Cliques and Claws in Edge-transitive Strongly Regular Graphs

Arnold Neumaier

Institut für Angewandte Mathematik der Universität, Herrmann-Herder-Straße 10, D-7800 Freiburg, Federal Republic of Germany

1. Strongly Regular Graphs

A strongly regular graph is a graph Γ (finite, undirected, without loops and multiple edges) with v vertices (points) such that every vertex is adjacent with exactly k vertices, and the number of vertices adjacent to two distinct vertices x, y is λ or μ , depending on wether x and y are adjacent or not. We assume here that Γ is connected, and that Γ is neither complete nor a conference graph (i.e. the parameters are not $v=4\mu+1$, $k=2\mu$, $\lambda=\mu-1$, μ). Then the parameters of Γ can be expressed in terms of three integral parameters m, n, and μ as follows (here k, n-m, and -m are the eigenvalues of the (0,1)-adjacency matrix of Γ):

1.1. Lemma (Neumaier [6]).

$$v = \mu^{-1} (\mu + (m-1)(n-m)) (\mu + m(n+1-m)),$$

 $k = \mu + m(n-m), \quad \lambda = \mu + n - 2m, \mu,$
 $2 \le m \le n, \quad 1 \le \mu.$

A clique in Γ is a complete subgraph. A grand clique is a maximal clique C of size $|C| > \frac{1}{2}n + \mu + 1 - m$ (this differs from the definition in Bose [1]; but assuming his inequalities, all his grand cliques are grand cliques in the present sense). A clique C is called regular if every point not in C is adjacent with the same number e > 0 of points of C.

- **1.2. Lemma** (Neumaier [7]). i) A clique C is regular if and only if it contains exactly $|C|=1+m^{-1}k$ points; in this case, $e=m^{-1}\mu$.
 - ii) A non-regular clique contains less than $1+m^{-1}k$ points.

A graph Γ is called *vertex-transitive*, resp. *edge-transitive* if any two vertices, resp. (unordered) edges can be mapped onto each other by an automorphism of Γ . Note that all rank 3 groups of even order give rise to edge-transitive strongly regular graphs (cf. Hubaut [5]).

0025-5874/80/0174/0197/\$01.20

198 A. Neumaier

1.3. Lemma. A connected edge-transitive strongly regular graph Γ is also vertextransitive.

Proof. By a result of Folkman [4], I' is either vertex-transitive, or bipartite. But the only bipartite strongly regular graphs are the symmetric complete bipartite graphs which are vertex-transitive.

1.4. Lemma. (Neumaier [7]). A vertex- and edge-transitive graph containing a regular clique is strongly regular.

Since a connected bipartite graph contains a regular clique only if it is complete bipartite, the only edge-transitive graphs containing a regular clique which are not strongly regular are the nonsymmetric complete bipartite graphs, by Folkman [4], and 1.4.

2. Special 1½-designs and Partial Geometries

A special $1\frac{1}{2}$ -design consists of a set of v points and a collection of b blocks (sets with K points each) such that every point is in R blocks, two distinct points are in 0 or A blocks (0 < A < R), and every point not in a given block B is adjacent to exactly e points of B. Here two points are called adjacent if they are distinct and contained in a common block. This defines a graph, the point graph of the design. A partial geometry is a special $1\frac{1}{2}$ -design with A = 1. A graph is called geometric if it is the point graph of a partial geometry.

- **2.1. Lemma** (Neumaier [7]). The point graph Γ of a special $1\frac{1}{2}$ -design (a partial geometry (Bose [1])) is strongly regular, and each block of the design is a regular clique of Γ .
- **2.2. Lemma** (Bridges and Shrikhande [2]). A two-class partially balanced design (Bose [1]) with $\lambda_1 = 0$ which has more points than blocks is a special $1\frac{1}{2}$ -design.
- **2.3.** Theorem (Bose [1]). A strongly regular graph with $m \mid \mu \leq m^2$ and

$$n > \frac{1}{2}m(m-1)(\mu+1) + m-1$$
 (1)

is geometric.

It is possible to remove the condition $m|\mu \le m^2$ from Theorem 2.3, and to specify the possible graphs. A Latin square graph is the point graph of a partial geometry with e=R-1, and a Steiner graph is the point graph of a partial geometry with e=R. (In other words, Latin square graphs and Steiner graphs are the line graphs of transversal designs and 2-designs with $\lambda=1$, cf. [6]). Note that a Latin square graph has $\mu=m(m-1)$, and a Steiner graph has $\mu=m^2$.

