM codifies the foundations of formal concept analysia way suitable for automatic storage and
processing of complex records. A statement of the fgim (interpreted as “the objecthas the attribute
m") can be represented as a sgmm=Present . The semantic matrix precisely matchasilti valued
contexts(GANTER & WILLE [8, p.36]) wherel is a ternary relation ant{g,m,w) is interpreted as “the
attributem of objectg is w", with the propertyl (g, m,w;) andl (g, m,w,) thenw; = w,. This corresponds
to the seng.m=w, since the propertg.m=wl andg.m=w2 thenwl=w2follows from the uniqueness of
the entry of a semantic mapping.

The semantic memory is also representable within the fraorleaf the semantic web [17]. In particular,
we have implemented it in RDF [18].

For graphical illustration of a semantic mapping, we intetg sem#a.#b=#c as an edge with labelb
from nodetta to nodettc of a directed labeled graph, called@mantic graph In semantic graphs, named
objects are represented by their names, and objects thanlbavame will be represented by automatically
generated strings preceded by a dollar si§n n a semantic graph, objects that have an external vatie ar
printed as a box containing that value. For better readgbile use dashed edges for edges labeled with
type, since these sems have importance for typing.

A record with handle#frec is the set of sem#gh.#f=e reachable fron#rec in the sense that there exist
objects#f 1,... #f nsuch thatfrec.#f 1. ... #f n=#h.In contrast to records in programming languages
such as Pascal, records in a SM may have cycles since backrreds are allowed; this is necessary to
encode grammars in a natural way.

For example, the expression
AxXx+1

may be represented by the record with harg§fié72 shown in Figure 3.1. Further examples can be found
in Appendix 3.9, see also [28].

Semantic mappings are used to store mathematics. In ordesrtoon data represented, the framework
needs to be dynamic. The data structure of the semantic mgpipat changes over time is called the
semantic memory(SM).

While not identical, our representation shares featurds satne existing representation frameworks:

e The need to represent (mathematical) natural language plesesquirement of “structure sharing”, i.e.,
aphrase, an expression etc. only has to be represented bileétvwnay occur multiple times in the text.
This suggests a graph structure rather than a tree struatif&cilitated in the knowledge representation
system SNePS [32]. SNePS also makes use of a labeled grdpin the other hand uses “structured
variables”, storing quantification and constraints togethith the variable. This is not desirable when
representing mathematics since structured variables ih&leed to represent the difference between,
e.g.,

YXYY(P(X,y) = G(X)) and WX((VyP(x,y)) = G(X)).

e The record structure where a complex record is built up framlzining more elemental records is
similar to a parse tree, especially to a parse tree for a digpey grammar [5]. However, a parse tree is
always a tree and does not allow structure sharing.

Context dependence.

Even on the lowest level of information representation,texindependence is already incorporated in a
natural way.

The same objecto may be reachable via different paths, and while it is the sabject, the access is
different and so can be its interpretation. Therefore thk paw an object is accessed contains information
about the context, and about the usage of the object. Thé@ualiinformation contained in the path can

3 Towards a Self-reflective, Context-aware Semantic Reptatsem of Mathematical Specifications 21

$2472

7
7

7 type/formula

7
Lambda $2466
s
s
7/ type inkedlist inds variable
s
s
SignedSum $2468
,/%n / \e\ntry
$2470 InvisPlusSign type $2452
~ < /)
sign entry ~ Lype / ’cype name
- 4
PlusSign 1 SignedSumLink Var X
I I
|type ltype
Integer String

Fig. 3.1 A record representing an expression

be used to account for some of the contextual informatioraiinal languages: while natural languages
are to a large extent context fre&JRAFSKY et al. [11]), the semantics is also based on the context.

A logic of context compatible with the present frameworkiisgented in [22].

3.4 Processing: The semantic virtual machine

We define a virtual machine that operates on the SM callesdtrantic virtual machine(SVM) to be able

to rigorously argue about processes in the SM, and to be aljeobf properties. This abstract machine
can be implemented in many ways; we currently have impleatiemis in Matlab (using a sparse matrix to
represent the SM) and in C++/Soprano (using RDF).

The semantic memory of the SVM containgpegram to execute, itscontext (i.e., input and output,
corresponding to the tape of an ordinary Turing machine),tha information aboutow control as well.

To enable the processing of more than one program in the samemng each program has its owaore,
i.e., arecord reserved for temporary data. Since the cdine isiost important record for a program we use
thecaret” to abbreviate the reference the core of the program. Heneeeanstcore.a , wherettcore

is the core of the program under consideration.

