
Chapter 3

Towards a Self-reflective, Context-aware Semantic
Representation of Mathematical Specifications

Peter Schodl and Arnold Neumaier and Kevin Kofler and Ferenc Domes and Hermann Schichl

Abstract We discuss a framework for the representation and processing of mathematics developed within
and for the MOSMATH project. The MOSMATH project aims to create a software system that is able
to translate optimization problems from an almost natural language to the algebraic modeling language
AMPL. As part of a greater vision (the FMathL project), this framework is designed both to serve the
optimization-oriented MOSMATH project, and to provide a basis for the much more general FMathL
project.
We introduce the semantic memory, a data structure to represent semantic information, a type system to
define and assign types to data, and the semantic virtual machine (SVM), a low level, Turing-complete
programming system that processes data represented in the semantic memory.
Two features that set our approach apart from other frameworks are the possibility to reflect every major
part of the system within the system itself, and the emphasison the context-awareness of mathematics.
Arguments are given why this framework appears to be well suited for the representation and processing
of arbitrary mathematics. It is discussed which mathematical content the framework is currently able to
represent and interface.
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3.1 The MOSMATH project

The project “a modeling system for mathematics” (MOSMATH), currently carried out at the University
of Vienna, aims to create a modeling system for the specification of models for the numerical work in
optimization in a form that is natural for the working mathematician. The specified model is represented
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and processed inside a framework and can then be communicated to numerical solvers or other systems.
While the input format is a controlled natural language (justlike Naproche [6] and MathNat [9], but with a
different target), it is designed to be as expressive and natural as currently feasible. This paper summarizes
the work done in our group, with emphasis on the content of thePhD thesis of the first author.

The user benefits from this input format in multiple ways: Themost obvious advantage is that a user is
not forced to learn an algebraic modeling language and can use the usual natural mathematical language,
which is learned and practiced by every mathematician, computer scientist, physicist, and engineer.

In addition, this kind of specification of a model is the leasterror prone, and the most natural way to com-
municate a model. Once represented in the framework, multiple outputs in different modeling languages
(or even descriptions in different natural languages) would not mean extra work for the user if appropriate
transformation modules are available.

The MOSMATH project makes use of or connects to several already existingsoftware systems:

LATEX: Being the de facto standard in the mathematical communityfor decades, the syntax of the input
will be a subset of LATEX.

Markup languages: Texts written in markup languages like XML are highly structured and easily ma-
chine readable, e.g., XML employs a tree structure represented in text form. We make use of the tool
LaTeXML [33] to produce an XML document from a LATEX input, which can then be translated into
records in our data structure.

Algebraic modeling languages: To be able to access a wide variety of solvers, the algebraic modeling
language AMPL [7] is used the primary target language. One ofthe reasons for this choice is existing
software that converts AMPL to other modeling languages.

The Grammatical Framework [25]: A programming language formultilingual grammar applications,
which allows us to produce grammatically correct sentencesin multiple languages.

Naproche [6]: An interface from a controlled natural language to proof checking software, which can be
used to interface proof checkers.

TPTP [34]: The library “Thousands of problems for theorem provers” provides facilities to interface
interactive theorem provers.

The thesis of Peter SCHODL [26] will comprise the main topics of this paper in greater rigor and detail.

3.2 Vision: The FMathL project

The MOSMATH project is embedded into a far more ambitious long-term vision – the FMathL project,
described in the extensive FMathL web site1 (for a summary, see [23]).

While the MOSMATH project creates an interface for optimization problems formulated in almost natural
mathematical language, the vision of the FMathL project is an automatic general purpose mathematical
research system that combines the indefatigability, accuracy and speed of a computer with the ability to
interact at the level of a good mathematics student. Formal models would be specified in FMathL close to
how they would be communicated informally when describing them in a lecture or paper: with functions,
sets, operators, measures, quantifiers, tables, cases rather than loops, indices, diagrams, etc.

FMathL aims at providing mathematical content and proof services as easily as Google provides web
services, Matlab provides numerical services, and Mathematica or Maple provide symbolic services. A
mathematical assistant based on the FMathL framework should be able to solve standard exercises, intel-
ligently search a universal database of mathematical knowledge, check the represented mathematics for
correctness, and aid the author in routine mathematical work. The only extra work the user would have to
do is during parse time of the written document, when possible ambiguities have to be resolved.

