Sonderabdruck aus
- ARCHIV DER MATHEMATIK
Vol. 33, 1979 BIREHAUSER VERLAG. BASEL UKD STUTTGART

Fase, 4

Strongly regular graphs with smallest eigenvalue — m

.

By

A. NEUMAIER




392 ARCH, MATH,

Strongly regular graphs with smallest eigenvalue —

By

A, NEUMAIRR *)

1. Definitions and well-known results. Al our graphs are undirected, without
~ loops and multiple edges. A graph I"is strongly regular (or a SRG) if

{i) every vertex is adjacent to & vertices,

(ii). the number of vertices adjacent to any two adjacent vertices is 4,
(it} the number of vertices adjacent to any two nonadjecent vertices is u.

We denote the number of vertices by v, and assume always the nondegeneracy
condition 2 < % < » — 3. The vertex sot of I is denoted by . A eounting argument
gives
(1) plo—1— k) =k{E—1—2).

We call two vertices first {second) associates if they are distinet and adjacent (non-

adjacent), Then the number of vertices z which are i-th associates to » and j-th
asgociates to y is p:f’,- if x and y arc k-th asscciates; here

l“thﬂ—[ 3 k—l_w
T ph ple) [E—1—21 A--v—2k)
2__[10?1 png [ 1z k—p ]
P ek ok F—p ptov—2k—2[
The complementary graph I'' with the same points, adjacent if they are distinct and
nonadjacent in I is also strongly regular, with parameters

G=v, k=v—1—F, Z=y+v—2k—-2, u=AiA+v—2%.

i

The adjacency malriz M = (mgpla,pep of I" has mqp = 1 if ad is an edge, =0
otherwise, M satisfies the squations

(2) M=A—wmMt+E&—pwitut, M=k,
and has the eigenvalues %, # — m, —m with multiplieities 1, f, v — 1 — /s where
(3) n=(u— At tdlk—p), n>0, m=1i@+u—2),

fzé(v—1—%(%—{@—1)(#—1»).

*} Part of this work was done while the author was at Westfield College, London.
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: 1.1. Lemma. The parameters of @ SRG can be expressed as
@) . 'v=p+ﬁ+n(2m——1)—2m(m—'-1],
f = (lm — 1)t i — DEn 2ot 1),

k=p+m{n—m}, F=p- m—1D@nt+1—m),
- A=ptn—2m, i=pt2m—n—2,
P __[ ntn—2m (m— 1) {n -I—l—m)]

(m — 1){m 4 1 —m) P
Pt J! _ m{n — m)
m{n — m) w+2m—n—2 ’
.'whérel M, By Y Jh satisfy the restrictions
(G g = mm — 1}{n + 1 —m)(n —m),
B 1Em=n,

p = max{0,2m —n},
ﬁ;max(O,n—-2m+2).

. Moreover, if u== 0 then : /
(6) ﬂ:_1_(#4_(m__1)(n_m))(y+m(n+1—m)) e
—1

j = ?%-n_ (o + m(m — m)) (u +m(n 1 —m)),

k__(ﬁ,—l)(n—i—l-—-m)

(o + min—m)).

Proof. The expressions for the parameters, and the cquation for yy can be easily
verified using (1) and (2), 1 < m = n follows from the fact that pls and ple are
nonnegative, and the inequalities for g and p come from the fact that the other ot
are nonnegative.

A conference graph {(or pseudo-cyclic graph) is a SRG with v =4 + 1, k=25,
A=y —1, and hence # = YEp 41 m=30+ au +1). It is not difficuls to
prove from (1) and (2):

1.2, Lemma. The paramelers m, n of & SRG which is not a conference graph are
inlegers.

A straightforward proof yields also

1.3. Lemma. -
() m=1if u=0 iff I' is disconnecled iff- I" is the union of at least 2 pairwise
disjotnt n-cliques.
) m=niff u=0 iff I is a complete mudtipartite graph with classes of size m.
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. L4 Lemma. The complement of a SRG with paramelers m, n, i has parameters
: m’=n+l—m,n’=n, n=g.

9. Krein condition and absolute hound. If I"is a SRG such that I" and its comple-
- ment are connected (i.e. 1 < m < n) then there is another notation for the param-
- eters, Hubaut [8] and Seidel [12] use

their parameters my parameoters
for the complement

LT N
b

p—1—f

Hubaut’s paper contains constructions for most of the known SRGs, whereas
Seidet’s paper is a survey of theoretical results on SRGs. In particular, Scidel reproves
two necessary conditions for the parameters of a SRG which he calls the Krein
condition and the absolute bound.

