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Abstract

Commutative idempotent quasigroups with & sharply transitive antomorphism group G are
described in terms of so-called Room maps of G. Orthogonal Room maps and skew Room
maps are used to construct Room squares and skew Room squares. Very general direct and
recursive constructions for skew Room maps jead to the cxistence of skew Room maps of
groups of order prime to 30. Also some nonexistence results are proved.

1980 Matlematics subject classification (Amer. Matk. Soe.): primary 05 B15; secondary 20N 05.

1. Room squares and orthogonal ci-quasigroups

1.1. Let r be an odd integer.
A Room square of side r is an arrangement of r+1 distinct objects in a square
array of side r satisfying
(i) each of the r® cells of the array is either empty or contains exactly two
distinct objects, _
(i) each row and each column of the array contains each of the r+1 objects
exactly once,
(iii) every unordered pair of distinct objects occurs in exactly one ceil of the
array.
The square is skew, if, in addition,
(iva) cell (4, #) contains the pair #, <0,
(ivb) cell {4, k) is empty if and only if itk and cell {k,{} is not empty; here ccll
(i, k) is the cell in row { and column &.
A Room square is known to exist if and only if r#3,5; see for example Wallis
(1973a, 1974).
411




412 Arnold Neumaier [2]

1.2. We refer to a commutative idempotent quasigroup (Q, *) as a ci-quasigroup.
- Two ci-quasigroups (Q, ) and (Q, #+) are orthogonal if and only if the equations
x*y=a, x+*y=h have at most one solution {x, y}<= @ (as unordered pair), for
every a,be Q; they are skew orthogonal if and only if, in addition, x =y =z =1
is the only possibility to satisfy the equations x*y = z#ky, xwxy = z*/,
~ Note that the two quasigroups are never orthogonal if considered simply as
quasigroups.

1.3. By row and column permutation and renumbering of elements we may
'-stan'da_rdize any Room square such that the diagonal cells (i,7) contain the pair
i,c0; where oo is a fixed element. If we define two operations # and *#* on the set
_Q = {l& ---’r} by

~x*y=zif and only if x = y = z, or x# y and the pair x, y is in Tow z,
x#ky =z if and only if x =y =z, or x#y and the pair x, y is in column z,

a ‘simple verification shows that (0, ¥} and (Q, *#) are a pair of (skew) orthogenal
¢i-quasigroups if and only if the given square is a standardized (skew) Room
square.

"~ Conversely, from (skew) orthogonal ci-quasigroups (@2, #*), {Q,**) one may
construct a standardized (skew) Room square, defining

x,¢0 is in cell (x, x) for every x€ 0,
x,¥ is in cell (x *y, x +x y) for every pair x,y€ @, x#£y,
the other cells are empty.

The proofs are straightforward and thus omitted; see Bruck (1963).

2, Room maps and sharply traositive ci-quasigroups

A ci-quasigroup (Q, %) is sharply iransitive if and only if it possesses a group G
of automorphisms, sharply transitive on (. We describe sharply transitive ci-
quasigroups within the group G.

2.1, Let & be a finite group. We call a map @; G+ G a Room map if and only if

(1 o) =1,
(2) P =glx) (xeG),
(3} {e(x)x|xeG}=G.
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A Room map ¢ satisfying

@ ' o px) =p()=>y=x or y=x1 (x,y€G)
is call_e_d strong; if, moreover,
o =) lex=y=1 (xyEQ

then ¢ is called skew.
ExaMpLe. The trivial map o with o{x) =1 for every x€G is a Room map.
Suppose @, and @, are Room maps. If

© - aPe Tt =a0)p() Ty=x or y=xT (xyeQ)
then we séy' o, and @, are orthogonal; if, in addition,
M e0a® T =a0e0) =x=y=1 (xyc0)

then ¢, and g, are said to be skew orthogonal.
From the definitions we see immediately that ¢ is strong if and only if ¢ and o
are orthogonal, and ¢ is skew if and only if ¢ and o are skew orthogonal.

2.2. If G has odd order, and if g is a Room map of G, define the operation
*_on & by

® wk, v =g(x)w where ¥*=wuo! and w=2xv

(equivalently, u = xw and v = x~*w). Since G has odd order, the map x-+xisa
permutation of G, thus #, is well defined. Because of p(x) = x¥%, x~1 distinct
maps ¢ yield distinct operations.

(G,*,) is a ci-quasigroup! Because of u=1u, u= 1tu we have
utu=g@(u=u If u=xw, v=x"'w then wk,v=px}w= plx ) w = v* u.
Finally, u*, v = ¢ has the solution x = x®v where ¢(x)x ~ v—1: determines x.