Important planned features of FMathL include the following:

1 The FMathL web site is available athttp://www.mat.univie.ac.at/ ∼neum/FMathL.html
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• It has both a “workbench” character where people store theirwork locally, as well as a “wiki” character
where work can be shared worldwide.

• It supportsfull formalization, but does notforce it upon the user.

• It incorporates techniques from artificial intelligence.

• It communicates with the user in a natural way.

• The language is extensible, notions can be defined as usual and will then be understood.

• To deal with ambiguities, the system makes use of contextualinformation.

By complementing existing approaches to mathematical knowledge management, the FMathL project will
contribute towards the development of:

• The QED project [3]: FMathL would come with a database of basic mathematics, preferably completely
formalized. In addition, the natural interface would make contributing to the QED project easier.

• A universal mathematical database: envisioned, e.g., in ANDREWS [1] and partially realized in theorem
provers with a big library (such as MIZAR [35]), where they only serve a single purpose.

• An assistant in the sense of WALSH [36] that saves the researcher’s time and takes routine off their
shoulders – in the classroom, in research, and in industry.

• A checker not only for grammar but also for the semantical correctness of mathematical text.

• Automatic translation of mathematical content into various natural languages.

While FMathL reaches far beyond MOSMATH, we expect that the framework of the MOSMATH project
will serve as a first step towards the FMathL project. The FMathL project will also benefit from MOSMATH

in the sense that once MOSMATH is integrated into FMathL, it will make FMathL usable in the restricted
domain of optimization long before the full capabilities ofFMathL are reached.

3.3 Data structure: The semantic memory

The semantic memory is a framework designed for the representation of arbitrary mathematical content,
based on a computer-oriented setting of formal concept analysis (GANTER & W ILLE [8]). In particular, our
goal was to be able to represent mathematical expressions, mathematical natural language, and grammars
in a natural way in the semantic memory. (We are aware of existing languages and software systems to
represent mathematics, but found them inadequate for our goals, see [14], [15].)

We assume an unrestricted set ofobjects . Objects may, but need not havenames, i.e., alphanumeric
strings not beginning with a digit, by which the user refers to an object.Empty is the name of an object.
Furthermore objects may, but need not haveexternal values, i.e., data of arbitrary form, associated with
the object, but stored outside the semantic memory.

Variable objects are variables in the usual sense, ranging over the set of objects, but since alphanumeric
strings may refer to objects, we refer to variable objects via a string beginning with a hash (#) followed by
some alphanumeric string. Usually, we will use suggestive strings for variables, e.g., for an object that is
intended to be a handle, we use#handle or #h .

A semantic mappingassigns to two objects#h and#f a unique object#e which isEmpty if #h or #f is
Empty. We call an equation of the form#h.#f=#e with #h , #f , and#e not Empty a semantic unit or
sem. We call#h thehandle, #f thefield, and#e theentry of the sem.

The semantic unit is the smallest piece of information in thesemantic mapping. It is intended to be both
low level and natural to the human. Depending on the context,the intuitive meaning of a sem#h.#f=#e
often is “the#f of #h is #e”, e.g.,formula27.label=CauchySchwarz would intuitively mean that
the label of formula27 is CauchySchwarz . A sem can also express a unary predicate:P(x) could
be expressed asP.x=True . Since sems are “readable” in this intuitive sense, manipulating information in
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the SM is easier and more transparent than in other low level systems like a Turing machine or a register
machine.

The SM codifies the foundations of formal concept analysis ina way suitable for automatic storage and
processing of complex records. A statement of the formgIm (interpreted as “the objectg has the attribute
m”) can be represented as a semg.m=Present . The semantic matrix precisely matchesmulti valued
contexts(GANTER & W ILLE [8, p.36]) whereI is a ternary relation andI(g,m,w) is interpreted as “the
attributem of objectg is w”, with the propertyI(g,m,w1) andI(g,m,w2) thenw1 = w2. This corresponds
to the semg.m=w, since the propertyg.m=w1 andg.m=w2 thenw1=w2 follows from the uniqueness of
the entry of a semantic mapping.

The semantic memory is also representable within the framework of the semantic web [17]. In particular,
we have implemented it in RDF [18].

For graphical illustration of a semantic mapping, we interpret a sem#a.#b=#c as an edge with label#b
from node#a to node#c of a directed labeled graph, called asemantic graph. In semantic graphs, named
objects are represented by their names, and objects that have no name will be represented by automatically
generated strings preceded by a dollar sign ($). In a semantic graph, objects that have an external value are
printed as a box containing that value. For better readability we use dashed edges for edges labeled with
type, since these sems have importance for typing.

