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Distances, Graphs and Designs

A, NEUMAIER

1, INTRODUCTION

This paper unifies the treatment of certain problems dealing with intersection matrices
of t-designs, strongly regular graphs, finite metric spaces, few-distance sets on the
Euclidean sphere, and t-designs in Q-polynomial association schemes.

Cesitral to our theory is the concept of a distance matrix. Distance matrices are real,
symmetric matrices closely related to finite metric spaces. We classify distance matrices
according to two parameters, the degree s and the strength . The degree is the number of
distinct off-diagonal entries, whereas the strength measures the inner regularity of the
matrix. A distance matrix without repeated rows which has strength ¢ for all ¢ = O is cailed a
Delsarte matrix.

Delsdrte matrices of degree 2 are essentially the strongly regular graphs, and, in general,
a Delsarte matrix is equivalent to a Q-polynomial association scheme in the sense of
Delsarte [4]. We show that every distance matrix with degree s and strength r =25 -2 isa
multiple of a Delsarte matrix.

For every r-design, or transversal -design 4 there is an associated distance matrix C of
strength ¢ which is closely related to the intersection matrix of &; the degree of C is the
number of distinct intersection numbers of 9. Using this, we are able to derive results by
Majumdar [9] on bounds for the intersection numbers of 2-designs, by Beker and Haemers
[1] on 2-designs with intersection number & — + A, and by Cameron [3] on t-designs with
few intersection numbers.

Finally, spherical t-designs introduced by Delsarte, Goethals, and Seidel [5], with the
spherical metric, also give rise to distance matrices of strength ¢, which explains the
similarity of the theory in [4] and [5).

2. DISTANCE MATRICES

Let X be a w-set. Since we use X as labelling set for the rows {and columns) of
symmetric w X w-matrices we call the elements of X rows.

A distance matrix (on X} is a non-zero real symmetric w X w-matrix C = (Cuy)yex With
non-negative entries, ¢,, =0, and zero diagonal, ¢., =0, such that the distance Junction
d(x, y) = ci/* satisfies the triangular inequality

dlx, 2Ysd(x,y)+d(y, z), forallx,y,zeX 2.1

If ¢,, =0 then (2.1) implies ¢.x = ¢ay for all @ € X, and the converse holds since ¢, =0.In
particular, C has no repeated rows iff ¢,, #0 for all x, y € X, x # y. In this case, d{x, y)
makes X into a metric space. Conversely, if X is a finite metric space with metric d{x, y)
then the matrix C = (d(x, y]z),\.,,;.E x is a distance matrix without repeated rows.

We say that two distance matrices C = {¢.,) on X, and C’' = (¢',,) on X', are isomorphic it
there are a bijection #:X - X, and a positive number v such that ¢,, = y¢' . -y for all
x, y € X. Clearly, isomorphism is an equivalence relation.

We denote the identity of size m X m by I....,, the all-one matrix of size m X n by J,.p,, and
the all-one vector of size m by j,,. If there is no doubt we simply write I, J, and . We call any
matrix isomorphic to C X J,.. (where X denotes the Kronecker product) a mth multiple of
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C. A symmetric matrix C is a mth multiple of a matrix without repeated rows iff every row
of C is repeated exactly m times.

A distance matrix all of whose off-diagonal entries are the same is called rrivial; all trivial
distance matrices are isomorphic to J — 1.

We say that x, y € X is an antipodal pair of rows of C if ¢ 4 Cay = €5y forall @ € X, Tt is
easy to see that the number v =3¢, is independent of the antipodal pair, and thatif x, y is
an antipodal pair then x, y' is an antipodal pair iff ¢,,»=0. In particular, if C has no
repeated rows then every row x has at most one antipodal mate x' such that x, x' is an
antipodal pair.

We say that C is antipodal if it has no repeated rows, and every row has an antipodal
mate. In this case we may split X into two sets Y, Z such that Z is the set of antipodal mates
of Y. Then the matrix D = 4J — C|yx ¢ has diagonal entries y, and no repeated rows, and C
can be written as

- (‘y.f -D )J+D) 2.2)

w+D w-DF

Conversely, every such matrix is antipodal.
If Y, is a subset of Y, and Z, = {x'|x € Yo} then we can split X into ¥ =(Y — Yp)u Z,,
=(Z —Zo)u Yo; the corresponding matrix D = yJ ~ C|p«¢ is obtained from D by
multlplymg the rows and columns corresponding to Y, by —1. This operation is well-
known under the name of switching (Seidel [13]). Switching with respect to arbitrary
subsets is an equivalence relation; and any two switching equivalent matrices D, D give
rise to isomorphic matrices C via (2.2).