The most elementary part of the SVM programming languagecmamand. Aprocessis a sequence of
commands, beginning with the commapibcess #proc . Every process ends with a command that
either halts the SVM or calls another process. 3¥iM program is the commangrogram #prog

22 Peter Schodl and Arnold Neumaier and Kevin Kofler and FePemoes and Hermann Schichl

followed by a sequence of processes. The (changing) SVM @mdneurrently executed is called the
focus Each SVM program is completely represented in the SM. Thl8/given a record containing a
program, an object it can use as a core, and can then be started

The SVM has the ability to access the facilities of the phgis@evice it is implemented on. This may
provide the SVM with much better performance for tasks it eaport, and allows the use of trusted
external processors and programs in different programiaimguages.

External values can be copied to the memory of the SVM, andarsgly. This is done by the commands
andout . The information about how to represent the external vaiubeé memory of the SVM is called
the protocol, and is used as an argument for the commandsand out . Our current implementation
includes protocols for representing natural numbers, @XM programs and tapes and transition tables
for Turing machines. There may be an arbitrary number ofquals, as long as the device on which the
SVM is implemented knows how to interpret them.

The commands of the SVM language fall into four groups: Tébledescribes the commands that are
needed to give the program an appropriate structure. TaBledhtains the assignments, i.e., those com-
mands that perform alterations in the SM. If an assignmegtsdo a nonexisting node, an error is pro-
duced. Table 3.3 gives the commands used for flow control, Tabte 3.4 the commands that establish
communication with the physical device, namely call exa¢processes and access external values. For
convenience, some commands also appear in variants tHdtlmsimulated by a sequence of other com-
mands.

In the informal description of commands given hevdLUE(#node) refers to the external value of the
node#node . The effect of each command is formally defined by an opanatisemantics given in [26].

SVM commandgcomment
program #1 [first line of the progran#l
process #1 |first line of the procesgl

start #1 start with proces¢1
Table 3.1 Structuring commands
SVM command comment
“H1=(C#2=="#3) sets#1 toTrue if "#2 ="#3 , else toFalse
“HLH2="#3 assigns#3 to "#1.4#2
“H1CH2="H#3 assigns#3 to "#1.°#2
“#1.#2=const #3 assignst3 to "#1.#2
CH1="#2.#3 assigns#2.#3 to"#1
TH1="H2.7H#3 assigns#2."#3 to"#1
“#1=fields of "#2 assigns the used fields of the reco#@ to "#1.1 , #1.2 ...
“#1l=exist(#2.#3) sets#1 toTrue if #1.#2 exists, else té-alse
“#l=exist("#2."#3) sets'#1 toTrue if "#1."°#2 exists, else téalse
Table 3.2 Assignment commands
SVM command comment
goto #1 sets the focus to the first line of procets
goto "“#1 sets the focus to the first line of procégd

if "#1 goto #2 sets the focus to the first line of proce&xif “#1=True , and to the next line if#1=False
stop ends a program

Table 3.3 Commands for flow control

Details of a (now obsolete) preliminary version of the SVMI(ed there “STM”) are discussed in [24].

As a test case and to show Turing completeness, we programariadng machine in SVM. The SVM
program that simulates a Turing machine contains 71 comswmdican be found in [24]. Since an ordinary

3 Towards a Self-reflective, Context-aware Semantic Repiatiem of Mathematical Specifications 23

SVM command comment

external #1("#2) starts execution of the external procesébrwith context #2

external "#1("#2) starts execution of the external processtr with context™#2

in "#1 as #2 importsVALUE("#1) into a record with handl&1 using protoco#2
in "#1 as "#2 importsVALUE("#1) into a record with handl&1 using protocol#2
out “#1 as #2 exports the record with handlgl into VALUE("#1) using protoco#2
out “#1 as "#2 exports the record with handlgl into VALUE("#1) using protocol#2

Table 3.4 Commands for external communication

Turing machine has no external storage and it is not spedifi@dan external processor should behave, it
is impossible to give an ordinary Turing machine that sirradan arbitrary SVM program.

3.5 Representation: The type system

An essential step that brings formal structure into the sgimenemory is the introduction @ypes In order

to represent mathematics specified in a controlled natargjuage, a concept of typing is needed that is
more general than traditional type systems. It must covercaeck for well-formedness of both structured
records as commonly used in programming languages andws&sduilt from linguistic grammars. In
particular each grammatical category must be represengasbd type, in order to provide a good basis for
the semantical analysis of mathematical language.

Information in the SM is organized in records. When using amcor passing it to some algorithm, we
need information about the structure of this record. Sine@lanot want to examine the whole graph every
time, we assign types, both to objects and to sems. For datbtiscussion of the concepts and rigorous
definition, see [29], illustrations and examples are givef28].