2.1, Lemma (Kretn condition). If 1 <m < n then
(7 pr—mim—1)) < m— 1) —m)(n+mim— 1)),

2.2, Lemma {Absolute bound). If 1 << m < a then
(8) v =1/(f+3).

- Equality in this conditions imply certain extra geometrical properties.
3. The hound for 4.

3.1 Theorom. For a nontriviel SRQ with integral smallest eigenvalue — m,
L < m <n, we have

(9) p=m3(2m—3).
Equality implies n = m(m — 1)(2m — 1).

Remark. We call (9) the g-bound.

Proof. Fix m, 1 << m < n. Then ugn % 0.
() He=2m—1thengzlopZmm—1n+1—mn—m <
m(m — 1)2< m3(2m — 3).
(i) H2m—1<n=<m?+m—2 then
mim—1}n+ 1 —m)(n —m)
n—2m4 2

ﬁgn—-2m+2—+y§
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This expression is convex in %, henee has its maximum at either n = 2m — 1,
or n = m?% -+ m — 2. Therefore,
' pSsmax(miim—1)2, (m2—2)(m? — 1)< m3(2m —3).
{iii). If mi24m—2=n=mim—1)(2m — 1) then the Krein condition implies
(m —1){n—m){n+m@m—1))
o n—mim—1)
whence p = max((m? — 2){m? — 1), m3(2m — 3)) = m3(2m — 3), and equal.
1ty holds iff # = m({m — 1}{2m — 1).
(iv) Ifn>m{m— 1)(2m — 1) then g << m(n — m); for g = mn — m) gives a
- contradiction with the Krein condition. We show that the assumption
p = m*(2m — 3) confliets with the absolute bound. In fact, using (6), we find

. This expression is again convex in #,

2p 2n. utm—NHn—m .n—-m u+ m?

T om—1 i+ min —m)- =2p +2+m2(m 1)
{ft — m®) (m(n —m) — u) n—1m p + m?
i m— Dt min—m) o um V2 i 1)

and, in a similar way,

Zme{m — D(Em — 1)
-+ m? '

2v :
Inserting this into the absolute bound Tg F+ 3 gives

(2 — md(m — 13) ——”—?'< 3me—8m 4+ 1 —

7 — M
j<<m3{m —1)- +3m{m—1) —

# + m? 2m2(m — 1}(2m — 1)
T omEm—1) th+ m?
The right hand side is coneave in g, with & maximum at
p=—mitmim—1))/dm—2 =md(2m —3),

hence (under our assumption g = m3(2m — 3)) it is =m2(3m — 5). The left
2 —mi(m—1)

hand side is > = m%(3m — b}, contradietion,

m2

Remarks. 1. Hoffman {7] proved a bound g < fim) for 1 << m << n, with very
large f(m).

2. For m = 2, 3, there are SRGs which satisfy (9) with equality.

4. Partial geomeiries. A geomelric 1-design consists of a set P of points, a set L
of lines, and an incidence relation I between points and lines such that
(i) Every point iz incident with (or on) exactly B = 2 lines,
(i) Every line is incident with (or confains) exactly K = 2 points,
{iii) Two distinct points are incident with at most one line.
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The dual of a geometric 1-design is obtained by interchanging the rele of points
and lines, and is again a geometric 1-design (with B and K interchanged). Two
points (lines) are called adjucent if they are on a common line (contain a common
point). This defines a graph on the set of points (lines), and we call it the point graph
(liné graph) of the design. Point graph and line graph are dual concepts.

A 2-(v, K, 1)-design is a geometric 1-design on v points with the property that

any two distinet points are on a unique line. Then = _IETII- , and the number
of lines is b =£{-EK%13—) . The line graph of a 2-(m - n{m — 1), m, 1)-design
with 2 = m =+ 1 is called a Steiner graph Sp(n). An Sg(n) is also called a triangular
graph T (n + 2). By famous theorems of Wilson [15] and Hanani [5], 2 — {v, K, 1)-
designs exist for all v = vo(K) with K — 1o —1, K(K— 1)]v(w — 1). We have
vo(K) =K% — K 41 for K =35. Hence

' 4.1. Lenima. Steiner graphs Sp(n) exist for all n = m (m) with m|n(n+t1), and
ny(m)=m+ 1 for m =5

A 2(v, K, 1)-transversal design is a geometric 1-design on v points which can
be partitioned into K classes of B = »/K points each such that two distinet points
are on & line iff they are in distinet classes. The line graph of a 2-(mn,m, 1)-
transversal design with n = m - 1 is called a Latin square graph LSp(n) since a
9 — {mn, m, 1)-transversal design is equivalent to m _. 2 mutually orthogonal
Latin squares of order #. An L83(n) is also called a lattice graph Lz{n). By & famous
theorem of Chowla, Erdds, and Straus [4] 2-(m n, m, 1)- transversal designs oxist
for m > nam), and ng(m) =m — 1 for m = 3. Hence we have

4.2, Lemma. Latin squarc graphs LSy, (n) exist for all n. 2> 02 {m), and ng(m)=m+1
for m = 3.