2.1. LEMMA. Let C={c.,) be a non-zero real symmetric matrix (on X) with zero
diagonal. If, for some v >0, vJ — C is positive semi-definite then Cis a distance matrix.
Moreover, ¢y, <2v for all x, y € X, and c., = 2 implies that x, y is an antipodal pair.

PrOOF. The principal submatrices of dimeansion 2 and 3 of yJ — C are the matrices

y y—c ¥ Y "Cxy Y Cx
Px',-:( —c x}‘)’ nyz: Y_CXY Y 'Y—C_y; *
Y d Y ¥~ Cez ¥ " Cy:z Y

Hence 0<detP,, =2ycy —Coy Whence 0=c,, =<2y, and 0=det Py, = y{(2(cxCp +
CxyCyz + cxzcyz) €2, =2 =) = 20uyCuiCyr WhENCE  2(CeyCer + CayCyz +Caslyz) = Cpy
(.'xz +¢2, which can easily be transformed into the triangle inequality for d{x, y) = o3l i

=2y then det Pyy; = —y{¢x, + €y — 29)*, which is non-negative only if ¢, +¢,. =2y =
c,w. Hence x, y is an antipodal pair.

We now present the examples which relate combinatorial and geometric structures to
distance matrices.

A design (or incidence structure) is a triple (P, %, I') (foosely written: &) consisting of a
set P of v points, a set B of b blocks, and a relation [ = P x 3 called incidence. We write
peBor Bapif(p, B)cl Loosely we regard a block B as the set of points incident with B.
Thus we say B, B' is a pair of repeated blocks if B # B’, and B and B’ are incident with
exactly the same points. The block size is the number of points incident with B.

The incidence matrix of a design @ is the v b-matrix A whose rows are abelled by the
points, whose columns are labelled by the blocks, and whose entry in cell (p, B)isiz =1 or
0 according as p and B are incident or not. The matrix A TA is called the intersection matrix
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of %, and contains in cell (B, B’) the number of points incident with B and B'. Hence the
diagonal contains just the block sizes of B. The off-diagonal elements are called the
intersection numbers of B, From Lemma 2.1 we directly get the following lemma.

LEMMA2.2. Let A be the incidence matrix of a design B with constant block size k. Then
C =kJF —ATA is a distance matrix, or C =0 (We call C the distance matrix of &).

A graph is a pair (P, €) (loosely written: %) consisting of a set P of v vertices (or points),
and a set ¥ of uncrdered pairs of points, called edges. The adjacency matrix of a graph ¥ is
the symmetric matrix M whose rows and columns are labelled by the vertices, and whose
entry.in c'elll (a, b)is 1 if {4, b} is an edge, and 0 otherwise {some authors use other types of
adjacency matrices). The eigenvalues of a graph are eigenvalues of its adjacency matrix.
Again from Lemma 2.1, we have the following lemma.

LEMMA _2;3. Let M be the adfacency matrix of a graph G with smallest efgenvalue —m.
Then C =m(J —I'N— M is a distance matrix, or C =0 (We call C the distance marrix of G).

In the d-dimensional real vector space R%, we define the standard inner product
{x, yY=x1y1+ * - + xsp4 The unit sphere is the set of points x € R with {x, x) = 1. If x, y are
points on the unit sphere then & = arccos {x, v is the angle between the vectors 0x and Oy.
In particular, {x, y} = 1 implies x = y. If X is a finite set of points then the Gram matrix of X
is the matrix Gram X ={{x, y)).,ex It is well-known that this matrix is positive semi-
definite. Hence we obtain the following lemma from L.emma 2.1.

LEMMA 2.4, Let X be a finite set of w=>1 poinis on the unit sphere in a finite-
dimensional real vector space. Then C = J — Gram (X)) is a distance matrix without repeated
rows (We call C the distance matrix of X).

We note that the metric corresponding to € is (up to a scalar factor) the metric induced
on X by the euclidean metric.