Types can be defined using plain text documents cajlpd sheets An example of a type sheet can be
found in [30]. Tables 3.5 and 3.6 gives an overview of the afmes in a type sheet and their usage. For
many tasks, giving an (annotated) type sheet defines thexsghan arbitrary construction in the SM, and
in many cases it even suffices to define the semantics.

operator |arguments [usage

nothing none defines an atomic type

union list of namegdefines a union

atomic list of namesdefines a union of atomic types
complete |none 5fcloses aunion

Table 3.5 Keywords in declarations of unions and atomics

Our form of type inheritance adds the specifications fromyastiag declared typ#T to a newly defined
declared typett . In this case, we calffT the template of #t . All the requirements fron#T apply to

#t , and additionally the requirements f8t . The difference to the inheritance in typical programming
languages is that:

e the declared type and the template may pose requiremenite @ame constituent,

e inheritance from multiple declared types is possible, bate is always only at most one template of a
declared type, and

e itis stored that the template 8D is #T.

The type is always assigned with respect to a specified tygiersy Atype systemspecifies theategories
belonging to it, and their properties. The objéapty is never a category. In every type system, the set of
categories is ordered by an irreflexive and transitive peotider relatior<. If #C1<#C2, we say that##C1

24 Peter Schodl and Arnold Neumaier and Kevin Kofler and FePemoes and Hermann Schichl

operator arguments [usage

allof list of equationsrestricts entry of certain fields
oneOf list of equationsrestricts entry of certain fields
someOf list of equationsrestricts entry of certain fields
optional list of equationsrestricts entry of certain fields
fixed list of equationsrestricts entry of certain fields
only list of equationsrestricts entry of certain fields
someOfType |list of equationsgrestricts entry of certain fields
itself list of names |restricts entry of certain fields
array list of equationsrestricts entry of certain fields
index list of equationsrequires to index each instarjce
template one name assigns a template
nothingElse none forbids further fields

Table 3.6 Keywords in declarations of proper types

contains#C2 in this type system. We writg for the associated reflexive partial order, w81 <#C2 iff
#C1<#C2 or #C1=#C2.

A category is called &pe if it is minimal in the ordering<, and aunion otherwise. Types come in three
forms: thedefault type Object , atomic types andproper types. All categories excepDbject are
declared in the record whose handle is the type system. €barda can be created by means of a type
sheet, a piece of text containing the specifications.

If #a.#f= Empty for every field#f , then#a is anatomic object Atomic objects are used as objects with
a fixed semantic meaning. Objects of a proper type always adigdd type whose entry is this type.
Proper types are used to pose requirements on the otheiteent of the objects of this type.

We define theype of object#obj :

If #obj.type is a declared type, then the type#aibj is #obj.type

If #obj.type=Empty = and#obj is an atomic type, then the type#bbj is#obj .

Otherwise, the type afobj is Object .

Hence every object has a type. Determining the type of arcobes complexity &(1).

An object#obj matchesa category#C in the type syster#TS if either #t<#C (in the type systerd#TS)
where#t is the type oftobj , or#C=0Object .

The definition of well-typedness of a record is more intecand will only be sketched here.

A pair (#o #f) of two objects is called gosition. A type sheet poses requirements on certain positions,
calleddeclared positions Roughly speaking, if for all declared positioo(#f) in a record, the object
#o.#f matches the required type, then the recordédi-typed, andill-typed otherwise. Whether or not
the record is well-typed can be checked in time linear in the sf the record.

We represent type declarations and unions as records,én thrat a type checker, working on the semantic
memory, has all the information it needs in the semantic migraad does not need any external type
sheet. Thus we store a type declaration as a well-typeddénathe SM. A type declaratio#TD has
#TD.type=Type

Typing in FMathL and typing in XML bear significant similads, most notably with DTD and Relax NG.
(For a description of DTD, Relax NG and other XML schemas,lsee & CHuU [16].) Some of the oper-
ators in type declarations have a direct correspondent¢eilabguage of DTD and the RelaxNG compact
syntax. E.g.? in DTD corresponds toptional , the pipg corresponds toneOf and parenthes€s)
correspond tallOf . A valid XML document corresponds to a well-typed recordwdwer, there are
also important differences, since cycles are an importatufe of our framework that enables an efficient
representation of concrete and abstract grammars, while ddtuments are always organized in trees.

3 Towards a Self-reflective, Context-aware Semantic Reptatsem of Mathematical Specifications 25

3.6 Higher level processing: ©NCISE

The SVM is merely intended for definition, checkability amvllevel implementation. After some ex-
perience with SVM programs we designed a programming enwismt that is intended for user-friendly
data entry and manipulation, algorithm design and execuod more general for interaction with the
semantic memory. Loosely speaking, it is an integratedldpweent environment (IDE) for mathematics
in the semantic memory. This environment is calledNCISE

A Java implementation of @\CISEis being written by Ferenc ®MES and publication will be announced

at the FMathL web sife It consists of a versatile GUI (graphical user interfa¢e)t tenables the user to

view, create and manipulate sems and records in a naturalAmdgterpreter for a Turing complete subset
of ConciIsewritten in SVM only requires 330 lines of SVM code.