A partial geometry PG(R, K, a) is & geomstric 1-design with the property that for
any noninecident point-line pair (p, 1), there are exactly « = 1 points on { adjacent
to p. The dual of & PG(R, K, «) i8 & partial geometry PG{K, R, u). A partial geo-
metry with o = 1 is called a generalized quadrangle. The following lemmas are well-
known and straightforward.

4.3. Lemma. For a partial geomelry PG(E, K, ),
(10) o« = min{k, K).
o = K iff the partial geometry is a 2-(R(K — 1} + 1, K, 1)-design, and o = K — 1
iff the partial geometry is a 2-(EK, K, 1)-transversal design.

4.4, Theorem (Bose [1]). The point graph of a partial geometry PG(R, K, o) with
o < K iz ¢ SRG with paramelers
(11} m=R, n=R+EK—a—1, p=ul,
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In particular, @ Steiner graph Sg(n) 13 strongly reqular with paramelers m, w, y = M2,
and e Latin square graph LS (n) is strongly regular with parameters m, n, g =m{m—1).

" By {10) and 4.4, the point graph of & partial geometry has m|u = m2 Any SRG
with m | u < m? is called psecudo geometric, and geometric if it is the point graph of a
partial geometry. A SRG is called a pseudo Steiner graph Sy, (n) if p = m? and a
pseudo Latin sguare graph LS, (n} if p=m{m — 1).

. The known conditions for SRGs allow to generalize an inequality of Higman 6]
for genéralized quadrangles.

" 4.5. Thorem. For a partial geometry PG(R, K, a) with « < K — 1,

(12 - R—1S(K—«?@e—1),

and equality implées a=1o0or K=2a41.

.I Proof. The complement of the point graph has parameters
m=K-—«, n=Rt+K-—a—1,

1
g:E(R—l](K—m)(K——m—l).

For K = 2¢ -+ 1, we employ the Krein condition which yiclds

(13) (K —2a)(B—1) = (K —«)2(K —2).

Stnee K — 2 = (20 — 1)K — 20) — 2{a — DK —2¢ — 1) = (2e — 1} (K —2u),
(12) follows. For K = 2a, we use theorem 3.1 which gives

(14} (K—oc—1)(R-1)§(K—a]%(2K—2m-3).

Since a{2K — 20 —3) = (2a— 1) (K —a—1) —(2a+1—K)<(Za— 1K —2a), (12)
follows again,
Using properties of m-claws, Neumaier [9] proves

4.6. Theorem. A SRG with smallest eigenvalue —m, m > 1 infegral, is geomelric if
(15) n > max(2(m — Vg +1—m), fmim —{p+ 1)+ m— 1.

This result has been proved by Bose [1] under the additicnal assumption that
the graph is pseudo geometric {which is essential for his proof). It turns out that
inequality (15) can be satisfied only in ease of pseudo Latin sguare graphs and
psendo Steiner graphs:

4.7. Theorem. Let " be a SRG with smallest eigenvalue —m, m > 1 infegral.
@ If p=mim—1), i.e. I'is a LS, (n), and n>f(m— 1) {(m3 —m? +m+2)
then I'is a Latin square graph LSy (n) (Bruck [21).
@) If p=m? i.e. I' is a Sp(n), and n > f{m — 1)(m? +m 4 2) then I" is a
Steiner graph Spm(n) (Boss [1]).
(i) Jf p == m(m — 1}, m? then

(18) n=imim— 1 {u+1)+m—1.
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' Remark. We call condition (iii) the claw bound.
‘Proof. Suppose first that (15) holds. Then theorem 4.6 implies that there is a
pariial geometry with B = m, K:%—f—ﬁ—l—i — 1, oc:%-. Now

01 E—1>2RB—0)Re—1)—(R—«
since otherwise '
a=R+K—a—1=Z2m—a)ma—1) =
. ' é2(m—1)(m(oc—1)+1)=2(m—1)(‘u-1~1—m).
I g =mmm—1) m? then 2 < « < B — 1 since « is an integer. For R = 2a,
(17) contradicts the dual of (12}, and for R = 2a + 1, (17) contradicts the dual
of (18). If & = m then the dual of (12) says K — 1 < (R — 1% ien=mm—1)
contradicting (15). Hence g = m(m — 1}, or g = m2, and we get (i) and (ii).
Now suppose that (15) and (18) fail. Then
{18) tmn— g+ D +m—i<ns20m— 1)+ 1 —m),

whenee 0 << 2{m — 1)(2m + 1) < & —m)(m — L{p + 1), or m < 4. ¥or m = 2
and m = 3, o somewhat tedious celenlation shows that (18) contradicts the absolute
bound {this part of the argument is due to Brouwer [16]). Hence (16) holds.