Let X be a finite set of points. An (s-class) scheme on X is a partition of the set (9 of all

2-subsets of X into s = 2 non-empty classes. Two points x, y are ath associates if x # y, and
{x, y}is in the class with Iabel o, We define k., (x) as the number of ath associates of x, and
Pag (x, y) as the number of z € X which are wth associates of x, and Sth associates of y. If we
write D, = (d%,) with d%, =1 or 0 according as x and y are ath associates or not then

J-I=1.D., (2.32)
D.j = (ka(x)), (2.3b)
D.Dg = (pap{x, ¥)), {2.3¢)
Pap(x, x) = ko (x)aas; (2.3d)

where 8,5 (=1 if &« = 8, =0 otherwise) is the Kronecker symbol.

A regular scheme is a scheme with k. {x) = k, for all points x, and an association scheme
is a regular scheme with p.e(x, v) = pis whenever x, y are yth associates.

For later use, we define some invariants of distance matrices.

Let C be a distance matrix on a w-set X. We call § ={c,,|x 5 y} the set of distance
numbers, and s = |§| the degree of C. In particular, C is trivial iff s = 1.
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If C has no repeated rows then 0 2 S, and we define the annihilaror polynomial of C tobe
the polynomial

Anne(x)=w [] (1—£).
waEd o
Tlhen Annc (0} = w, and the distance numbers are just the zeros of Anns(x).
" The distribution scheme of C is the s-class association scheme on X defined by calling
x, y wth associates iff x # y, and c¢., = e. The corresponding (0, 1)-matrices D2, are called
- the distribution matrrices of C, and we can express C as
C=3% aD.. (2.4)

acs

3. STRENGTH. DELSARTE MATRICES

- If A ={(ay,)isamatrix, | is a non-negative integer, and f is a real function, then we define
the matrices A" =(al,), foA = (f{aw)). Here 0°=1, so that A =7, AV = A
Let r be a non-negative integer. We say that a distance matrix C has strength ¢ if for all
- non-negative integers /, j with i +j =< ¢, there is a polynomial f;{x) of degree <min (7, /)
such that

C“)C“):ffj°c,i+f“{"r- (3.1)

Isomorphic distance matrices have the same strength. If ' has strength ¢ then £ has
strength ¢ for all ¢’ = 1. Besides the degree, the maximum strength is the most important
characteristic of a distance matrix.

A Delsarte matrix is a distance matrix without repeated rows which has strength ¢ for all
non-negative integers ¢ It is easy to see that the trivial distance matrices are Delsarte
matrices, Examples of non-trivial Delsarte matrices arise, e.g., from certain #-designs,
strongly regular graphs, and spherical - designs.

Immediately from the definitions, we have the following lemma.

Lemnma 3.1,

(i) Every distance matrix has strength 0.

(ii} A distance matrix has constant row sums iff it has strength 1.

Distance matrices of strength 2 can be characterized by algebraic equations.

THEOREM 3.2. A real symmetric wXw-matrix C with zero diagonal satisfies the
equations

T =¢J, C*+nC =wlelc+n)], (3.2)

for some positive real numbers ¢, n iff Cis a distance matrix of strength 2. In this case,
(i} f=c/n is an integer,
(i) If Cisnon-trivial then the matrix C'=n{J —I)—Cisalsoa drstance matrix ofstrengrh
2, withw=w,c'=nlw=1)—¢, n'=n. :

ReMARK. We call C’ the complement of C. The complement of the complement of C
is again C.

Proor. If Cisadistance matrix of strength 2then(3.1)fori=1,j=0,resp.i=1,j=1
imply the existence of numbers ¢, a,  with CJ = cJ, C*= aJ —nC'; and multiplication of
the second equation by J gives then a =w '¢(¢c +n). Hence (3.2) holds. Moreover, ¢ is
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positive since C has only non-negative entries, and C # 0. Conversely, suppose that Cisa
real symmetric w X w-matrix with zero diagonal satisfying (3.2) with ¢>0. Then the
matrix D =w™'¢J — C satisfies D> = uD), hence the only possible eigenvalues of D are n
and 0. Suppose that » is an eigenvalue of multiplicity . Then f is a non-negative inteper,
and fo =tr D =c¢ >0, whence f>0, 1 >0, f=¢/n.

Inparticular, I is positive semi-definite, and by Lemma 2.1, C is a distance matrix. Now
(3.1) for i =<1, =<1 follows directly from (3.2), and (3.1) for {i, j}=(0, 2}, i.e. C¥J=
const. J follows from looking at the diagonal entries of C>=w ‘c{c+n)f —nC. This
proves the équivalence, and (i).

Now it is easy to show that C' = n(J — 1} — C satisfies equations like (3.2) with the stated
parameters.