2.4. Theorem (Neumaier [6]). A strongly regular graph whose parameters satisfy (1) is a Latin square graph or a Steiner graph.

3. Properties of Cliques

In this, and the following section, let Γ be a strongly regular graph with parameters given by 1.1.

Cliques and Claws

3.1. Lemma. Let $s \ge 1$ be an integer. Then every edge contains at most s maximal cliques of size larger than

$$\gamma_s = 2 + \frac{\lambda}{s+1} + \frac{s}{2}(\mu - 2).$$
 (2)

Proof. Assume that the edge ab contains s+1 maximal cliques C_0, \ldots, C_s of size $> \gamma_s$ each. Define $D_i = C_i - \{a, b\}$. All points of D_i are adjacent to a and b whence $| \cup D_i | \le \lambda$. Since the C_i are maximal, there is (for each pair $i \ne j$) a pair of nonadjacent points in $C_i \cup C_j$ which all points of $C_i \cap C_j$ are joined. Hence $|D_i \cap D_j| = |C_i \cap C_j| - 2 \le \mu - 2$.

Now .

$$\sum_{i} |D_i| \leq |\cup D_i| + \sum_{i < j} |D_i \cap D_j|, \tag{3}$$

since every point which is in p sets D_l is counted p times in the left, and $1+p(p-1)/2 \ge p$ times in the right formula. But the left hand side of (3) is $>(s+1)(\gamma_s-2)$ by assumption, and the right hand side is $\le \lambda + \frac{1}{2}s(s+1)(\mu-2) = (s+1)(\gamma_s-2)$ by the above counting arguments. This is a contradiction.

3.2. Corollary. Every edge is in at most one grand clique.

Proof. Apply Lemma 3.1 with s=1 and use $\lambda = \mu + n - 2m$ (from Lemma 1.1).

Directly (similar to 3.1), or from Neumaier [7], we get:

- **3.3.** Lemma. If the size K of a regular clique satisfies $K > \mu + 1 m$ then every edge is in at most one regular clique.
- **3.4. Theorem.** Suppose that Γ is edge-transitive and contains a clique of size $\geq K$. If there is an integer $s \geq 1$ such that

$$K > \gamma_s, \quad K(K-1) > ks$$
 (4)

then Γ is geometric.

Proof. Since (4) remains valid when K is replaced by a greater integer, we may assume the existence of a maximal clique C of size K. Consider the orbit \mathscr{B} of C under the automorphism group of Γ . If we call the cliques in \mathscr{B} blocks, then by vertex-transitivity (Lemma 1.3), every point is in the same number R of blocks, and, by construction, every block contains K points. Also two points are in 0 blocks if they are nonadjacent, and, by edge-transitivity, in a constant number Λ of blocks if they are adjacent. Hence, since Γ is strongly regular, we have a partially balanced design with two classes and $\lambda_1 = 0$, $\lambda_2 = \Lambda$. By 3.1, $\Lambda \leq s$ since $K > \gamma_s$. Counting flags (incident point-block pairs) through a given point gives $R(K-1)=k\Lambda \leq ks < K(K-1)$ by (4), whence R < K. Counting all flags gives vR = bK, where b is the number of blocks in \mathscr{B} . Hence v > b, and by 2.2, we have a special $1\frac{1}{2}$ -design. In particular, the blocks are regular cliques. Now if $s \geq 2$ then $K > \gamma_s \geq 2 + \frac{1}{2}s(\mu - 2) \geq \mu > \mu + 1 - m$, so 3.3 implies $\Lambda \leq 1$. If s = 1 then $\Lambda \leq s = 1$. Hence $\Lambda = 1$ and we have a partial geometry.

3.5. Theorem. i) If Γ contains a grand clique then $n > 2\mu(m-1)/m$.

ii) If Γ is geometric, and $n>2\mu(m-1)/m$ then the grand cliques are just the blocks of the corresponding partial geometry.

iii) If Γ is edge-transitive and contains a grand clique then either Γ is geometric, or $\mu < m$.