We remark that G operates on the constructed ci-quasigroup by right multi-
plication as a sharply transitive group of automorphisms.

If G is abelian and written additively then (8) simplifies to

As a curiosity, we obtain from every noncommutative group G of odd order via
the trivial Room map a (commutative!) ci-quasigroup {G,s) by xoy = z if and
only if zx~1zy~1 = 1 if and only if x = zy~1z if and only if y = zx 'z if and only
if z = tx where % = yx~1, _

An application of Room maps of groups of even order will be made in a forth-
coming paper.
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2.3. Let (Q, #) be a ci-quasigroup, and G a sharply transitive group of auto-
morphisms of (@, ¥). Fix ac @. Define a map ¢: G— G by

@D =g%% 0" (xeG).
Then ¢!V = g+ a = a, whence p(1) = 1; moreover
' atle™ = gl g — g gl o aete)

- and therefore ¢(x™1) = @(x). Finally, Q has an odd number of elements, since the
-bpe'lration' " defined by x" *x = a is an involution fixing only the element a. Now the
-order of G equals that number and thus is odd. Therefore the map x=>x*is a
permutation of G. Now a°(#% = (4% #4”™")* = = a, and we get {a*©%| x5 G} = a®,
from where {p(x) x| x€ G} = G follows. Thus @ is a Room map.
- If we fix an element & = ¢'< Q (1€ G) instead of g, then we get 2 Room map @'
related to @ by @'(x) = tp(t > x) ¢ Therefore, p and ¢’ are equivalent by the
automorphism x—£x¢~1 of G (in the sense of the next section).
Because of *, = *, which one verifies easily, we get distinct Room maps from
distinct ci-quasigroups.

2.4, We say, G is a sharply transitive group of automorphisms of a standardized
Room square, if G is a sharply transitive group of automorphisms of both corre-
sponding ci-quasigroups (Q, *) and (0, **). Then:

THEOREM 1. A (skew) Room square with a sharply transitive group G of auto-
morphisms exists if and only if G has odd order, and G admits a pair of (skew)
orthogonal Roeom maps. In particular, if there is a strong (skew) Room map of G
then we may construct from it a (skew) Room square.

Proor. From the preceding, it suffices to prove the following.

Lemma 1. Let @, be Room maps of G. *, and #, are (skew) orthogonal if and
only if ¢ and y are (skew) orthogonal.

ProoF (of the Lemma). From the definition, uk, v =a, u¥,v=>5Iif and only if
x =uv7l, a=g(x)xv, b= ¢(x)xv. Thus every x leads to at most one solution
{u,v}. Since x and x" give the same solution only if x" = x or x’ = x~1, %, and *,
are orthogonal if and only if a = @(x) xv, b = (x) xv determines {x, x~1} unlquely,
or, eliminating v, if and only if the equation @(x)i(x)~! = ab—! determines {x, x~1}
uniquely. But this is equivalent to (6), that is ¢ and « are orthogonal.

Now suppose Xk y =¥y, x¥,p = z%,¢. Then with 4? = xy~1, 2 = zz~* this
is equivalent to @Q)uy = J(@)vr, Y(w)uy = o(v)st, or, eliminating ¢ and y, to
Py () = @) (@)L Now *, and #, are skew orthogonal if and only if we
may conclude u = v = 1, that is if and only if ¢ and i are skew orthogonal.
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3. Equivalence and maltipliers

3.1 Let G be a finite group and Aut G the full group of automorphisms of G,

L).E.N_.IM;& 2:. If @ is @ Room map, then, for every t€ Aut G, the map ¢, defined by
| #3) = gl
is a Room {ﬁap. We ;S'ay ¢ is a shift of ¢.
(lj and (é) are eas_ily verified; (3) follows from the computation

{qof(x)x-lee Gy = {P () * | xe G} = {p(x) | xe G} = {p(x) x|xc G} = G' = G.

Call two Room maps equivalent if one is a shift of the other. Two equivalent
Room maps lead to isomorphic ci-quasigroups (G, *,) and (G, +p); in fact ¢ is an
isomorphism from (G, *,) to (G, *.0

PROBLEM. Are there in any group G inequivalent Room maps leading to iso-
morphic ci-quasigroups?