LEMMA, 33. If Cis a distance marrix of strength 2 then, with the notation of Theorem
3.2; ,
(i) Os¢,snforallxy,
(i) ey {0, nYiffco=cp. forallz #x, v,
(iii) Qc—n{w—2))/w<c,,<2c/wforallx, y withx #y,
(V) ¢ =2¢/wiff x, y is an antipodal pair, and
(v) oy =2¢ —n(w=2Ywiff x, v is an antipodal pair in the complement.

Proor. From (3.2), we find

§ 1=w, (3.3a)
g Cxr = Z Cyz =€, | (3.3b)
Z CezCyz = C(C: " _ T (3.3¢)
and )
gciz =Zc§z=¥. (3.3d)
Hence

chy = Z (sz —LCyr )2 = zcxyna
X

which gives (i} and (ii). Also, for x # y,
2

2

= xz [ — €y

0% 3 (ewten=y 56 —c0)
2w ( 2.3'—;»3(;,:.:—2))(2.C )
= Cyy — ==yl
w—2 W "
which gives (iii). Finally,
0= z (sz -+ Cyr _ny)z = W(ny -—-2._C)(ny —2(6 + H))’

I w w

which pives (iv) since by (iii), ¢,, <2¢/w. (v) is the complement of (iv).

The next two theorems give sufficient conditions for a distance matrix to be a Delsarte
matrix. We also obtain some information on the distribution scheme.
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THEOREM 3.4. Let C be a distance matrix of degree s and strength t.
(i} If t=5—1 then the distribution scheme is regular.
(ii) Ifr=s—1, and Chasrepeated rows, then Cis a multiple of a distance matrix of degree
s — 1 and strength t which has no repeated rows.
(iii) If £ 225 —2 then the distribution scheme is an association scheme, and C'is either a
Delsarte matrix of degree s or a multiple of a Delsarte matrix of degree s —1.

Proor. First we remark that C*” can be expressed by the distribution matrices as

CP=7,¢%= Y a'D,+80l (3.4)
acs
{i) For i=t we have C“)C(m=ﬂ0°C=constJ, whence, for some constant c;
- Caeso'kalx))sy = (C = 8:,1NC® = ¢J. Hence if ¢ =5 —1 then

T a'k.(x)=c; fori=0,1,...,s-1
ashs
This system of equations for k,(x) has a Vandermonde determinant, hence a unique
solution; therefore, k.{x} is independent of x, and the distribution scheme is regular.
_ (i) If C has repeated rows then 0 is a distance number. (i} implies that ko(x) = ko for all
x; hence every row is repeated exactly m = ko-+1 times. Therefore, C is a mth multiple of
another matrix Cp without repeated rows. As a principal submatrix of C this is a distance
matrix of degree s~ 1 (since 0 is not a distance number of Co), and from fe(CxJN)=
(foC)xJ, (CxJ)"=C"x I follows easily that Cy has strength . _
(lll) For I+f“{‘ts we have (ZQESZBESQIEIPQfB(x’ y)=(ZuESaIDa)(ZBES.3,Dﬁ)=
(CP = 8,0I(CW = 8;00) = fyyo € — 8:16CY = §;0C"" + 8:108,01. Hence, for 1 =25 -2, there are
functions f;; such that for ¢, =17, x # y,

Y ¥ @Bl y)=fuly) forij=0,1,...,5s-1,

acsS des
This system of equations for p.g(x, ¥} has a double Vandermonde determinant, hence a
unique solution; therefore, for x # y, pag(x, y) depends only on @, 8, and ¥ = ¢yy. Since
s=1, 1=5—1, so (i) applies, and the distribution scheme is an association scheme.

If C has no repeated rows then the annihilator polynomial Anne(x) is defined, is a
polynomial of degree s, and satisfies AnneoC = wl. Hence every €', i=s can be written
as a linear combinationof €, C®, . ... €™ and I, Hence, for i =5, j < s — 1, CVC"is
a linear combination in C0C®, ..., Cc*BC®, ¢, hence =f;°C with a polynomial
fii{x) of degree <¢j. Repeating this argument with i and f interchanged, we obtain the same
conclusion for general i, j, whence C is a Delsarte matrix of degree s.

If C has repeated rows then by (ii), and the above argument, C is a rultiple of a
Delsarte matrix of degree s —1.