A record with handle#rec is the set of sems#h.#f=e reachable from#rec in the sense that there exist
objects#f 1,. . .,#f n such that#rec.#f 1. · · · .#f n=#h . In contrast to records in programming languages
such as Pascal, records in a SM may have cycles since back references are allowed; this is necessary to
encode grammars in a natural way.

For example, the expression
λx.x+1

may be represented by the record with handle$2472 shown in Figure 3.1. Further examples can be found
in Appendix 3.9, see also [28].

Semantic mappings are used to store mathematics. In order towork on data represented, the framework
needs to be dynamic. The data structure of the semantic mapping that changes over time is called the
semantic memory(SM).

While not identical, our representation shares features with some existing representation frameworks:

• The need to represent (mathematical) natural language poses the requirement of “structure sharing”, i.e.,
a phrase, an expression etc. only has to be represented once while it may occur multiple times in the text.
This suggests a graph structure rather than a tree structure, as facilitated in the knowledge representation
system SNePS [32]. SNePS also makes use of a labeled graph, but on the other hand uses “structured
variables”, storing quantification and constraints together with the variable. This is not desirable when
representing mathematics since structured variables makeit hard to represent the difference between,
e.g.,

∀x∀y(P(x,y) =⇒ G(x)) and ∀x((∀yP(x,y)) =⇒ G(x)).

• The record structure where a complex record is built up from combining more elemental records is
similar to a parse tree, especially to a parse tree for a dependency grammar [5]. However, a parse tree is
always a tree and does not allow structure sharing.

Context dependence.

Even on the lowest level of information representation, context dependence is already incorporated in a
natural way.

The same object#o may be reachable via different paths, and while it is the sameobject, the access is
different and so can be its interpretation. Therefore the path how an object is accessed contains information
about the context, and about the usage of the object. The additional information contained in the path can
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Fig. 3.1 A record representing an expression

be used to account for some of the contextual information in natural languages: while natural languages
are to a large extent context free (JURAFSKY et al. [11]), the semantics is also based on the context.

A logic of context compatible with the present framework is presented in [22].

3.4 Processing: The semantic virtual machine

We define a virtual machine that operates on the SM called thesemantic virtual machine(SVM) to be able
to rigorously argue about processes in the SM, and to be able to proof properties. This abstract machine
can be implemented in many ways; we currently have implementations in Matlab (using a sparse matrix to
represent the SM) and in C++/Soprano (using RDF).

The semantic memory of the SVM contains aprogram to execute, itscontext (i.e., input and output,
corresponding to the tape of an ordinary Turing machine), and the information aboutflow control as well.
To enable the processing of more than one program in the same memory each program has its owncore,
i.e., a record reserved for temporary data. Since the core isthe most important record for a program we use
thecaret ˆ to abbreviate the reference the core of the program. Henceˆa means#core.a , where#core
is the core of the program under consideration.

The most elementary part of the SVM programming language is acommand. Aprocessis a sequence of
commands, beginning with the commandprocess #proc . Every process ends with a command that
either halts the SVM or calls another process. AnSVM program is the commandprogram #prog
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followed by a sequence of processes. The (changing) SVM command currently executed is called the
focus. Each SVM program is completely represented in the SM. The SVM is given a record containing a
program, an object it can use as a core, and can then be started.

The SVM has the ability to access the facilities of the physical device it is implemented on. This may
provide the SVM with much better performance for tasks it canexport, and allows the use of trusted
external processors and programs in different programminglanguages.

External values can be copied to the memory of the SVM, and conversely. This is done by the commandsin
andout . The information about how to represent the external value in the memory of the SVM is called
the protocol, and is used as an argument for the commandsin and out . Our current implementation
includes protocols for representing natural numbers, text, SVM programs and tapes and transition tables
for Turing machines. There may be an arbitrary number of protocols, as long as the device on which the
SVM is implemented knows how to interpret them.

The commands of the SVM language fall into four groups: Table3.1 describes the commands that are
needed to give the program an appropriate structure. Table 3.2 contains the assignments, i.e., those com-
mands that perform alterations in the SM. If an assignment refers to a nonexisting node, an error is pro-
duced. Table 3.3 gives the commands used for flow control, andTable 3.4 the commands that establish
communication with the physical device, namely call external processes and access external values. For
convenience, some commands also appear in variants that could be simulated by a sequence of other com-
mands.

