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1. Strongly Regular Graphs

A strongly regular graph is a graph I' {finite, undirected, without lcops and
multiple edges) with v vertices (points) such that every vertex is adjucent with
exactly & vertices, and the number of vertices adjacent to two distinct vertices
" x,yis A or u, depending on wether x and y are adjacent or not. We assume here
that I" is connected, and that I' is neither complete nor a conference graph (i.c.
“the parameters are not v=4pu-+1, k=2, l=p—1, ). Then the parameters of I’
can be expressed in terms of three integral parameters m, n, and u as follows
(here k, n—m, and —m are the eigenvalues of the (0, 1)-adjacency matrix of I'):

1.1. Lemma {Neumaier [6]).

v == ek (m— 1) (1= m)) (s (41— ),
k=p+min—m), I=p+n—2m,yu,
2em=En, 12

A cligue in I' is a complete subgraph. A grand clique is 1 maximal clique C of
size |C|>3n+ p+ 1 —m (this dilfers from the definition in Bose [1]; but agsum-
ing his inequalities, all his grand cliques are grand cliques in the present sense).
A clique C is called regular if every point not in C is adjacent with the same
number ¢>0 of points of C.

1.2. Lemma (Neumaier [7]). i) A clique C is regular i and only if it contains
exactly |C|=1+m~*k points; in this case, e=m™" ' .
il) A non-regular clique contains less than 14+m~ "k points.

A graph I is called vertex-transitive, resp. edge-transitive il any two vertices,
resp. (unordered) edges can be mapped onte each other by an automorphism of
I Note that all rank 3 groups of even order give rise to edge-transitive strongly
regular graphs (cf. Hubaut [5]).
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L3. Lemma. A connected edge-transitive strongly vegular graph I is also vertex-
transitive.

Proef. By a result of Folkman [4], /™ is either verlex-transitive, or bipartite, But
the only bipartite strongly regular graphs are the symmetric complete bipartite
graphs which are vertex-transitive.

14, Lemma. (Neumaier [7]). A vertex- and edge-transitive graph comtaining a
regulur clique is strongly regular.

Since a connected bipartite graph contains a regular clique only il it is
complele bipartite, the only edge-transitive graphs containing a regular clique
which are not strongly regular are the nonsymmetric complele bipartite graphs,
by Folkman [4], and 1.4

2. Special 11-designs and Partial Geometries

A special 13-design consists of a set of v points and a collection ol b blocks (scts
with K points each) such that every point is in R blocks, two dislinct points are
in 0 or A blocks (0< A <R), and every point not in a given block B is adjacent
Lo exactly e points of B. Here two points are called adjacent if they are distinet
and contained in a2 ¢common block. This delines a graph, the point graph of the
design. A partial geometry is a special 13-design with A=1. A graph is called
geometric if it is the point graph of a partial geometry.

2.1. Lemma (Neumaier [7]). The point graph I' of a special 13-design (a partial
geometry (Bose [11)) is strongly regular, and each block of the design is a regular
cligue of I.

2.2. Lemma (Bridges and Shrikhande [2]). 4 two-class partiafly balanced design
(Bose [1]) with 2, =0 which has more points than blocks is a special 14-design,

2.3. Theorem (Bose [1]). A strongly regular graph with m|p<m? and

n>imim—1}p+1)+m—1 (1)
is geometric.

It is possible to remove the condition m|g=m? from Theorem 2.3, and to
specify the possible graphs. A Latin square graph is the point graph of a partial
geometry with e=R—1, and a Steiner graph is the point graph of a partial
geometry with ¢=R. (In other words, Latin square graphs and Steiner graphs
are the line graphs of transversal designs and 2-designs with 2=, c[. [6]). Note
that a Latin square graph has p=m(m—1}, and a Steincr graph has p=m?,

2.4. Theorem (Neumaier [6]). A strongly regular graph whose parameters satisfy
(1) is a Latin square graph or a Steiner graph.

3. Propertics of Cliques

In this, and the following section, let I' be a strongly regular graph with
parameters given by L1,
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. 3.1. Lemma. Let s 1 be an integer. Then every edge contains at most s maximal
- cliques of size larger than
' : Aoos
=2 ——(—=2). 2
Vs se1 W2 (2)
' --Prbof Assume that the edge «b contains s+ 1 maximal cliques C,, ..., C, ol size
- >y, each, Define D,= C,— {a, b}. All points ol D, are adjacent (o a and b whence
oDl Since the C; are maximal, there is (for each pair i#j) a pair of
- nonadjacent points in C,uC; which all points of CinC; arc joined. Hence
ADinD | =|CNCji—2=u=2.
; Nf_iw o .
z]Di|§|UD.‘|+ Z|DiﬁDj|a (3}
i ief
. since every point which is in p sets D, is counted p times in the left, and
1+p(p—1)/22p times in the right formula. But the left hand side of (3) is
>(s+1)(y,—2) by assumption, and the right hand side is <i+3s(s+1{(u—2)
=(s+ 1)(y,—2) by the above counting arguments. This is a contradiction.

3.2 Corollary..Every edge is in at most one grand cligue.
Proof. Apply Lemma 3.1 with s=1 and use A=+ n—2m (from Lemma 1.1).
Dircetly (similar to 3.1), or from Neumaier [7], we get:

3.3. Lemma. If the size K of a regular clique satisfies K> p+1—m then cvery
edge is in at most one regular clique.

3.4. Theorem. Suppose that I' is edge-transitive and contains a clique of size 2 K.
If there is an integer s=1 such that

K>y, K(K-~1)>ks {4)
then I is geomeiric.