3.2. Call an automorphism teAutG a multiplier of ¢, if ¢'=g¢. Denote
by Multg the set of all multipliers of . We show that Multe is a group: If
8, t € Muit @ then, using the multiplier property and the definition

P = PN = gl T = (T = ) = ).
Therefore ts—' e Mult @, and Mult ¢ is indeed a group.
Lemma 3. If teMult g, a€ G, then the map (t,a) defined by

xthal = g

is an automorphism of (G, *,).

PROOF. @ x %0 — ylax v'a = p(x)w'a if and only if ua=x'wa,
¥a = (x)*w'a. Since ¢ is an automorphism of G, this is equivalent to u = xw,
v=x"'w. Thus we have u%,0 = p(x)w or

(1%, 0)%9 = (p(x) W) = (g(x) wia = p(x) wa = ¢() Wa,
But # is a multiplier of ¢, that is ¢' = . Therefore
(H *w U)(l'.al = ¢[(x‘) Ma — ?)(xl) “}a = u“,a] # v“,ﬂ,},

and the lemma is proved.
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By a straightforward computation we get the product and inversion rules:
(8,a)(t,b) = (s1,d'), (t,a) ' = (1 (@D,
- Consequently, (Multp) x G is a split (semidirect) product.

3.3. Now we characterize the group (Mult @) x G within the group of all auto-
~morphisms of (G, %)

THEOREM 2. Let G be a group of odd order, and ¢ a Room map of G. Then the split
product (Multp)x G is the normalizer A (G) of G in the full group of auto-
mo?p]zf:snis of (G, *,). Moreover, if G is abelian and ® = o Is the trivial Room map,
‘ther Mult g = Aut G, and (Aut G} x G is the full group of automorphisms of (G, * ).

PROOF. (a) We compute easily (z, M1, b6)(t,a) = (l,a2b'a); thus the
normalizer in question contains the group (Mult ) x G.

(b} Let 5 be an element of A(G). Setting ¢ = (1,19 we have 1t = 115y 1 =1,
and te #(G), that is

) t71Gt =G,
(10) (2, 0¥ =+, for every x,peG.

From (9), for evety zeG, G contains an element z’ with (L)t =(1,2). We
have 27 = |27 = 171020 — [0 = 2 for all z& G, Thus we get

ytz{ — y‘z’ - ytu,g) = yﬂ—l{]_,z}! = yu,z].t — (yz)t,

and ¢ is an element of Aut .
Finally, since from (10)

P} = (7Y = (e r ()Y = w2t = (),

?1s in Mult g, and we have 5 = (1, 1) = (&, B e(Multp) x G.

Thus proceeding for every s&.4(G) we arrive at A (®)=(Multp) x G, and the
first part follows.

{¢) If ¢ = o then trivially Multp = AutG. It remains to show that, if G is
abelian, every automorphism of (G, %) Is in (AutG)x G. We use the additive
notation (8a), and obtain u*, v =(u+v)/2. Thus any automorphism s of (G, *,)
satisfies [(x+y)/2]¢ = (x°+%)/2. Define the permutation ¢ by x* = x— 0%, Then

x+p\V Ay
(11) (T) == =0,
¥ =0 gives (x/2)' = x%2 for every xeG, and (11) simplifies to (x+3)' = x+34,
that is # is an automorphism of G. Thus 5 = (1,09 = (1, e(Aut ) x G.
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I was not able to modify the proof of the last part to include the nonabelian case.
Therefore we may ask:

PROBLEM. Is there a group G (necessarily nonabelian) such that the ci-quasi group -
constructed from the trivial Room map possesses an automorphism not contained
in (AutG)x G?

4. A general lemma for constructing strong room maps

4.1. We begin with a very general construction lemma and then specialize more
and more to get more cohcrete results.

LEMMA 4. Let G be a group of odd order, and H a subset of G with the property
(12) HnH'=gp, HUuH1=G-{1},

where H— denotes the set of inverses of elements of H. If w, « are permutations af
G such that

{13) _ 7= 12=1,
(14y . (M =x7x2  for every xe€G,
(15) Hoe— H,

then the map ¢ defined by

i ifx=1,
(16) elx)={ (xH7x1 ifxeH,
X7 x fxecH™!
is @ Room map. ¢ is strong if
(17) {x"x|xeG} = G.

RrMaARKS. (17) is only a convenient sufficient condition for ¢ 1o be strong!
A set H satisfying (12) exists in every group of odd order: For x# 1, put one of
x, ¥ in H, the other in H-1; we have x5 x 1 since x® = 1 implies x = 1.