In the informal description of commands given here,VALUE(#node) refers to the external value of the
node#node . The effect of each command is formally defined by an operational semantics given in [26].

SVM commandcomment
program #1 first line of the program#1
process #1 first line of the process#1
start #1 start with process#1

Table 3.1 Structuring commands

SVM command comment
ˆ#1=(ˆ#2==ˆ#3) setŝ #1 to True if ˆ#2 = ˆ#3 , else toFalse
ˆ#1.#2=ˆ#3 assignŝ#3 to ˆ#1.#2
ˆ#1.ˆ#2=ˆ#3 assignŝ#3 to ˆ#1.ˆ#2
ˆ#1.#2=const #3 assigns#3 to ˆ#1.#2
ˆ#1=ˆ#2.#3 assignŝ#2.#3 to ˆ#1
ˆ#1=ˆ#2.ˆ#3 assignŝ#2.ˆ#3 to ˆ#1
ˆ#1=fields of ˆ#2 assigns the used fields of the recordˆ#2 to ˆ#1.1 , ˆ#1.2 ,. . .
ˆ#1=exist(#2.#3) setŝ #1 to True if #1.#2 exists, else toFalse
ˆ#1=exist(ˆ#2.ˆ#3) setŝ #1 to True if ˆ#1.ˆ#2 exists, else toFalse

Table 3.2 Assignment commands

SVM command comment
goto #1 sets the focus to the first line of process#1
goto ˆ#1 sets the focus to the first line of processˆ#1
if ˆ#1 goto #2 sets the focus to the first line of process#2 if ˆ#1=True , and to the next line if̂#1=False
stop ends a program

Table 3.3 Commands for flow control

Details of a (now obsolete) preliminary version of the SVM (called there “STM”) are discussed in [24].

As a test case and to show Turing completeness, we programmeda Turing machine in SVM. The SVM
program that simulates a Turing machine contains 71 commands and can be found in [24]. Since an ordinary
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SVM command comment
external #1(ˆ#2) starts execution of the external processor#1 with contextˆ#2
external ˆ#1(ˆ#2) starts execution of the external processorˆ#1 with contextˆ#2
in ˆ#1 as #2 importsVALUE(ˆ#1) into a record with handlê#1 using protocol#2
in ˆ#1 as ˆ#2 importsVALUE(ˆ#1) into a record with handlê#1 using protocol̂#2
out ˆ#1 as #2 exports the record with handleˆ#1 into VALUE(ˆ#1) using protocol#2
out ˆ#1 as ˆ#2 exports the record with handleˆ#1 into VALUE(ˆ#1) using protocol̂#2

Table 3.4 Commands for external communication

Turing machine has no external storage and it is not specifiedhow an external processor should behave, it
is impossible to give an ordinary Turing machine that simulates an arbitrary SVM program.

3.5 Representation: The type system

An essential step that brings formal structure into the semantic memory is the introduction oftypes. In order
to represent mathematics specified in a controlled natural language, a concept of typing is needed that is
more general than traditional type systems. It must cover and check for well-formedness of both structured
records as commonly used in programming languages and structures built from linguistic grammars. In
particular each grammatical category must be representable as a type, in order to provide a good basis for
the semantical analysis of mathematical language.

Information in the SM is organized in records. When using a record, or passing it to some algorithm, we
need information about the structure of this record. Since we do not want to examine the whole graph every
time, we assign types, both to objects and to sems. For a detailed discussion of the concepts and rigorous
definition, see [29], illustrations and examples are given in [28].

Types can be defined using plain text documents calledtype sheets. An example of a type sheet can be
found in [30]. Tables 3.5 and 3.6 gives an overview of the operators in a type sheet and their usage. For
many tasks, giving an (annotated) type sheet defines the syntax of an arbitrary construction in the SM, and
in many cases it even suffices to define the semantics.

operator arguments usage
nothing none defines an atomic type
union list of namesdefines a union
atomic list of namesdefines a union of atomic types
complete none closes a union

Table 3.5 Keywords in declarations of unions and atomics

Our form of type inheritance adds the specifications from an existing declared type#T to a newly defined
declared type#t . In this case, we call#T the template of #t . All the requirements from#T apply to
#t , and additionally the requirements for#t . The difference to the inheritance in typical programming
languages is that:

• the declared type and the template may pose requirements on the same constituent,

• inheritance from multiple declared types is possible, but there is always only at most one template of a
declared type, and

• it is stored that the template of#D is #T.