THEOREM 3.5. Let Cbe a distance matrix, and suppose that C and its complement have
strerngth 3. Then either C is a Delsarte matrix of degree 2, or a mutltiple of a trivial matrix,

Proor. Under the hypothesis, C®C = pC +¢J for some real numbers p, ¢, and we
find

Z ":.w:zf:)u:2 =pCxy +4. (3.5)

Similarly, we obtain from the complement,

2 (?‘I —nd,; — cxz)(n - nayz - c;.lz)2 = ."(H - axy - ny) T8, (36)

4
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for appropriate r, 5. If we add (3.5) and (3.6), then straightforward calculations, using
Equations (3.3a)-(3.3d), show that, for x #y, ¢, satisfies a quadratic squation with
.coeflicients independent of x and y. Hence ¢, x # y, can take at most two values, and C
has degree s <2. Now the resuit follows from Theorem 3.4 (iii).

E .. Another consequence of Theorem 3.4 is the following lemma.

‘LeMMA 3.6, Let Cbe a distance matrix of degree s, and strengtht =Max 2, s —1). If C
has no repeated rows and contains an antipodal pair then C is antipodal.

PROOF. By Lemma 3.3 (iv}, @« =2¢/w is a distance number, and by 3.4 (i}, k.{x)=
k. >0 for all x. Hence, again by 3.3 (iv), every point has an antipodal mate, whence C is
antipodal. -

4, THE DISTRIBUTION ALGEBRA

Let C be a distance matrix of degree s without repeated rows, and § be the set of
distance numbers of €. From now on we shall make use of the conventions

§'=8ui{0}, Dy=1 (4.1)

Using the Hadamard product {ai.}e(by) ={anbyn) for matrices, we have for the dis-
tribution matrices

DDy =8,D; fore, Be8'. (4.2)

Hence the (real) vector space V generated by the D, « € 8, is an algebra of dimension
s+1 under the Hadamard product. We call V the distribution algebra of C. The
distribution algebra reflects many properties of C. For example, we have the following
theorem.

TueoreM 4.1. The distribution scheme of Cis an association scheme iff the distribution
algebra is closed under mairix multiplication.

Proor. The distribution algebra is closed under matrix multiplication iftf DDy =
Yyes Dagh), for all @, B € 8. By (2.3¢) and (2.3d}, this is equivaient to the fact that the
distribution scheme is an association scheme.

We now construct a special basis E,, . . ., E; for the distribution algebra.

LemMa 4.2, The distribution algebra V of a distance matrix C contains a canonical
chain '

Voe Vic - c V=V 4.3)

of vector spaces Vi, of dimension 1 +1 defined by
Vi ={fe C|f(x) polynomial ofdegr-ee =i} (i=0,...,5). {4.4)

There are unique matrices Ey, . . ., E, satisfying
Vi={C, ..., C™y=(By,...,E) (i=0,...,9), (4.5)

and the weak orthogonality relations
trEE.=6x (Lk=0,...,5) (4.6)
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ProoF. Define V; by (4.4). Then V; = (™, ..., ¢, Since C has s + 1 distinct entries,
the minimal polynomial f(x) with foC = 0 has degree s +1; therefore, C, ..., C* are
. linearly independent, and V; has dimension / +1. Obviously, Vo< Vi< - - < V.. By (3.4),
V. =V, and from the dimensions we have V= V. Hence {4.3) holds.
Now define on V an inner product {A, B)=tr AB =tr A"B. This is the canonical inner
_product on w X w-matrices considered as w?-dimensional vectors, whence it is positive
definite. Hence by the Gram-Schmidt algorithm, there is a unique basis Ey, ..., E; of V|
orthonormal with respect to (, ), which satisfies (4.5) and (4.6).

REMARK. Since Eoe Vo, Ey is a multiple of J, and (4.6) implics Eq= w ' J. We
denote the rank of E; by f;. The importance of the matrices E; stems from the following
two theorems. .

" TupoREM 4.3. C has strength ¢ iff
' EEx=0ufTV2E, fori,kss,i+k=st 4.7

PROOF. (4.7) implies that for i +k <1, CPC% e ViV, ={JJeli' i k' < k) S Viinns
whence C has strength £. Conversely, by the above remark, {(4.7) is true for + = 0. Hence
assume by induction that (4.7) holds for t — 1 instead of +. If i + k =t then E:Ex e ViV &
Vmin k> Whence E;E, = min G5 g1 By for certain numbers al. If i <k then for m =i,
0= E;EcE.y =Yiu0 04 FiEm = a g [ *E.y whence aft =0 for all m <1, or EEx = EiE; =
0. If i =k then similarly aj =0 for m </ so that Ei= a;E;, where a; = at. Hence the
eipenvalues of E; are 0 or a; and the multiplicity of a; equals the rank f; of E;. Hence
tr E? = fa?, and by {4.6), a; = f '/, which proves (4.7).