PROOF (of Lemma 4). Verifications of (1) and (2) are trivial. To prove (3),
consider {p(x)x[x€G} = {1} u{(x V)| xe H}u{x" x?| xe H—%}. By (13) and (14),
this is equal to {ITu{GrN7|xe H}u{(xH¥|xeHY = {(LJuHUH¥". By
(15), H* = H, and with (I2) the expression reduces to G = G. From the definition

15
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of strongness, ¢ is strong if all x” x with x & -1 are different. But this is guaranteed
by (17).

- The construction of Lemma 4 is very general, since every Room map ¢ may be
constructed in this way: The permutation 7, defined by x" = o(x)x! for all x,
and the identity mapping « satisfies (13)-(15) and the condition (18) below for
any H with (12), (r is a permutation since ¢ is a Room map and (2) and (3) hold.)

The value of the construction lies in the freedom of H. If we take for «, =

-workable permutations, for example automorphisms of G, which satisfy (13),
(14) and (17), then we may try to find a set H meeting (12) and (15) to obtain a
strong Room map, ‘

. 42. To analyze the conditions under which (12)and (15) are soluble, denote by —1
the permutation x—>x~1, Let 4 be the group generated by « and (—1)a(—1),

- Then ee4 if and only if it has a representation ¢ — o~ 1) as(—1)... ain(— 1)

where # is an even integer. Thus we have
' (=Doa(=1) = o~ 1) afi(~1).... abr( — 1) O 1) c 4,
‘and therefore (—1)4 = A(~1). Denote by x4 the set of all X%, €A,

LEMMA 5. 4 set H satisfying (12) and (15) exists if and only if
(18) x4nxUd g fo every x# 1,
or, equivalently, if and only if
(18a) xVéxd for every x+1.

ProOF. The equivalence of {18) and (18a) is immediate.

(a) Necessity: We have 12 — I, H= H, and from (12) we get H-ha - pr—1
Hence H is fixed under 4. Let H U.¢ x x4 be the partition of H into A-orbits.
Then H =), x4 Uz x x4 From (12), 8 = Hp H12 x4 nxi—Dd,
and we obtain (18).

(b) Sufficiency: Set H, = @, Suppose we have already found a subset H; of G with

(19) HHf' =@, 1¢H, and Hi-H,

If ¢= {I}UH,}'UH‘-_J' we are finished. Otherwise we take an x&G with x#1,
XEH, ¢ H7L and we define Hyy; = Hux4,

Clearly, H4, = Hia If 1eH,,, then 1ex4, and we have the contradiction
x=1. IfzeHﬂ_lnH;jI then by (18), either ze H, or ze H71, If the second holds,
replace z by z—2: hence we may assume z& H,. Now by (19) z¢ H 75 thus ze x4,
from which we may deduce the contradiction x € H;. Therefore such a z cannot
exist, and we conclude H,onHL =0

Repeating this process we finally arrive at a subset & = H,, satisfying (12) and (15).




[9]. Transitive commutative idempotent quasigroups 419
5, Direct constructions for skew room maps

5.1. Let R be a commutative, associative ring with identity 1. A (not necessarily
abelian) group G is an R-group provided that R operates on G, and the following
assertions hold:

' J*=1,x'=x for every a€R,x€G,

xH = x%x# for every o, fER, x€G,
X% = (x0f for every «,fE R, x€C.
Note tlha;t nothing is required for the operation of R on products in G!
R* 'c_lethes the group of units of R.
LEMMA 6. Let G be an R-group. Suppose R contains an element o such that
20) | a—1,a,a+1eR¥,
21) there is an odd fntegef t satisfying of = 1.

Then we may construct a set H satisfying (12) and (15), and for every such set H
the map defined by

1 ifx=1,
(2) e ={ x* ifxeH,
xt jfxeH1

(where £ = (1 — &) (1 +&)™Y) is a skew Room map over G.

PrOOF. (a) We have (—1)a(—1) = « since —1,«€R and R is commutative.
Hence 4 is generated by «. Now, if xtex4 then x* = x* for some integer i.
But then x* = x. Since « has odd order, x* = x, or x = x~1, whence x =1, and
(18a) holds. By Lemma 5 we may construct a subset H of G with the required
properties. .

(b) Now we want to apply Lemma 4. (13} is satisfied by hypothesis, and as
to (14), with 7 = —2(1 _I_a)—l’ (x-—1)as = x0T = Rt x24T HE = ¥ 3R
Application of Lemma 4 yields the Room map (22) from (16); for

xTx=x"H = x—2(1+a) s - x(oc-—l)tl-]—c:)" = x~e,

and similarly (x~1)7x~1 = x*. Since & is & unit, (17) is valid, and ¢ is strong.