The type is always assigned with respect to a specified type system. Atype systemspecifies thecategories
belonging to it, and their properties. The objectEmpty is never a category. In every type system, the set of
categories is ordered by an irreflexive and transitive partial order relation<. If #C1<#C2, we say that#C1
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operator arguments usage
allOf list of equationsrestricts entry of certain fields
oneOf list of equationsrestricts entry of certain fields
someOf list of equationsrestricts entry of certain fields
optional list of equationsrestricts entry of certain fields
fixed list of equationsrestricts entry of certain fields
only list of equationsrestricts entry of certain fields
someOfType list of equationsrestricts entry of certain fields
itself list of names restricts entry of certain fields
array list of equationsrestricts entry of certain fields
index list of equationsrequires to index each instance
template one name assigns a template
nothingElse none forbids further fields

Table 3.6 Keywords in declarations of proper types

contains#C2 in this type system. We write≤ for the associated reflexive partial order, with#C1≤#C2 iff
#C1<#C2 or #C1=#C2.

A category is called atype if it is minimal in the ordering<, and aunion otherwise. Types come in three
forms: thedefault type Object , atomic types, andproper types. All categories exceptObject are
declared in the record whose handle is the type system. This record can be created by means of a type
sheet, a piece of text containing the specifications.

If #a.#f= Empty for every field#f , then#a is anatomic object. Atomic objects are used as objects with
a fixed semantic meaning. Objects of a proper type always havea field type whose entry is this type.
Proper types are used to pose requirements on the other constituents of the objects of this type.

We define thetype of object#obj :

If #obj.type is a declared type, then the type of#obj is #obj.type .
If #obj.type=Empty and#obj is an atomic type, then the type of#obj is #obj .
Otherwise, the type of#obj is Object .

Hence every object has a type. Determining the type of an object has complexity Ø(1).

An object#obj matchesa category#C in the type system#TS if either#t<#C (in the type system#TS)
where#t is the type of#obj , or #C=Object .

The definition of well-typedness of a record is more intricate and will only be sketched here.

A pair (#o ,#f ) of two objects is called aposition. A type sheet poses requirements on certain positions,
calleddeclared positions. Roughly speaking, if for all declared positions (#o ,#f ) in a record, the object
#o.#f matches the required type, then the record iswell-typed, andill-typed otherwise. Whether or not
the record is well-typed can be checked in time linear in the size of the record.

We represent type declarations and unions as records, in order that a type checker, working on the semantic
memory, has all the information it needs in the semantic memory and does not need any external type
sheet. Thus we store a type declaration as a well-typed record in the SM. A type declaration#TD has
#TD.type=Type .

Typing in FMathL and typing in XML bear significant similarities, most notably with DTD and Relax NG.
(For a description of DTD, Relax NG and other XML schemas, seeLEE & CHU [16].) Some of the oper-
ators in type declarations have a direct correspondence in the language of DTD and the RelaxNG compact
syntax. E.g.,? in DTD corresponds tooptional , the pipe| corresponds tooneOf and parentheses( )
correspond toallOf . A valid XML document corresponds to a well-typed record. However, there are
also important differences, since cycles are an important feature of our framework that enables an efficient
representation of concrete and abstract grammars, while XML documents are always organized in trees.
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3.6 Higher level processing: CONCISE

The SVM is merely intended for definition, checkability and low level implementation. After some ex-
perience with SVM programs we designed a programming environment that is intended for user-friendly
data entry and manipulation, algorithm design and execution, and more general for interaction with the
semantic memory. Loosely speaking, it is an integrated development environment (IDE) for mathematics
in the semantic memory. This environment is called CONCISE.

A Java implementation of CONCISE is being written by Ferenc DOMES and publication will be announced
at the FMathL web site2. It consists of a versatile GUI (graphical user interface) that enables the user to
view, create and manipulate sems and records in a natural way. An interpreter for a Turing complete subset
of CONCISEwritten in SVM only requires 330 lines of SVM code.

Algorithms can be programmed and executed in CONCISE, but algorithms are represented as records in the
SM, making CONCISEa text-free programming environment. Nevertheless, for debugging and alternative
coding there are text views on CONCISEprograms.