REMARK. We have fo=1, Eg= w 7. If C has strength 2 then, in the notation of
Theorem 3.2, fi=f=c¢/n, El=n_1f”2D=(wn)“lf”2(c.f—wC). Thus, 4.3 may be
regarded as an extension of Theorem 3.2.

THEOREM 4.4. Let C be a Delsarte matrix. Then
(i) The distribution algebra V is closed under matrix multiplication,
(i) The matrices E| = f/2E, form a basis of mutually orthogonal idempotents of V.

(i) There are real w X fi-matrices H; = (h%) such that fori, j=0,...,s,
HHY= wE|, (4.8)
HIH; = ws,I,. (4.9}

Morecover, H =[Hy, . .., H,] satisfies HH = HTH = wl,..

PrOOF. (i} and {ii) follow from 4.2 and 4.3. To prove (iii), let H; be a w X fi-matrix such
that the columns form a set of f; mutually orthogonal eigenvectors of norm w'/? for the
eigenvalue 1 of E}. By standard linear algebra, (4.8} and (4.9) hold, and the equations for
H are an easy consequence of (4.8} and (4.9).

4.2, 4.3, and 4.4 imply that the distribution algebra of a Delsarte matrix is the adjacency
algebra of a O-polynomial association scheme in the sense of Delsarte [4]. Conversely, itis
easy to see from his definitions that the adjacency algebra of a Q-polynomial association
scheme contains a distinguished matrix which is a Delsarte matrix. Therefore, Delsarte
matrices and Q-polynomial association schemes are equivalent concepts, This fact led me
to choose Delsarte’s name for these matrices since he was the first who considered
Q-polynomial association schemes. Delsarte also defines ¢-designs in O-polynomial
schemes. They correspond to certain distance matrices of strength 4 as follows.




!

Distances, graphs and designs 171

“"Let C be a Delsarte matrix of degree s. Let & be a non-empty collection of rows of C (by
this we mean a set 3 of labels such that each label denotes some row; distinct labels may
denote. the same row). We define the matrices C(%)=(cxy)ryemn and Hi(®B)=
(Ai)cemi=1...s» The number of labels in & will be denoted by 4. % is called a t-design (of
Crif r=s, and
o HAB) H (B)=bSulyy, forik<s,itk<t (4.10)

By(4.9), the set of all rows of C is an s-design. Also, a -design is an i-design for all i <1,
and by;[4], a t-design of a Delsarte matrix is a #-design in the corresponding Q-polynomial
association scheme.

THEOREM 4.5, Let B be a t-design of a Delsarte matrix C. Then C (B is a distance matrix
of strength 1.

PR0.0F. " The triangle inequality for C(£)} holds since it holds for C. By (4.8},
HHT =f+C for some polynomial fi(x) of degree i. Hence also H{BYH,(B) =
fio C{BY=T,(R), say. Now (4,10) implies Ji(B)J(B) = b5y J:(B) for i, k=5, i+k =y
and as in the proof of Theorem 4.3 it follows that C(9) has strength ¢

5. COMBINATORIAL EXAMPLES

In this section, we apply the results of Section 3 and 4 to designs, graphs, and spherical
designs. Among others, we obtain familiar results by Beker, Bose, Cameron, Delsarte,
Majumdar, Goethals and Seidel.

THEOREM 5.1. Let C=kJ—ATA be the distance matrix of a design % with constant
block size k and incidence matrix A, Then JA=kJ, and
() C has strength 1 iff ATAJ = aJ for some constant a;
(iiy C has strength 2 iff AATA = nA + AAT for constants n, A;
(1) Cis trivial if}"ATA = nI +AJ for constanis n, A.
In these formulas, # has the same meaning as in 3.2,

Proor. Obviously, JA=kJ

(i} C has strength 1 iff CF =cJ for some ¢ 5o (i) hoids with a = kb —c.

(i) AATA =nA +AAJ implies (multiply on the left by J resp. A™) CJ =cJ, C*+nC =
c{c+n)/wi with c=b{k—A)—n, w=>b; and ¢, n>0 since C is a distance matrix.
Conversely, CJ=cJ, C*=nC=clc+n)/ws implies X"™X=0 for X=
AATA —nA— AAJ, where A =k —{c+n)/b. Hence X =0.