(c) It remains to show that ¢ is skew. Indeed, if @(x)= ()L x£1, y#1,
then we may assume x, y € H since ¢(z~1) = ¢(z) for all z. But then by (22) x8 = y~=,
or (xp)* = 1. Now eis a unit, hence we getxy = 1, ory = x Y ButxeH,y=x"1leH,
contradicting {12). Thus, (5) holds, and @ is skew.
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ReMARK. If R operates faithfully on G, and if a subset H of G satisfying (12)
and (15) exists then (21) is valid: For suppose the least positive integer with
of =1 be even, t =2s. Then &f—1 = (—1)(o®+1), and of—1 = 0, that is there
s an xe G with x*-1 # 1, since R is faithful on G. Taking z = x*-1, we obtain
- 2% =z e 240214, opposing Lemma 5.

‘5.2, Now we are able to prove concrete, that is existence, results. There are
j three important classes of Regroups G:
L G is any finite group of exponent e, and R is the Ring ZfeZ of integers
modulo e,
" II, G is an abelian group, and R is the ring of all endomorphisms of G,
IL G 1s any finite group, « an automorphism of G satisfying

23y - xx%=x%x for every xeG,

and R is the ring of all rational expressions in «, which are well defined (that is
the denominator is a permutation). R operates on G in an obvious way. We note
that f(a) possesses an inverse if and only if f(«) is an automorphism. From Lemma
6 we obtain immediately:

THEOREM 3. Let G be a group of odd order. If there is an automorphism « such that

(24 a—1,0,c—1cAutG,
(23) xXx%=x%x for every xeG,
[P} o =1 for an odd integer 1,

then G admits a skew Room map.

A Fermat prime is a prime of the form 2+ 1; from elementary number theory,
t = 2% follows. Write f;, = 22*4-1 if £, is prime. The only krnown Fermat primes are
the primes f; = 3, f; = 5, fo = 17, f; = 257, f, = 65537 (/s fs» /7 and f; are known
to be composite.)

THEOREM 4. If G is the elementary abelian group of order g = p*, p an odd prime,
then, with possible exception of p=3,i=2, and p = f;, i =1, G possesses a skew
Room map.

PROOF. Let R = GF (g) be the Galois field of order g, We may assume that G be
the additive group of R. If p is a primitive element of GF (g), then, with g = 28+ 1
and ¢ odd, « = p¥ is an endomorphism of G of odd order r. o— I,e,+ 1 are auto-
morphisms if and only if «#0, + [. But 0+ p* for every 7, and | = p*, —1 = g%
hence az0, £ 1 if and only if #5 L. Thus, if 7+ 1 then we may apply Lemma 6 to
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obtain the theorem; if z=1 then ¢ =p=2%+1 and the rest of the theorem
follows from the next lemma.

LEflvfMA 7. If p is a prime, and pt = 25+ 1 then either i=2, p =3, or i=1andp
is a.Fermat prime p = f;..

Proor. For i = 1, the lemma is clear; thus let iz 2. From pt = 2°+1 we get
(25) ' pi—1|pt—1=2° for every d which divides i.

In particular, p— 1 = 27, and r|s since i22. Hence (2" +1)' = 2°+ 1, and modulo
2r+1 we obtain 1 +i2"=2°+1 or 2r+1]127. Thus 2|/, and from (25) we see pPi—1=2%
But p=1+42, and from 1+2*=pf=(l +27® we get, after simplification,
qu-r = 2'+ 27, This equation is only valid if r = 1, u = 3, and we have p = 1427 =3.
Now, if i = 2¢b, b odd, then by (25) 3v—1 is a power of 2. But we just had shown
that b had to be even if b3 2. Therefore & =1, i = 2%, and for a2 we have the
contradiction 5|29, for 5 divides 80 =3*—1, which divides 32— 1, which divides 2%
Hence a<l,ori=1,2.

THEOREM 5. Let G be a finite group of odd exponent e. If e comtains no Fermat
prime divisor [, then G admits a skew Room map.

PrOOF. Let e = wpy, where the p; are distinct primes, and r; are positive integers,
Let &, be a primitive root modulo 7, and p; = 2%2;+ 1, ; odd. Since p; is not Fermat,
t;>1. The element o; = £;2% has modp} odd order, and, since £>1, a,#0,
+1mod p;, that is «;— I, a;, o+ 1 are prime to p;.

From the Chinese remainder theorem, we get an integer o of odd order such that
«—1, &, a+1 are prime to e. Applying Lemma 6 with R = Z/eZ the ring of integers
modulo e, the theorem follows.