CONCISE has configurable display and text completion, and will support types, function calls, different
kinds of variables (global, local, static and persistent),loops over all fields of an object, multiple users and
multiple languages.

CONCISE will also incorporate a parser capable of dealing with dynamically changing grammars. This is
necessary because in many specifications in ordinary mathematical language, the syntax (and hence the
grammar) is partially defined through the context. In particular, definitions give not only the semantics of
the term being defined, but implicitly also its grammatical function.

3.7 Mathematical modeling

The semantic memory is designed for representing and processing mathematical content. While generality
of the representation was one important goal, another one was to be able to run algorithms on the records
in a transparent way.

To test the practicability of the present framework, mathematical content from different sources is repre-
sented in the semantic memory:

• A significant fraction of the optimization problems from theOR Library [2] were represented manually
in the semantic memory. This is the most important application for the MOSMATH project. We designed
a natural representation of these optimization problems asrecords, in order to be able to run algorithms
on these records. The representation is defined in a type sheet [30]. There are algorithms that produce
LATEX from formulas and whole optimization problems. Another algorithm enriches the representation
of optimization problems in the semantic memory such that anAMPL document specifying a valid,
numerically solvable model can be produced.

• Different types of mathematical formulas were extracted from lecture notes about basic analysis and
linear algebra [20]. These were manually fed into the semantic memory to assure generality of the
representation of formulas [28]. Partial work on the grammar of the text part of the lecture notes can be
found in [27]. Some of the expressions from the lecture notesare presented in Section 3.9.

• An interface was written to automatically import formulas from the TPTP library [34] (“Thousands of
Problems for Theorem Provers”, a library of formulas for theorem provers, taken from different branches
of mathematics).

• An interface was written to automatically import formalized proofs written in the controlled natural
language of Naproche [6] (“Natural Language Proof Checking”).

2 http://www.mat.univie.ac.at/ ∼neum/FMathL.html
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Grammatical issues in the translation from mathematical language into SM documents, and from SM
records to natural language, including a dynamic parser forparallel multiple context free grammars (PM-
CFGs) and an interface to the “Grammatical Framework” (GF) [25] are the subject of the PhD thesis by
Kevin KOFLER [13]. This parser will handle updates to the grammar, a feature necessary to handle mathe-
matical definitions that introduce new syntax.

Example: Knapsack problem

The multidimensional knapsack problem is a standard optimization problem, and also contained in the
OR-Library [2]. A possible natural formulation is:

Let the integerN be the number of contracts, let the integerM be the number of
budgets. Letc j be the contract volume of projectj for j = 1, . . . ,N, let Ai, j be the
estimated cost of budgeti for project j for i = 1, . . . ,M and j = 1, . . . ,N, and letBi be
the available amount of budgeti for i = 1, . . . ,M. For j = 1, . . . ,N, letx j = 1 if project
j is selected, and letx j = 0 otherwise.
Problem : Given integersN andM, vectorc, matrix A and vectorB, find the binary
vectorx such that

N

∑
j=1

c j x j

is maximal under the constraint∑N
j=1Ai, j x j ≤ Bi for i = 1, . . . ,M.

When represented in the semantic memory, a transformation module produces a LATEX-document that is
identical to the model description above, except for grammatical errors. Another transformation module
produces from the same record in the semantic matrix the following AMPL model.

param N ;
param M ;
param c {j in 1..N } ;
param A{i in 1..M , j in 1..N } ;
param B{i in 1..M } ;
var x {j in 1..N } binary ;

maximize target : sum {j in 1..N }(c[j] * x[j]);
subject to constraint 3014 {i in 1..M } : sum {j in
1..N }(A[i , j] * x[j]) <= B[i];

3.8 Reflection

In the most general sense, reflection is the representation of parts of a system within itself.

To test the power of our setting, we tried to achieve a multiple reflection of various features on levels as
low as possible:

• For the SVM, reflection is giving an SVM program that can simulate every other SVM program in the
same way a universal Turing machine simulates an ordinary Turing machine. We call this program the
universal semantic virtual machine(USVM). The context of the USVM contains the SVM program
P and the context ofP. When the USVM has finished, the USVM has produced the same changes in the
context asP would have produced when called directly. The USVM is a program short and transparent
enough to be checked by hand. It has only 164 commands; compare this, e.g., to the reflective interpreter
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by JEFFERSON& FRIEDMAN in [10], which has 273 lines and the implementation by MCCARTHY [19]
of a Lisp function evaluation in Lisp which has 58 (but very complex) commands. The USVM serves
two purposes: it is a reflection of the actions of the SVM commands, and it gives us a check on many
aspects of the SVM for correctness. Once one has convinced oneself of the correctness of the USVM,
one can make the implementation of the SVM on some physical device also trustworthy by checking
empirically (or, in principle, in a formal way) that any SVM program executed by the implemented
SVM produces the same output as in the case when the USVM simulates this program.