Proof. i) If Γ contains a grand clique C then $\frac{1}{2}n+\mu+1-m<|C|\leq m^{-1}k+1$ = $n+1-m+m^{-1}\mu$ (by 1.2 and 1.1) which implies $n>2\mu(m-1)/m$.

ii) The block size is $m^{-1}k+1>\frac{1}{2}n+\mu+1-m$ (see (i)) whence the blocks are grand cliques. There are no other grand cliques since an edge is in some block but in at most one grand clique.

iii) Assume $\mu \ge m$. Then by i), $n \ge 2m-2$. Now a grand clique has size $K > \frac{1}{2}n + \mu + 1 - m = \gamma_1$, and by 1.1, $K(K-1) - k = (K-1)^2 + (K-1) - k > \frac{1}{4}n^2 + (\frac{1}{2}n + \mu + 1 - m) - (\mu + m(n-m)) > \frac{1}{4}(n+1-2m)^2 \ge 0$. Hence Theorem 3.4 applies.

4. Cliques Constructed from Claws

A d-claw is a pair (a, S) consisting of a point a, and a set S of d points adjacent to a which are mutually nonadjacent. The next two lemmas are straightforward extensions of results by Bose [1] and Bumiller [3].

4.1. Lemma. Let d be the maximal integer such that there is a d-claw. Then Γ contains a clique of size $\geq 2 + \lambda - (d-1)(\mu - 1)$.

Proof. Let (a, S) be a d-claw with maximal d. Choose $b \in S$. For every $x \in T = S - \{b\}$ there are $\leq \mu - 1$ points adjacent to a, b, and x, whence there are at least $\lambda - (d-1)(\mu-1)$ points adjacent to a, b but not to any element of T. Call this set of vertices C_0 . If $p, q \in C_0$ then p and q are adjacent since otherwise $(a, T \cup \{p, q\})$ would be a (d+1)-claw. Therefore, $C = C_0 \cup \{a, b\}$ is a clique with the required size.

4.2. Lemma. Let $s \leq m$ be an integer with

$$n > (2m-3)\mu + m + \frac{(s-2)((s-3)(\mu-1) + 2m-2)}{2(m+1-s)}.$$
 (5)

Then $d \leq 2m - s$ for every d-claw.

Proof. Suppose (a, S) is a d-claw. Denote by T the set of all $x \notin S$ which are adjacent with a. For $x \in T$, define a_x as the numer of points of S adjacent to x. Then an easy counting argument shows that

$$\begin{split} &\Sigma\,\mathbf{1}=k-d,\\ &\Sigma\,a_x=d\,\lambda,\\ &\Sigma\,a_x(a_x-1)\,{\leq}\,d(d-1)\,(\mu-1), \end{split}$$

where the sum extends over all $x \in T$. Hence $0 \le \Sigma(a_x - 1)(a_x - 2) \le d(d - 1)(\mu - 1) - 2d\lambda + 2(k - d)$. If we insert d = 2m + 1 - s, use Lemma 1.1 to simplify, and solve for n, we obtain the negation of (5). Hence (5) implies that there is no (2m + 1 - s)-claw. This proves the lemma.

4.3. Corollary. If $n > (2m-3)\mu + m$ then $d \le 2m-2$ for every d-claw.

Essentially by combining Theorem 3.4 (for s=1) with 4.1 and 4.2 (with $s=\left[\frac{2m+5}{3}\right]$), Burniller [3] obtains the following extension of Theorem 2.3:

4.4. Theorem. If Γ is a rank 3 graph with parameters 1.1 satisfying

$$n \ge (4m-5)(2\mu+1)/3 + 3/(m-2) + m + 3$$
 (6)

then Γ is geometric.

tradiction.

We prove a similar result which extends Theorem 2.4,

4.5. Theorem. Suppose Γ is an edge-transitive strongly regular graph with parameters 1.1. Let s be the smallest integer with $4m \le (s+1)^2$. If

$$\mu \ge 2 + \frac{1}{4}(2m - 1)s,\tag{7}$$

$$n \ge (2m-1)\,\mu,\tag{8}$$

then Γ is a Latin square graph or a Steiner graph.