5. Tho characterization theorem. In this section we give a new proof of the follow-
ing theorem by Sims (cf. Ray-Chaudhuri {10]).

5.1. Theorem (Sims). T'he SRGs with smallest eigenvalue —m, m = 2 integral,
are the following:
(a) Complete multipartite graphs with s classes of size m,
(b) Latin square graphs LSn{n),
(6) Steiner graphs Sp(n),
{d) Finately many other graphs.

Proof, Suppose first that m > m4(m — 1)% Since, by 3.1, u = m3{2m — 3},
mim —1

( 7" 2 (4 1) +m — L. Hence the claw hound implies that
p = mim — 1) or p=m? But then theorem 4.7 implies that we have case (b)
or (¢). Suppose now that # = m. Then » = m, and by 1.3 (b), we have case (a).
Finally suppose that m < % < m8(m — 1). By 3.1, 1 < p < m?(2m — 3) whenee
there are only finitely many possible triples (m, n, ) with the given m. Far each
of them there are only finitely many graphs, so that {d) holds.

we have a4 >

5.2. Theorem. The SRGs not covered in theorem 5.1 are the following:
(e) Conference graphs, )
(f) The union of s pairwise disjoint n-cligues.
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!

|Proof. By 1.2 and 1.3, )

\ We look more closely at the six possibilities:

\) These graphs have n = m, u = m(s — 1), and exist for all s = 2.

b) . These graphs have u = m(m — 1), and oxist for all sufficiently large =, by

_ Chowla, Erdds, and Straus [4].

c) These graphs have u = m2 By 1.1 (5), they can exist only for m]an + 1),

‘ By WzlSon [15], they exist for all sufficiently large » with m|n(n + 1).

dy '_I‘hese graphs fall into three classes:

d;) Pseéudo Latin square graphs LSy, (n) which are not Latin square graphs. They
‘have g = m(m — 1), and by theorem 4.7, # = 1m — 1}{m® — m2 + m 4 2).

(ds) Pseudo Steiner graphs 87, (1) which are not Steiner graphs. They have p = m?,

‘and by theorem 4.7, and 1.1 (3}, m|nin + 1), n < $Hm — 1)(m® + m + 2).

{ds)’ Grb.phs with exceptional parameter sets, see below.

(e) These graphs have v = 4u + 1, b =2p, A = g — 1, and exist for infinitely

‘many values of x. v has to be a sum of two integral squares (see e.g. [8]).

{f) 'These graphs have m = 1, g = 0, and exist for all positive infegers s and #.

! A parameler set is a 10-tuple IT = (m, n, g, t, f, 0, &, k, 4, A) of integers satisfying
[ the relations (4) and (5) of section 1. A parameter set JT is admissible if it satisfies
| the Krein condition (lemma 2.1), the absolute bound (lemms 2.2), the u-bound
(theorem 3.1), and the claw bound (theorem 4.7 (ii})}. An admissible parameter seb i
with | < m << n, g & m?, m{m — 1) js called exceptional. By theorem 5.1 (d), there
are only finitely many exceptional parameter sets for each integer m = 2.

In table 1 we state the three exceptional parameter sets with m = 2.

Tahble 1. Exceptional parameter sets with m = 2,

No.mn pu f f v L k% A % Examples
1 2314 5 10 38 G 0 3 Petersongraph
2 %2 4 6 2 5 16 10 5 G 0 Clebech graph
4 2 6 8 5 6 27 16 10 10 1 Bchlifi graph

The uniqueness of the three exceptional graphs has been shown by Seidel [11].
Shrikhande [13] showed that there is & unique graph with m = 2 in class (di),
namely a LS5 (4) = Ly(4), and Chang [3] showed that there are exactly three graphs
with m = 2 in class (dp), all three of them 8;(6) = 7"(8). Now theorem 5.1 implies

5.3. Theorem (Seidel [11]). The only sirongly regular graphs with smullest eigen-
value —2 are the cocktailparty graphs (= complement of a set of disjoint edges), the
triangular graphs T(n + 2) = Sa(n), the lattice graphs Lo{n) = LSa(n), the Shrik-
hande graph, the three Chang graphs, and the graphs of Peterson, Clebsch, and Schidfl:.

For m = 3 there are 64 exceptional parameter sets, 28 of which correspond to
known SRGs. In two cases nonexistence of the graphs is known, and 34 cases are
still undecided. A list will appear elsewhere.
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