REMARK. Theorem 4 was proved originally by Mullin and Nemeth (1969) for
starters of G, which are equivalent to Room maps by Section 8.

6. The product construction

THEOREM 6. Let G, be a group of odd order with abelian normal subgroup G of
exponent e, prime to 3. If both G and G,/G admit a pair of (skew) orthogonal Room
maps then a pair of (skew) orthogonal Room maps of G, exists. In particular, if
both G and G,/G admit strong (skew) Room maps, then so does G,
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PROOF. (a) Let Ty be a left transversal of Gy/G, leT,. The map ’ defined by

TG =Gy, *'€Ty) is an involution of T; fixing only 1. Select one of 1,1’ for
every {1, )= T,— {1} and calf the resulting set S. Then we have

T: =5uSTu{n, Sns-1=g, 1S, G,=16G, 17| =(G,: G).
The maps
: Lgoghe g (teT,ge)

:are automorphisms of G, Considering ¢ as a unit in the ring of endomorphisms
of G, exponents such gs ~t L 1+4,... make sense.
We identify Gy with Gp/G x G by

WGe)=1g (teT,gec),
and one verifies the equation
' (G, gy = (16,5,

(b) Now we take (skew) orthogonal Room maps @,¢" of G, and &, ¢’ of Go/G.
‘We may find an integer k satisfying

(k,e) = (k+ l,e) = (k7 e} for every odd f

(take, for example, k& with (—E) =—L k£ —1modp for every prime p dividing 3;
this is possible since there are (r—Df2>1 quadratic nonresidues mod 0). Define
?9(3) ift= I,
wf(g) = gm—l {'ftES:
g% ifres
Po(1G, &)= ((D(tG)! wlg )5

Go'e) ife=,

#il0,8) = ( @(G), 1) ifreSosa

We verify easily
2o(8) = p(g), 28 =¢'(e) ifgeq,
PR} G = pi(xG), ol(x) G = #(xG) ifxeG,

and a straightforward proof yields: @} is a Room map, and is trivial if and only if
both ¢’ and @' are trivial,

{c) To prove that ® 15 a Room map first note that

(26) W7 = ().

;
|
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For t.= 1, the left side equals ¢(g™") = ¢(g) = wlg). For S we have
| (g = (g7 = M7 = we),
and for FE S gt = (g = g = wg).
Now @1} = ¢(1) = 1, and by (26), if
%= (16,8 7olx ) = it 6,87 = (@ §), o)
" = @(6), we) = 91G.2) = o).

Therefore. (1) and (2) are valid.
Finally suppose @(x)x = ¢o(y) . In the factor group we have

- O(xG) xG = pi(x) GxG = p(y) GyG = D(G) yG,

and, since @ is a Room map, xG = yG. Suppose xG =y = 1G, O(G) = uG,
where t,ueT, and x = ({G, g), y = (¢G, ). Then

uwfg)tg = (R(g), wg)) tg = @o(1G, 8) 12 = p(X) x,
and similarly, uew(h) th = @ {y)y, whence uew(g) tg = uw(h) th, or:

wlg)g' ™ = w K™

If =1 then we obtain g¢(g)g =¢(W)h, or g=rhsince pis a Room map. If 1€ S
then g¥ gt = g™t or phtl = piHl or g =k since (k+1,8)=1. If teS-1
then g% g™ = h—* ™", Setting m = gh~! we obtain m = m* (since G is abelian).
Now the order f of ¢ divides the order of G, and thus is odd. By hypothesis,
k' —1,e) =1, and from m = m*=m¥, or m¥ 2 =1 we pet m=1, thatis g = h.
In every case we atrived at g = k, thus x = . Therefore all the @y(x) x are distinct,
and (3) follows. Thus @, is 2 Room map.
(d) To prove orthogonality we have to show that

() 2o = g e

is possible only for x=y or x=yl Since (2) is valid we may assume
X, yEGUS-1G. In the factor group we get O(xG)O'(xG)~* = O(yG)P'(yG),
whenece xG = ¥ since O and @' are orthogonal, Now if x,y€ G then

P(x) 2" (%) 1= () p(¥) ! = (M () = 20N ')
and x =y or x =y from the orthogonality of ¢,¢’. And if x,ye1G, 157,
x={G,g), y = (1G, h), D@G) = uG, ®'(1G) = ¥’ we have
Po(X) Polx)t = po(tG, 8) pi(tG, 8) ™ = (O(1G), (g)) (D'(1G), 1)