Algorithms can be programmed and executed @NCISE, but algorithms are represented as records in the
SM, making @®NCISEa text-free programming environment. Nevertheless, fbudging and alternative
coding there are text views ondBICISEprograms.

ConcisE has configurable display and text completion, and will suppaes, function calls, different
kinds of variables (global, local, static and persistdotps over all fields of an object, multiple users and
multiple languages.

ConNcisewill also incorporate a parser capable of dealing with dyicalty changing grammars. This is
necessary because in many specifications in ordinary matieahlanguage, the syntax (and hence the
grammar) is partially defined through the context. In patéc definitions give not only the semantics of
the term being defined, but implicitly also its grammaticaidtion.

3.7 Mathematical modeling

The semantic memory is designed for representing and miogesiathematical content. While generality
of the representation was one important goal, another osg¢avae able to run algorithms on the records
in a transparent way.

To test the practicability of the present framework, matagocal content from different sources is repre-
sented in the semantic memory:

e A significant fraction of the optimization problems from O Library [2] were represented manually
in the semantic memory. This is the most important applicefior the MOSMATH project. We designed
a natural representation of these optimization probleme@wds, in order to be able to run algorithms
on these records. The representation is defined in a typé [@@eThere are algorithms that produce
IATEX from formulas and whole optimization problems. Anothegaalthm enriches the representation
of optimization problems in the semantic memory such thaA®HPL document specifying a valid,
numerically solvable model can be produced.

o Different types of mathematical formulas were extractennfiecture notes about basic analysis and
linear algebra [20]. These were manually fed into the seimanémory to assure generality of the
representation of formulas [28]. Partial work on the gramofdhe text part of the lecture notes can be
found in [27]. Some of the expressions from the lecture nategpresented in Section 3.9.

e An interface was written to automatically import formulasrh the TPTP library [34] (“Thousands of
Problems for Theorem Provers”, a library of formulas fordiesn provers, taken from different branches
of mathematics).

e An interface was written to automatically import formalizproofs written in the controlled natural
language of Naproche [6] (“Natural Language Proof Checging

2 http://www.mat.univie.ac.at/ ~neum/FMathL.html

26 Peter Schodl and Arnold Neumaier and Kevin Kofler and FePemoes and Hermann Schichl

Grammatical issues in the translation from mathematicaguage into SM documents, and from SM
records to natural language, including a dynamic parsepdoallel multiple context free grammars (PM-
CFGs) and an interface to the “Grammatical Framework” (&5] pre the subject of the PhD thesis by
Kevin KOFLER[13]. This parser will handle updates to the grammar, a featecessary to handle mathe-
matical definitions that introduce new syntax.

Example: Knapsack problem

The multidimensional knapsack problem is a standard opétiuin problem, and also contained in the
OR-Library [2]. A possible natural formulation is:

Let the integeN be the number of contracts, let the intedérbe the number of
budgets. Let; be the contract volume of projegtfor j =1,....N, let A ; be the
estimated cost of budgefor projectj fori=1,....Mandj=1,....N, and letB; be
the available amount of budgefori =1,...,M. Forj=1,...,N, letx; = 1 if project
j is selected, and le¢; = O otherwise.
Problem : Given integers\ andM, vectorc, matrix A and vectorB, find the binary
vectorx such that \
D CiX;
=1

is maximal under the constrai@!‘-\‘ilAi.j Xj<Bjfori=1,...,M.

When represented in the semantic memory, a transformatiaule@roduces aAI[pX-document that is
identical to the model description above, except for grativaberrors. Another transformation module
produces from the same record in the semantic matrix theviolg AMPL model.

param N ;

param M ;

param c{j in 1.N } ;

param A{i in 1.M , j in 1..N j

param B{i in 1.M } ;
var x {j in 1..N } binary ;

maximize target : sum {j in 1.N }(c[]] * X[JD);
subject to constraint 3014 {i in 1.M } : sum{j in
1.N }AL ,]] * X[i]) <= B,

3.8 Reflection

In the most general sense, reflection is the representatioars of a system within itself.