• The type definitions are themselves typed, i.e., the creation of a type sheet that allows to type the rep-
resentation of types in the semantic matrix, which gives thetype of types. The type sheet for types [31]
has only 40 lines, compared to the RelaxNG schema [4], its analogon in RelaxNG, which has over 300
lines, or Meta-DSD [12], its analogon in DSD, which has over 700 lines.

• The type system of CONCISE can be formulated as a type sheet, and the typechecker itselfcan be
implemented as a CONCISEprogram.

• An interpreter of the programming language of CONCISEas an SVM program. This makes a large part of
CONCISE independent of any specific implementation, since merely the SVM needs to be implemented.

• A definition of the semantics of mathematical concepts, represented within the SM.

• An operational semantics for the SVM, i.e., a rigorous description of the action of the SVM in mathe-
matical terms, to be represented later in a reflective fashion on the concept level of CONCISE.

• For the envisioned FMathL, reflection is a process to deal with the distinction between object level
and metalevel which occurs in every foundation of mathematics, hence also in FMathL. Here reflection
means the process to express the notions of the metalevel as objects on the object level, and then formu-
late the relations between these notions as relations between objects. The same process of reflection of
the metalevelL0 in the object levelL1 can be repeated as a reflection of levelLk into the levelLk+1. This
way, the metalevel is never fully formalized, but if the reflection stepLk in Lk+1 can be accomplished
without running into paradoxes or insufficiencies of the language, we can be confident of the adequacy
of our foundation. For more details, and for the significanceof reflection for FMathL as a foundation of
mathematics, see [21].

3.9 Examples of expressions

Here we give a few examples for the representation of expressions in the SM as records (see [28] for many
more).

The following table gives some statistics of the examples.

Example# visible symbols# LATEX-characters# sems
1 14 49 34
2 22 45 53
3 11 92 48

For each example, we give the rendered expression followed by a table containing the sems and external
values in the left column, and the MATLAB construction code used to write the sems into our MATLAB
implementation of the semantic memory in the right column. This is followed by a semantic graph of the
record.
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Example 0.

max
k=1,...,n

x(k)

\max_{k{=} 1 , \ldots , n }{{}{x}ˆ{\left(k\right)}}

record MATLAB construction code
$2488.type=max
$2488.formula=$2476
$2488.binds=$2464
$2488.index=$2486
$2464.type=Var
$2464.name=$2466
$2466.type=String
$2476.type=Index
$2476.formula=$2452
$2476.sup=$2474
$2452.type=Var
$2452.name=$2454
$2454.type=String
$2474.type=Bracket
$2474.entry=$2464
$2486.type=Equal
$2486.lhs=$2464
$2486.rhs=$2478
$2478.type=List
$2478.leftBr=None
$2478.separator=SepKomma
$2478.rightBr=None
$2478.linkedList=$2480
$2480.type=ExpLink
$2480.next=$2482
$2480.entry=$2470
$2470.type=String
$2482.type=ExpLink
$2482.next=$2484
$2482.entry=$2472
$2472.type=String
$2484.type=ExpLink
$2484.entry=$2468
$2468.type=String
VALUE($2454) = x
VALUE($2466) = k
VALUE($2468) = n
VALUE($2470) = 1
VALUE($2472) = \ldots

x=createvar(’x’);
k=createvar(’k’);
listk=create(’VarList’,{k});
n=createstring(’n’);
one=createstring(’1’);
dots=createstring(’\ldots’);
br=create(’Bracket’,k);
in=create(’Script’,x,[],br);
komma=createname(’SepKomma’);
none=createname(’None’);
lst=create(’List’,{one,dots,n},none,komma,none);
eq=create(’Equal’,k,lst);
ex=create(’Max’,in,listk,eq);
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Example 1.