= uw (g™ = ug~*u'”,
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and similarly ©y(3) @) = wh—%*1'~*, Thus we have
ug—* ﬁ’"l, =uh kgt = pk
and g = / because of (k,¢) = 1. Therefore x = ¥
- (e) Now suppose @, " and @, D’ are skew orthogonal, From
| Po(¥) o)™ = (1) o)+

we'get from the skew orthogonality in the factor group xG = yG = G, that is
x, Y€G, and then x = y =1 since w and ¢’ are skew orthogonal in G. Thus @
and ¢, are skew orthogonal,

From the proof, we restate the simplest part as

i COROLLARY. Af Gy is a group of odd order, and G, is an abelian group of order
prime to- 2.3, and if ¢y, ] resp. gy, ¢} are (skew) orthogonal Room maps of G,
resp. Gy then the maps p, ¢ of the direct product G, x G, defined by

[ L)) ifa=1,
T ety e,
(Lejx) a=1,
P'a.x) ={ (@i(a),x) ifacH,
(Pia),x D ifacH,

where H is a set with HnH =0, HuH 1= G, —{1}, are a pair of (skew)
orthogonal Room maps.

®la, x)

PROBLEM. Is there a product construction if G is nonabelian or if the order of
G is not prime to 37 '

6.2. Now we use the theorem to prove
THEOREM 7. Every group G of order prime to 2.3.5 admits a skew Room niap.

PrOOF. G has odd order, and thus is solvable. Now any minimal normal sub-
group H of G is elementary abelian, and has an order prime to 2.3.5. For groups
of Fermat prime order #3, 5, Chong (1972) proves the existence of skew strong
starters which are equivalent to skew adders for the patterned starter, and by
Theorem 9 (Section 8) these groups admit skew Room maps. For the other
elementary abelian groups of order prime to 2.3.5, Theorem 4 guarantees the
existence of a skew Room map. Thus & admits a skew Room map.

Induction on the order of G (beginning with the trivial group of order I where
o is 2 skew Room map) proves the theorem.

We may slightly extend Theorem 7:
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ToeoreM 7a. Let G be a group of odd order. Suppose G possesses a chain
(2?) : G=G02613-.-?Gk=1

wm‘: normal subgroups G; of G and abelian factors Gi{Gyy, of an order prime to 3
(for i1} for i = 0 nothing is required). Then, if all factors G,f Gy (including i = 0)
possess strong (skew) Room maps, G admits a strong (skew) map, 1o0.

PROOF.. The theorem is trivial if k = 1. Now proceed by induction on &. If G
satisfies the stated conditions then G/G;_; does, but with k—1 instead of 4. By
induction, G/G,_, admits a strong (skew) Room map. Since Gp_; = Gr_4/Gy
possesses a strong (skew) Room map, we may apply Theorem 6 yielding a strong
(skew) Room map of G.

REMARK. Every-solvable group possesses a chain (27) with normal subgroups G;
of G and abelian factors G,/Gy,, for all i.

7. A nonexistence theoresn for skew room maps

LevmA 8. et G be a group of odd order, and H a set with Hn H1=0,
HUH- = G—{1}. If p is a skew Room map of G, then

{p(x), e(x)*xe H} = G—{1},

and every element is obtained exactly once on the left.

PROOF, Since @ is strong, all (x), where x runs over H, are distinct; the same
holds for the @(x)~1. But ¢ is skew, and therefore every {x) is distinct from every
@) (x'#£x#1). Thus {p(x),e(x)*|xeH} is a set of | H|+|H|=|G|-1
elements. But since ¢ is strong and @(1) =1, the element 1 is not in that set, and
the assertion follows.

Now let ¢ be a Room map of G, and : G->Z/nZ a homomorphism of G onto
7,/nZ. Then the kernel Ker 7 has order | G|#~. From (3), counting multiplicities,

{x"|xeG} = G7 = {plxy +x7|xG}.
Summing up the squares of the elements we obtain (x runs over G):

3 (x7)2= 5 (@) +x7)2= T eV P+ 2T o(x)r x7+ Z(x")* med n,
or
S {p(x) )= —2 T p(xy x7= — T @(x) x"— X p{x ) (x~)r=0mod ,

since

PO = el (x Y = ) (—=¥7) = —p(x)7x7.
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Therefore, if @ is skew,
0=23 (el y= 3 (p(x))2 + 2(—p(x)P=23 (x)?modn,
since —@(x) = (p(x)y-1y, ®(1)" =0, and the preceding lemma. But
TeP=|6lnt S el M= D@D
=0 6

. Thus

|G| -En—_i)_:g_zf_]_)EOmod n,
:OI‘_
(28). 3 GlaYn—1)@n-1),

Fromi this we deduce

THEOREM 8. Suppose g group G of odd order contains a normal subgroup K of
" order prime 1o 3 with cyclic factor group aof order divisible by 3. Then G admits ne
skew Room map.