To test the power of our setting, we tried to achieve a muatieflection of various features on levels as
low as possible:

e For the SVM, reflection is giving an SVM program that can siatelevery other SVM program in the
same way a universal Turing machine simulates an ordinarpgdmachine. We call this program the
universal semantic virtual machine(USVM). The context of the USVM contains the SVM program
P and the context d®. When the USVM has finished, the USVM has produced the samejekamthe
context as? would have produced when called directly. The USVM is a progshort and transparent
enough to be checked by hand. It has only 164 commands; certipgye.g., to the reflective interpreter

3 Towards a Self-reflective, Context-aware Semantic Reptatsem of Mathematical Specifications 27

by JEFFERSON& FRIEDMAN in [10], which has 273 lines and the implementation bg GARTHY [19]

of a Lisp function evaluation in Lisp which has 58 (but veryngalex) commands. The USVM serves
two purposes: it is a reflection of the actions of the SVM comdsa and it gives us a check on many
aspects of the SVM for correctness. Once one has convincegsktirof the correctness of the USVM,
one can make the implementation of the SVM on some physicate@lso trustworthy by checking
empirically (or, in principle, in a formal way) that any SVMqgram executed by the implemented
SVM produces the same output as in the case when the USVMatiesithis program.

e The type definitions are themselves typed, i.e., the cneati@ type sheet that allows to type the rep-
resentation of types in the semantic matrix, which givesype of types. The type sheet for types [31]
has only 40 lines, compared to the RelaxNG schema [4], itbgoa in RelaxNG, which has over 300
lines, or Meta-DSD [12], its analogon in DSD, which has ov@® fines.

e The type system of GNCISE can be formulated as a type sheet, and the typechecker é¢melbe
implemented as a G\NCISEprogram.

e Aninterpreter of the programming language a@fiiciseas an SVM program. This makes a large part of
ConNciseindependent of any specific implementation, since mereysttiM needs to be implemented.

e A definition of the semantics of mathematical concepts,aggnted within the SM.

e An operational semantics for the SVM, i.e., a rigorous dpsion of the action of the SVM in mathe-
matical terms, to be represented later in a reflective fastiothe concept level of GNCISE

e For the envisioned FMathL, reflection is a process to dedh wie distinction between object level
and metalevel which occurs in every foundation of mathersatience also in FMathL. Here reflection
means the process to express the notions of the metalevigjeartsoon the object level, and then formu-
late the relations between these notions as relations batalgiects. The same process of reflection of
the metalevel in the object level; can be repeated as a reflection of leveinto the levelLy, ;. This
way, the metalevel is never fully formalized, but if the reflen stepLy in Ly, 1 can be accomplished
without running into paradoxes or insufficiencies of theglaage, we can be confident of the adequacy
of our foundation. For more details, and for the significaniceeflection for FMathL as a foundation of
mathematics, see [21].

3.9 Examples of expressions

Here we give a few examples for the representation of exjores# the SM as records (see [28] for many
more).

The following table gives some statistics of the examples.

Example# visible symbols# IATpX-characterg? sems
1 14 49 34
2 22 45 53
3 11 92 48

For each example, we give the rendered expression followesdthble containing the sems and external
values in the left column, and the MATLAB construction coded to write the sems into our MATLAB
implementation of the semantic memory in the right columimisTs followed by a semantic graph of the
record.

28 Peter Schodl and Arnold Neumaier and Kevin Kofler and FePemoes and Hermann Schichl

Example 0.

max x®
k=1....,n

\max_{k{=} 1 , \Idots , n H{{x}{Veft(k\right)}}

record

MATLAB construction code

$2488.type=max
$2488.formula=$2476
$2488.binds=$2464
$2488.index=$2486
$2464.type=Var
$2464.name=$2466
$2466.type=String
$2476.type=Index
$2476.formula=$2452
$2476.sup=$2474
$2452.type=Var
$2452.name=$2454
$2454.type=String
$2474.type=Bracket
$2474.entry=$2464
$2486.type=Equal
$2486.lhs=$2464
$2486.rhs=$2478
$2478.type=List
$2478.leftBr=None
$2478.separator=SepKomma
$2478.rightBr=None
$2478.linkedList=$2480
$2480.type=ExpLink
$2480.next=$2482
$2480.entry=$2470
$2470.type=String
$2482.type=ExpLink
$2482.next=$2484
$2482.entry=$2472
$2472.type=String
$2484.type=ExpLink
$2484.entry=$2468
$2468.type=String

VALUE($2454) = x
VALUE($2466) = k
VALUE($2468) = n
VALUE($2470) = 1
VALUE($2472) = \ldots

x=createvar(’x’);

k=createvar(’k’);
listk=create('VarList',{k});
n=createstring('n’);
one=createstring('1’);
dots=createstring(\ldots’);
br=create('Bracket’,k);
in=create('Script’,x,[],br);
komma=createname('SepKomma’);
none=createname(’None’);
Ist=create('List’,{one,dots,n},none,komma,none);
eg=create('Equal’,k,Ist);
ex=create('Max',in,listk,eq);