∀x,z∈ X : f (x,y,z)=g(y,x)

\forall x , z \in X : f \left(x , y , z\right) {=} g \left(y , x\rig ht)

record MATLAB construction code
$2508.type=Forall
$2508.formula=$2496
$2508.binds=$2498
$2508.scopedvar=$2506
$2496.type=Equal
$2496.lhs=$2492
$2496.rhs=$2494
$2492.type=Of
$2492.operator=$2472
$2492.arguments=$2478
$2472.type=String
$2478.type=Vector
$2478.linkedList=$2480
$2480.type=ExpLink
$2480.next=$2482
$2480.entry=$2452
$2452.type=Var
$2452.name=$2454
$2454.type=String
$2482.type=ExpLink
$2482.next=$2484
$2482.entry=$2464
$2464.type=Var
$2464.name=$2466
$2466.type=String
$2484.type=ExpLink
$2484.entry=$2468
$2468.type=Var
$2468.name=$2470
$2470.type=String
$2494.type=Of
$2494.operator=$2474
$2494.arguments=$2486
$2474.type=String
$2486.type=Vector
$2486.linkedList=$2488
$2488.type=ExpLink
$2488.next=$2490
$2488.entry=$2464
$2490.type=ExpLink
$2490.entry=$2452
$2498.type=VarList
$2498.linkedList=$2500
$2500.type=VarLink
$2500.next=$2502
$2500.entry=$2452
$2502.type=VarLink
$2502.entry=$2468
$2506.type=Relation
$2506.lhs=$2498
$2506.rhs=$2476
$2506.relation=In
$2476.type=String
VALUE($2454) = x
VALUE($2466) = y
VALUE($2470) = z
VALUE($2472) = f
VALUE($2474) = g
VALUE($2476) = X

x=createvar(’x’);
y=createvar(’y’);
z=createvar(’z’);
f=createstring(’f’);
g=createstring(’g’);
X=createstring(’X’);
xyz=create(’Vector’,{x,y,z});
yx=create(’Vector’,{y,x});
lhs=create(’Of’,f,xyz);
rhs=create(’Of’,g,yx);
eq=create(’Equal’,lhs,rhs);
xz = create(’VarList’,{x,z});
in=createname(’In’);
dummy=create(’Dummy’,x);
var=create(’Relation’,xz,in,X);
ex=create(’Forall’,eq,var,xz);
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Example 2.

(

(λ −x) I ∗
0 ∗

)

\left(\begin{array}{cc} \left( \lambda - x \right) I & * \\
0 & * \\ \end{array} \right)

record MATLAB construction code
$2500.type=Matrix
$2500.linkedList=$2502
$2502.type=RowLink
$2502.next=$2504
$2502.entry=$2488
$2488.type=Row
$2488.linkedList=$2490
$2490.type=ExpLink
$2490.next=$2492
$2490.entry=$2482
$2482.type=InvisMult
$2482.linkedList=$2484
$2484.type=ExpLink
$2484.next=$2486
$2484.entry=$2480
$2480.type=Bracket
$2480.entry=$2474
$2474.type=SignedSum
$2474.linkedList=$2476
$2476.type=SignedSumLink
$2476.next=$2478
$2476.entry=$2452
$2476.sign=InvisPlusSign
$2452.type=Var
$2452.name=$2454
$2454.type=String
$2478.type=SignedSumLink
$2478.entry=$2464
$2478.sign=MinusSign
$2464.type=Var
$2464.name=$2466
$2466.type=String
$2486.type=ExpLink
$2486.entry=$2468
$2468.type=String
$2492.type=ExpLink
$2492.entry=$2470
$2470.type=String
$2504.type=RowLink
$2504.entry=$2494
$2494.type=Row
$2494.linkedList=$2496
$2496.type=ExpLink
$2496.next=$2498
$2496.entry=$2472
$2472.type=String
$2498.type=ExpLink
$2498.entry=$2470
VALUE($2454) = \lambda
VALUE($2466) = x
VALUE($2468) = I
VALUE($2470) = *
VALUE($2472) = 0

lambda=createvar(’\lambda’);
x=createvar(’x’);
id=createstring(’I’);
ast=createstring(’ * ’);
zero=createstring(’0’);
iplus=createname(’InvisPlusSign’);
minus=createname(’MinusSign’);
mi=create(’SignedSum’,{{iplus,lambda},{minus,x}});
bra=create(’Bracket’,mi);
mult=create(’InvisMult’,{bra,id});
row1=create(’Row’,{mult,ast});
row2=create(’Row’,{zero,ast});
ex=create(’Matrix’,{row1,row2});
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