COROLLARY., A1 abelian group of odd order possessing a nontrivial eyclic 3-Sylow-
group admits no skew Room map.

REMARK. The corollary was proved in terms of skew strong starters {compare
with Section 8) in Walijs and Mullin (1973).

8. Room maps apd starters

the literature on Room Squares and one-factorizations of complete graphs; see for
example Mullin and Nemeth (1969), Wallis et al. (1972), Wallis (1973b), Wallis
and Mullin (1973) and Anderson (1974). We derive a one-to-one correspondence
between starters and Room maps,

Let Gbea group of odd order,
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- A starter for G is a partition X = Hx,y3|iel} of G—{1} into 2-sets such that
(roptlienu{yapt|iel} = G—{1}.
A right adder for X is a subset 4 = {a;|ieI} of G—{1} such that all a; are distinct,
and {x;q;|ie[yu{ya|iel} = G—{1}; similasly, a left adder for X is a subset
A'.'_= {a;}iel} of G—{1} such that all a; are distinct, and

{ﬁ{x‘jl fE‘I} U{aiYil fEI} = G—{l}.

The addeér A is skew if and only if {a;, a7 iel} = G—{l}

Every group of odd order admits a starter X, = {fx,x 3| x€ H}, where H is a
subset of G with HaH-1=@, HUH™1=G-{i}. This starter is called the
patterned starter.

THBOREM 9. Let G be afinite group of odd order, H a subset of G with Hn H 1=,
HuH1=G-{ll.
1. If'p is a Room map of G then

X, = {frp(xy, x p(x) x> €H ¥
is a starter for G. If ¢’ is a Room map (skew) orthogonal 1o ¢ then
A,y ={px) ¢ )| x e H}

is a right (skew) adder for X,. In particular, X is the patterned starter, and if @ is a
strong (skew) Room map then

Ay = {p(x) | x e H}

is a right (skew) adder for the patierned starter.
2. If X = {xpy3| i€ 1} is a starter for G then the map x defined by

ex() =1, ex(t)=9ex(FH=x714= ¥t

where 12 = x; yg* is @ Room map. If A = {a;|F€ 1} is a right (skew) adder for X then
the map @x 4 defined by

pxd) =1 px.alt)=pxa(T)=atxpt =07 T
where 13 = x; y71 is a Room map (skew) orthogonal to ¢x.
ProOF. Since G has odd order the map x->x2 is a permutation; so the s are
well defined. By definition of a starter, {#;, ;*{iel} = G—{l}, and therefore @y

and @y 4 are well defined. The verification of the starter resp. Room map axioms
is then straightforward and will be omitted.
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~ 8.2, During preparation of this paper I received a paper of Gross and Lecnard
(1975) on adders for the patterned starter in nonabelian groups proving some of the
results above. They work with left adders for the patterned starter which are
rcl;itecl to Room maps by Theorem 9 via the following.

LEMMA 9. If A={a]icl} is a right adder for the patterned starter then
A" ={a;)ic I} is a left adder for the patterned starter, and conversely.

PROOF. Let the patterned starter be X = {{xx;, x;%}|i€}. Then A is a right adder
for X if and only. if {x;a,,x71a;|i€ I} = G—{1}, or, taking inverses, if and only if
{aptx;Y a7t x;|ie Iy = G—{1}, that is if and only if 4" is a left adder for X.

COBOILARY. To every strong Room map @ a left adder of the patterned starter
{{x,x1}| x € H} is associated by A’ = {@(x)| x € H}; conversely, cvery left adder of
the patterned starter corresponds to a strong Room map.

By the corollary, Theorem 1 of Gross and Leonard (1975), together with their
Theorem 4 is, if H is abelian, equivalent to the special case of Theorem 6 of this
paper, where the pairs of orthogonal Room maps are composed of the trivial
map and a strong Room map, each.

By Lemma 9, the existence of right adders is equivalent to the existence of left
adders (for the patterned starter only!); in particular Theorem 2 of Gross and
Leonard (1975) may be replaced by the ‘dual’ of Theorem 1, giving an existence
criterion for right adders in extensions of abelian groups not depending on the
factor system.

Theorem 6 of Gross and Leonard (1975) is equivalent to Theorem 7 here.
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