3 Towards a Self-reflective, Context-aware Semantic Reptatsem of Mathematical Specifications

$2488
-
-
7 type [formula index
r'e
Max $2476 $2486
-
-
7/ type sup inds \type rhs
/
»
Index formula $2474 1lhs Equal $2478
/ Py
-
/type entry 7/ typeéﬂ:}a%ghtla&iiarator linkedldist
| /
v »
$2464 List None SepKomma $2480
~
~
-
ame _ - next ntry
-~
~
~
- $2482
/
/
k / type next \entry 1
T / T
\ ! |
\ | / type $2484 |
\ o /
\ Ly / !
% \type Vg , 7/ type fentry \ldots type
\ Y 7 /
N \ v‘ » / /
N type N ExpLink n / type /
AN AN ,
N N | r,
N N /
~ ~ keype 4
~ ~ / 7
T - - > o Vv »

29

30 Peter Schodl and Arnold Neumaier and Kevin Kofler and FePemoes and Hermann Schichl

Example 1.

vx,.ze X1 f(xy,2)=g(y,x)
\forall x , z \in X : f \left(x , y , z\right) {=} g \left(y , x\rig ht)
record MATLAB construction code

$2508.type=Forall
$2508.formula=$2496
$2508.binds=$2498
$2508.scopedvar=$2506
$2496.type=Equal
$2496.lhs=$2492
$2496.rhs=$2494
$2492.type=0Of
$2492.0operator=$2472
$2492.arguments=$2478
$2472.type=String
$2478.type=Vector
$2478.linkedList=$2480
$2480.type=ExpLink
$2480.next=$2482
$2480.entry=$2452
$2452.type=Var
$2452.name=$2454
$2454.type=String
$2482.type=ExpLink
$2482.next=$2484
$2482.entry=$2464
$2464.type=Var
$2464.name=$2466
$2466.type=String
$2484.type=ExpLink
$2484.entry=$2468
$2468.type=Var
$2468.name=$2470
$2470.type=String
$2494.type=0Of
$2494.0operator=$2474
$2494.arguments=$2486
$2474.type=String
$2486.type=Vector
$2486.linkedList=$2488
$2488.type=ExpLink
$2488.next=$2490
$2488.entry=$2464
$2490.type=ExpLink
$2490.entry=$2452
$2498.type=VarList
$2498.linkedList=$2500
$2500.type=VarLink
$2500.next=$2502
$2500.entry=$2452
$2502.type=VarLink
$2502.entry=$2468
$2506.type=Relation
$2506.lhs=$2498
$2506.rhs=$2476
$2506.relation=In
$2476.type=String
VALUE($2454)
VALUE($2466)
VALUE($2470)
VALUE($2472)
VALUE($2474)
VALUE($2476)

xX@Q =" N< X

x=createvar(’x’);
y=createvar('y’);
z=createvar('z’);
f=createstring(’f’);
g=createstring('g’);
X=createstring('X’);
xyz=create('Vector',{X,y,z});
yx=create('Vector' {y,x});
Ihs=create('Of',f,xyz);
rhs=create('Of’,g,yx);
eq=create(’Equal’,lhs,rhs);
xz = create('VarList',{x,z});
in=createname(’In’);
dummy=create('Dummy’,x);
var=create('Relation’,xz,in,X);
ex=create('Forall’,eq,var,xz);

3 Towards a Self-reflective, Context-aware Semantic Repiatiem of Mathematical Specifications

s
-

-
_ “type

Forall $2496

7

s
rhs , type [lhs

7/
»

$2494 Equal $2492

~
~
operato argumentstype _ 7 type/arguments
7
»

$2486 $2478
s
s
\ type Y 7 type [linkedlist
s
S
Vector $2480
next
~
7
,7 52488 52482
/ 7 e
/ 4 i’
, -
I type next entzy entry \next
s
! / Ve
\ oy /
\ | tvpe $2490 , 7 type $2464 $2484
W / -7
\\
NN Itype/
NP
ExpLink

$2508
formula
scopedvar
inds
operator $2506
lhs frelation
$2498 In
N
N
i\t
\
|)
\ $2500 VarList
| N
| \
\ next \
| \
| \
$2502 Yeype
A |
entry Mtype
N
v
VarLink

t

rhs

ype

Relation

31

32

Example 2.