(iii) C is trivial iff C =n({J —T) for some constant »; so (iii) holds with A =k —n.

The dual of a design is obtained by interchanging the roles of points and blocks, and
reversing incidence, The dual of a design with constant block size satisfying the conditions
of (i}, (i1), or {iii) or Theorem 5.1 is called a weak 1-design, weak 13-design, or weak
2-design, respectively. A weak 2-design is the same as an (r, A)-design, and for weak
13-designs see [11].

A t-(v, k, A)-design is a design on v points with constant block size k& such that any

¢ distinct points are in exactly A blocks. A i-design is also an i-design for all i<t A

transversal t-{v, k, X }-design is a design on v points, the points being partitioned into k&

classes of v/ & points each, such that each block contains exactly one point from every class

(L.e.itis a ransversal of the partition), and any ¢ points from distinet classes are in exactly A

blocks. A transversal #design is also a transversal /-design for all { <1 A 13-design (or
partial geometric design} is a design whose incidence matrix A satisfies AJ =1J, JA = kJ,
AATA =nA +oJ for certain integers , k, n, .
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Every trangversal 1-design is a 1-design. 2-designs, transversal 2-designs, and the duals
of 1%—designs are lé-designs. Moreover, every 1-design (1%—design, 2-design) is a weak
" 1-design (13-design, 2-design). Much is known about 7-designs and 13-designs; for a

: summary, see, £.g., Neumaier [10].
The complete designs J(k, v) have v points, and all k-sets of points as blocks. The

- complete transversal designs H(k, q) have v = kq points, partitioned into k classes of g
points each, and all transversals of the partition as blocks. The distribution schemes of

" J(k, vy and H{(k, q) are usually called the Johnson resp. Hamming schemes.

THEOREM 5.2. (Delsarte [4])
(i) The distance matrix Cy of a complete design J(k, v) is a Delsarte matrix of degree

s =min (k, v — k). For v =2k, a collection B of rows of C;is a t-design of Cyiff Bisa

. t-{v, k, A)-design, for some integer A.
" (i) The distance matrix Cy of a comnplete transversal design H (k, q} is a Delsarte matrix
-of degree k. A collection B of rows of Cer is a t-design of Cyy iff B is a transversal

t-(gk, k, A)~design, for some integer A.

THEOREM 5.3. The distance matrix of a t-design or a transversal t-design has strength t.

Proor, By 5.2 and 4.5.

CoRrRoLLARY 5.4, (Cameron [3]). The blocks of a (25 —2)-design with s intersection
numbers carry a natural association scheme.

COROLLARY 5.5. The blocks of a iransversal (2s—2)-design with s intersection
numbers carry a natural association scheme.

ProoFs. By 5.3 and 3.4 (iii).

Note that by Theorem 5.3, the distance matrix of a 15-design has strength 2 and since
there are many 1%—designs which are neither 2-designs nor transversal 2-designs, the

converse of Theorem 5.3 is not valid.

CororLLary 5.6. (Majumdar [9], Beker and Haemers [1]). Two blocks of a 2-
(v, k, A)-design B intersect in at least k —r+ A points, where r = A (v —1)/k — 1. Moreover,
the relation =on the blocks defined by A=B if A=B or |[AnBl=k—r+X is an

equivalence relation.

ProoF. By 5.1, the distance matrix C' of & has strength 2, with n’'=r—2a, A'=k/r.
Therefore, its complement C = a'(F — )~ C" is 2 distance matrix with off-diagonal entries
cap=n—Cap=r—r—k+|AnB|. Now cap=0 implies |A ~"B|=k ~r+4, and |[An
Bl=k+r+A holdsiff cap =0, i.e. iff A, B are repeated rows of C. But repeatedness is an

equivalence relation.

For graphs, we can give a theorem similar to 5.1.
THEOREM 5.7. Let C =m(J —I)— M be the distance matrix of a graph G with smallest
eigenvalue —m, and adjacency matrix M. Then
(i) C has strength 1 iff MJ = kJ for some k;
(i) C has strength 2 iff M? = (A — u)M +(k — )+ for some A, u, k;
(iii} Cisa multiple of a trivial distance matrix iff G is the disjoint union of complete graphs
of the same size.
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PrROOF. Similar to the proof of 5.1. Observe that the diagonal of M* contains the
entries of MJ since M is a (0, 1}-matrix.