Proof. By definition of s, $s^2 < 4m$ whence

$$s^2 + 3 \le 4m \le (s+1)^2 \tag{9}$$

since $s^2 \equiv 0$ or 1 mod 4. By Lemma 4.2, $d \le 2m - s$ for every d-claw. For otherwise the right hand side of (5) would be $\ge n \ge (2m-1)\mu$. Hence we would have $(s-2)((s-3)(\mu-1)+2m-2) \ge 2(\mu-1)-(m-2)$, whence $(s-2)(s-3) (\mu-1) + (s-2) (2m-1) \ge 4(m+1-s) (\mu-1) - 2(m+1-s) (m-2)$ and $2m^2 - 6m + 2s \ge (4m-s^2+s-2) (\mu-1) \ge (4m-s^2+s-2) (1+\frac{1}{4}(2m-1)s)$ by (9) and (7). Multiplying this with 8 and writing $4m = x + s^2$ so that $x \ge 3$ we obtain $x^2 + (2s^2-12)x + s^4 - 12s^2 + 16s \ge (x+s-2) (sx+s^3-2s+8)$, or $(s-1)x^2 + (s^3-s^2-4s+20)x - 2s^3 + 10s^2 - 4s - 16 \le 0$. This is monotone in x, and positive for x = 2, a con-

Now Lemma 4.1 implies the existence of a clique of size $\geq 2 + \lambda - (d_{\max} - 1) (\mu - 1) \geq 2 + \lambda - (2m - s - 1) (\mu - 1) = K$. By Theorem 3.4, Γ is geometric once we know that $K > \gamma_s$ and K(K-1) > ks. To show this we remark first that (8) implies

$$\lambda = \mu + n - 2m \ge 2m(\mu - 1),\tag{10}$$

$$K = 2 + \lambda - (2m - s - 1)(\mu - 1) \ge 2 + (s + 1)(\mu - 1). \tag{11}$$

Assume that $K \le \gamma_s$, i.e. $2 + \lambda - (2m - s - 1)(\mu - 1) \le 2 + \frac{\lambda}{s + 1} + \frac{s}{2}(\mu - 2)$. Subtract 2, multiply by 2(s + 1), sort for λ , and use (10) to get $4m s(\mu - 1) \le 2s \lambda \le 2(s + 1)(2m - s - 1)(\mu - 1) + s(s + 1)(\mu - 2)$. This implies $s(s + 1) + (\mu - 1)(s^2 + 3s + 2)$

202 A. Neumaier

 $-4m) \le 0$, contradicting (9). Next assume that $K(K-1) \le k s$. Then by (11), (7) and 1.1, $((s+1)(\mu-1)+2)((s+1)(\mu-1)+1-m s) \le K(K-1-m s) \le (k-m K) s$ = $((2m^2-2m+1-sm)(\mu-1)+m^2+3m+1)s$. Hence by (7) and (9), $4m+sm(2m-1)=(1+\frac{1}{4}(2m-1)s)\cdot 4m \le (\mu-1)(4m(\mu-1)-ms(2m-1)) \le (\mu-1)((s+1)^2(\mu-1)-ms(2m-1)) \le m^2s-ms+s-2-(2s+3)(\mu-1) \le m^2s-ms$, which is impossible.

Hence Γ is geometric. Since $n > 2(m-1)(\mu+1-m)$, and n > m(m-1) if $\mu = m$, the proof of Theorem 4.7 of Neumaier [6] applies and shows that the corresponding partial geometry has e = R - 1 or e = R, whence Γ is a Latin square graph or a Steiner graph.

4.6. Corollary. If Γ is edge-transitive and $n \ge (2m-1)\mu$ then

$$\mu = m^2$$
, $\mu = m(m-1)$ or $\mu < 2 + \frac{1}{4}(2m-1)s$.

Remark. (8) is always better than (6), and better than (1) if and only if $m \ge 5$. (6) is better than (1) if $m \ge 6$.

References

- Bose, R.C.: Strongly regular graphs, partial geometries, and partially balanced designs. Pacific J. Math. 13, 389-419 (1963)
- Bridges, W.G., Shrikhande, M.S.: Special partially balanced incomplete block designs and associated graphs. Discrete Math. 9, 1-18 (1974)
- 3. Bumiller, C.: On rank three graphs with a large eigenvalue. Discrete Math. 23, 183-187 (1978)
- 4. Folkman, J.: Regular line-symmetric graphs. J. Combinatorial Theory Ser. A 3, 215-232 (1967)
- 5. Hubaut, X.: Strongly regular graphs. Discrete Math. 13, 357-381 (1975)
- Neumaier, A.: Strongly regular graphs with smallest eigenvalue -m. Arch. Math. (Basel) 33, 392-400 (1979)
- Neumaier, A.: Regular cliques in graphs and special 1½-designs, In: Proc. Conf. Finite Geometries
 and Designs 1980, London Math. Soc. Lecture Note Series, Cambridge Univ. Press (to appear)

Received December 11, 1979