<(/\ —OX)I I)

\Ieft(\begln{array}{cc} \left(\lambda - x \right) |
\\ \end{array} \right)

record

MATLAB construction code

$2500.type=Matrix
$2500.linkedList=$2502
$2502.type=RowLink
$2502.next=$2504
$2502.entry=$2488
$2488.type=Row
$2488.linkedList=$2490
$2490.type=ExpLink
$2490.next=$2492
$2490.entry=$2482
$2482.type=InvisMult
$2482.linkedList=$2484
$2484.type=ExpLink
$2484.next=$2486
$2484.entry=$2480
$2480.type=Bracket
$2480.entry=$2474
$2474.type=SignedSum
$2474.linkedList=$2476
$2476.type=SignedSumLink
$2476.next=$2478
$2476.entry=$2452
$2476.sign=InvisPlusSign
$2452.type=Var
$2452.name=$2454
$2454 type=String
$2478.type=SignedSumLink
$2478.entry=$2464
$2478.sign=MinusSign
$2464.type=Var
$2464.name=$2466
$2466.type=String
$2486.type=ExpLink
$2486.entry=$2468
$2468.type=String
$2492.type=ExpLink
$2492.entry=$2470
$2470.type=String
$2504.type=RowLink
$2504.entry=$2494
$2494.type=Row

$2494 linkedList=$2496
$2496.type=ExpLink
$2496.next=$2498
$2496.entry=$2472
$2472.type=String
$2498.type=ExpLink
$2498.entry=$2470

VALUE($2454) = \lambda
VALUE($2466) = x
VALUE($2468) = |
VALUE($2470) = +
VALUE($2472) = 0

lambda=createvar(\lambda’);
x=createvar('x’);
id=createstring(’l');
ast=createstring(’ *');
zero=createstring('0’);
iplus=createname('InvisPlusSign’);
minus=createname('MinusSign’);

mi=create('SignedSum’,{{iplus,lambda},{minus,x}});

bra=create('Bracket’,mi);
mult=create(’InvisMult’,{bra,id});
rowl=create('Row’,{mult,ast});
row2=create('Row’,{zero,ast});
ex=create('Matrix’,{row1,row2});

Peter Schodl and Arnold Neumaier and Kevin Kofler and FePemoes and Hermann Schichl

\

3 Towards a Self-reflective, Context-aware Semantic Repiatiem of Mathematical Specifications

$2500
/
/type linkedList
/
4
Matrix $2502
|
next | entry
|
$2504 :type $2488
\ | /
entry \type | / linkedList
R //
$2494 RowLink | Evpe $2490
> /
N
N type / | entry
N / |
N 4
LinkedList Row : $2482
| |
next | kype JinkedList
[!
$2496 bype Tnvismuit $2484
AN I -
N\ | P
entry hext \ | - next ntry
e
\ I /
$2498 type $2492 | / type $2486 $2480
N | /
-~ \ / 7 /
\ AN \ I / // /
0 entry entry \ type \ \ type] / type /entry Itype entry
/
\ N N / - /
\ S - R I VRS v
\ * ExpLink Bracket $2474
\ - ’
| N 7
AN Ve . .
| \ I , type [linkedlist
| \ 7 7/
| \ / »
' [/ SignedSum $2476
| | 1 \
: | : next \
I N\
| | |
[Fype | | InvisPlusSign $2478
N
| | | N
| [type leype sign ntry ~N
| | |
: ' : $2452 MinusSign 52464
|
AN Ve
| | | ,
| | | name \type s type name
AN 7
| | | e »
I | I \lambda Var x
\ \ | A
N _ -
~ \ | /4 - 7
~
~ - \ | , type _ - type
- N v _ -

type \
N \
R |

SignedSumLink

33

34 Peter Schodl and Arnold Neumaier and Kevin Kofler and Felbemmoes and Hermann Schichl
References
1. Andrews, P.: A Universal Automated Information System for Soéeand Technology. In: First Workshop on Challenges

10.
11.

12.

13.
14.

15.
16.
17.
18.

19.
20.

21.

22.

23.

24.

25.
26.

27.

28.

29.

30.

31.

32.

33.

34.

and Novel Applications for Automated Reasoning, pp. 13-18820

. Beasley, J.: OR-Library: Distributing test problems by elmutr mail. Journal of the Operational Research Society

41(11), 1069-1072 (1990)

. Boyer, R., etal.: The QED Manifesto. Automated DeductiohBE 12, 238-251 (1994)
. Clark, J., Murata, M., et al.: Relax NG specification — Comraipecification 3 December 2001. Web document (2001).

http://www.oasis-open.org/committees/relax-ng/spec- 20011203.html

. Covington, M.: A fundamental algorithm for dependencyspay. In: Proceedings of the 39th annual ACM southeast

conference, pp. 95-102. Citeseer (2001)

. Cramer, M., Fisseni, B., Koepke, P.iiKlwein, D., Schoder, B., Veldman, J.: The Naproche Project Controlled Natura

Language Proof Checking of Mathematical Texts. ControlletiNé Language pp. 170-186 (2010)

. Fourer, R., Gay, D., Kernighan, B.: A modeling languagenfathematical programming. Management Scie3&&),

519-554 (1990)

. Ganter, B., Wille, R.: Formale Begriffsanalyse: Mathemags@rundlagen. Springer-Verlag Berlin Heidelberg New

York (1996)

. Humayoun, M., Raffalli, C.: MathNat — Mathematical Text irCantrolled Natural Language. Special issue: Natural