A graph 9 is called reguiar, resp. strongly regular if the condition of (i), resp. (ii} of
Theorem 5.7 is satisfied. (i) means that every vertex is adjacent to k other vertices, and (ii)
means:that in addition, the number of vertices adjacent to two distinct vertices @ and b is A
or w according as a and & are adjacent or not. A lot of results about strongly regular graphs
is contained in Hubaut [7], Neumaier [12], and Seidel [13].

Complementary strongly regular graphs give rise to complementary distance matrices.

If % is a graph on X then there is a canonical scheme of degree 2 on X which has
adjacent points as first associates, and non-adjacent points as second associates. This
scheme is essentially the distribution scheme of the corresponding distance matrix, and is
regular, resp. an association scheme iff the graph is regular, resp. strongly regular. Of
course, every scheme of degree 2 comes from a graph in this way.

THE_ORE-M 5.8. The distance matrix of a strongly regular graph which is connected and
not complete is a Delsarte matrix of degree 2. Conversely, every Delsarte matrix of degree 2 is
equivalent to the distance marrix of a strongly regular graph which is connected and not
complete.

Proor. The distance matrix C of a strongly regular graph % has strength 2 and degree
2.If C is not a Delsarte matrix then by Theorem 3.4 (iii), C is a multipie of a trivial distance
matrix, whence, by 5.7 (iii), ¥ is complete or disconnected.

Conversely, if C is a Delsarte matrix of degree 2 with distance numbers a; < a; then the
graph ¢ whose vertices are the rows of C, and whose edges are the pairs (x, y) with¢,, =
has adjacency matrix M = {(a;—ay) {az(J —I)—C), hence smallest eigenvalue —m =
—(a2—a1) a2 Therefore, M has distance matrix (az —a1)”'C, and by 5.7 (i)-(iii), ¥ is
strongly regular, connected, and not complete.

In many cases, interesting graphs can be found from designs. The block graph of a
13-design @ with two intersection numbers g, > u, is the graph whose vertices are the
blocks of &, adjacent iff they intersect in p points. A 13-design with intersection numbers
0 and 1 is a partial geometry [2], and in this case blocks are called lines, and the block graph
is called the line graph. A 2-degign with two intersection numbers is called quasi-symmetric
[6]. From Theorem 5.1 (ii}) and Theorem 5.7 (ii) we now obtain without difficulty the
following well-known results

CoROLLARY 5.9. (2], (3], [6], [100). The block graph of a 13-design with two
intersection numbers is strongly regular. This holds in particular for the block graph of a
quasi-symmetric 2-design, for the line graph of a partial geometry, and for the line graph of a
2-(v, k, 1)-design.

If a 2-design B has three intersection numbers uy, g2, and ;s =k —r+ A then we may
form the equivalence classes of = of 5.6. By 3.4(1), these block classes have the same size,
so the complement of the distance matrix of 3 is a multiple of a distance matiix of degree 2
and strength 2. Hence we have a strongly regular graph on the classes of 3, called the class
graph of 98.50 we have the following corollary.

COROLLARY 5.10. (Beker and Haemers [1]). The class graph of a 2-design with
three intersection numbers, one of which is k —r + A is strongly regular, and all classes have
the same size.
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The results analogous to 5.9, 5.6, and 5.10 for transversal designs are summarized in the
following corollary.

COROLLARY 5.11,
(i) The block graph of a transversal 2-design with two intersection numbers is strongly
regular.

S (it) Twe blocks of a transversal 2-(v, k, A)-design B intersect in at least k —r points,
‘where r =k~ "vA. If B has three intersection numbers, one of which is k —r then the
blocks of & can be partitioned into classes of the same size such that the class graph of
AR is strongly regular.

PROOF. Similar to the proofs of 5.9, 5.6 and 5.10.

. Finé-lly we mention some results on the spherical case. The details follow easily from
Delsarte;, Goethals, and Seidel [5].

THEOREM 5,12,
(i) The distance matrix of a spherical set X of points has strength 1 iff the centre of mass of
"X is in the origin.
(i) The distance matrix of a spherical t-design has strength 1.
(iii) Ewverydistance matrix of sirength 2 without repeated rows is isomorphic to the distance
matrix of a spherical 2-design.

Again, many of the results of [5] can now be obtained as corollaries from 5.12 and the

above results.

Note that there is no analogue of (iii) for the case 7> 2. Distance matrices of strength

¢ > 2 yield, in general, only spherical 2-designs. It is not known what happensin case 7 = 1.

10.
11.

12.
13.
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