Language Processing and its Applications p. 293 (2010)

Jefferson, S., Friedman, D.: A simple reflective interpretE8P and symbolic computatid®(2), 181-202 (1996)
Jurafsky, D., Martin, J., Kehler, A., van der Linden, K., WaNX.: Speech and language processing: An introduction to
natural language processing, computational linguistics, aretbpecognition, vol. 163. MIT Press (2000)

Klarlund, N., Moeller, A., I., S.M.: Meta-DSD. Web docunt§1999).

http://www.brics.dk/DSD/metadsd.html

Kofler, K.: A Dynamic Generalized Parser for Common Matherabtianguage. PhD thesis (2011). In preparation

Kofler, K., Schodl, P., Neumaier, A.. Limitations in CorttetMathML. Technical report (2009).
http://www.mat.univie.ac.at/"neum/FMathL.html#Relat ed
Kofler, K., Schodl, P., Neumaier, A.: Limitations in Opertkla Technical report (2009).
http://www.mat.univie.ac.at/"neum/FMathL.html#Relat ed

Lee, D., Chu, W.: Comparative analysis of six XML schema laggagaACM SIGMOD Recor@9(3), 76—87 (2000)
Lee, T., Hendler, J., Lassila, O., et al.: The semantic welen8fic American284(5), 34—43 (2001)

Manola, F., Miller, E., et al.: RDF Primer. Web documentO20
http://www.w3.0rg/TR/2004/REC-rdf-primer-20040210/

McCarthy, J.: A micro-manual for LISP — not the whole truttCM SIGPLAN Noticesl13(8), 215-216 (1978)
Neumaier, A.: Analysis und lineare Algebra. Lecture n@2€68).
http://www.mat.univie.ac.at/"neum/FMathL.htmI#ALA

Neumaier, A.: The FMathL mathematical framework. Draft \@rgR009).

http://www.mat.univie.ac.at/"neum/FMathL.html#found ations
Neumaier, A., Marginean, F.A.: Models for context logaft version (2010).
http://www.mat.univie.ac.at/"neum/FMathL.html#Conte xtlogic

Neumaier, A., Schodl, P.: A Framework for Representing aodd3sing Arbitrary Mathematics. Proceedings of the
International Conference on Knowledge Engineering anal@gy Development pp. 476—479 (2010). An ealier version
is available ahttp://www.mat.univie.ac.at/"schodl/pdfs/IC3K_10.pd f

Neumaier, A., Schodl, P.: A semantic Turing machine. Drafive (2010).
http://www.mat.univie.ac.at/"neum/FMathL.html#SVM , (to be revised soon)

Ranta, A.: Grammatical framework. Journal of FunctionagRrmming14(02), 145-189 (2004)

Schodl, P.: Foundations for a self-reflective, contexdra semantic representation of mathematical specifications. PhD
thesis (2011). In preparation

Schodl, P., Neumaier, A.: An experimental grammar for Germahenzatical text. Manuscript (2009).
http://www.mat.univie.ac.at/"neum/FMathL.htmI#ALA

Schodl, P., Neumaier, A.: Representing expressions in thensem@mory. Draft version (2010).

http://www.mat.univie.ac.at/"neum/FMathL.html#TypeS ystem

Schodl, P., Neumaier, A.: The FMathL type system. Draft var&010).
http://www.mat.univie.ac.at/"neum/FMathL.html#TypeS ystem

Schodl, P., Neumaier, A.: A typesheet for optimization fgwots in the semantic memory. Web document (2011). Avail-
able athttp://www.mat.univie.ac.at/"neum/FMathL.html#TypeS ystems

Schodl, P., Neumaier, A.: A typesheet for types in the semangmory. Web document (2011). Available at
http://www.mat.univie.ac.at/"neum/FMathL.html#TypeS ystem

Shapiro, S.: An introduction to SNePS 3. Conceptualc8ires: Logical, Linguistic, and Computational Issues pp.
510-524 (2000)

Stamerjohanns, H., Kohlhase, M.: Transforming thevato XML. Intelligent Computer Mathematics pp. 574-582
(2010)

Sutcliffe, G., Suttner, C.: The TPTP problem library. hali of Automated Reasonirj(2), 177—203 (1998)

3 Towards a Self-reflective, Context-aware Semantic Repiatiem of Mathematical Specifications 35
35. Trybulec, A., Blair, H.: Computer assisted reasoning withavliin: Proceedings of the 9th International Joint Confegenc

on Artificial Intelligence, pp. 26—28. Citeseer (1985)
36. Walsh, T.: A Grand Challenge for Computing Research: a matiehassistant. In: First Workshop on Challenges and

Novel Applications for Automated Reasoning, pp. 33—34 (2003)