Proof. Since (4) remains valid when K is replaced by a greater integer, we may
assume the exisience of a maximal clique C of size K. Consider the orbit 2 of €
under the automorphism group of I If we call the cliques in 4 blocks, then by
vertex-transitivity (Lemma 1.3), every point is in the same number R of blocks,
and, by construction, every block contains K points. Also two points are in 0
blocks if they are nonadjacent, and, by edge-transitivity, in a constant number A
of blocks il they are adjacent. Hence, since I' is strongly regular, we have a
partially balanced design with two classes and 1, =0, A,=A. By 3.1, A<s since
K>y, Counting flags (incident point-block pairs} through a given point gives
R(K—-1)=kA=ks<K(K—1) by (4), whence R< K. Counting all flags gives vR
=bK, where b is the number of blocks in #. Hence v> b, and by 2.2, we huve a
special 13-design. In particular, the blocks are regular cliques. Now if s22 then
K>p,22+3s(u—2)2p>p-+1—m, so 3.3 implies A=Z1. If s=1 then ALs=1.
Hence A=1 and we have a partial geomectry.

3.5. Theorem. i) If I contains a grand clique then n>2u(m—1)/m.

) If T is geometric, and n>2u(m—1)/m then the grand cligues are just the
blocks of the corresponding partial geometry.
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un) If I' is edge-transitive and contains g grand cligue then either I is
geometric, or u<m,

Proof 1) T I contains a grand clique C then in4pu+1 —m<|ClEm~h+1
=n+1—m+m~ty (by 1.2 and 1.1) which implies 2> 2 pu(m — 1)/m.

ii) The block size is m™ 'k +1 >an+pu+1—m (see (i)) whence the blocks are
grand cliques. There are no other grand cliques since an edge is in some block
- but in at most one grand clique.

i1} Assume g=m. Then by i), n22m—2. Now a grand clique has size
K>3n+p+1—m=y,, and by 1.1, K(K—1)—k=(K-l)2+(K-—1)—k>ﬁ:zz+
(n+u+i —m)—(p+mn—m)>L(n+1 —2m?20. Hence Theorem 3.4 applics,

4. Cliques Constructed from Claws

A d-claw is a pair (a, 5) consisting of a point ¢, and a set S of ¢ points adjacent
to @ which are mutually nonadjacent. The next two lemmas are straightforward
extensions of resuits by Bose [1] and Bumilier [3].

4.1. Lemma. Let d be the maximal integer such that there is a d-claw, Then I
contains g cligue of size 22 +i—(d—1){u— 1}

Proof. Let (a,8) be a d-claw with maximal «. Choose beS. For every xeT=§
—{b} there are <p—1 points adjacent to a, b, and x, whence there are at least
4—(d—1)(u— 1} points adjacent to a, b but not to any element of T Call this set
of vertices C,,. If p, ye C,, then p and g are adjacent since otherwisc (a, Tu{p,ql)
would be a {d+1)-claw. Therefore, C= Cowfa, b} is a clique with the required
size.

4.2. Lemma, Let s<m he an integer with

(s=2{(s=3)(u—1)+2m-2)
2m+1-3) ’

a=2m—-3p+m+ (5)

Then d <2m—s for every d-claw,

Proof. Suppose (a,8) is a d-claw. Denote by T the set of all x¢S which are
adjacent with a. For xeT, define a, as the numer of points of § adjacent to x.
Then an easy counting argument shows that

El=k-—d,

Zax=d;l‘,

Zafa,~1)Sd{d—1)(u—1)
where the sum extends over all xeT. Hence 0=2(a,~1)(a,~2)<d(d— 1) {u— 1)
—2dA+2{(k—d). If we insert d =2m +1 —s, usc Lemma 1.1 to simplify, and solve

for n, we obtain the negation of {5} Hence (5} implies that there is no
(2m+1—s)-claw. This proves thc lemma.
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. 4.3. Corollary. If n>(2m—3)u+m then d<2m—2 for every d-claw.

~ Essentially by combining Theorem 3.4 {for s=1} with 4.1 and 4.2 (with 5
ﬁ':[z_mf-{-S
L 3

4-.4. Theorem. If I is a rank 3 graph with parameters 1.1 satisfying

]), Bumiller [3] obtains the following extension of Theorem 2,3;

n2(dm—5y2u+1)/3+3/m—2)+m+3 ()
. then T is geometric.
We prove a similar result which extends Theorem 24,

' 45 Theorem. Suppose I is an edge-transitive suongiy regular graph with parame-
* ters:1.1. Let s be the smallest integer with 4m<(s+1)2. If

pz2+42m—1)s, (7}
nz2m—1) g, (8)
then I is a Latin square graph or a Steiner graph.

Proof. By definition of s, s*<4m whence
S3gams(+1)? 9)

since s?=0 or 1 mod4. By Lemma 4.2, d <2m—s for every d-claw. For otherwise
the right hand side of (5) would be Zp=(2m—1)u. Hence we would have
(=2 = 3Hu=1)+2m—2) 22{p—1)—(m—2), whence (5—2)(s—3) (u—-1)
2Z{m+1—73)
+(s—2) [2m zd(m+1—s) (u—1)—2m+1—35) (m—2) and 2m’> —6m+2s
2@m—s*+5—2) (p— ={@dm—s"+5—2) (1+4(2m—1)s) by (9) and (7). Multi-
plying this with & and writing 4m =x + 5% 50 that x> 3 we obtain x* 4+ (25> —12)x
+5t— 1252 + 1652 (x+5—2) (sx+5°=25+8), or (3—)x?+(s*>—s? —4s+20)x
—2534+1052—45—16 0. This is monotone in x, and positive lor x=2, a con-
tradiction.

New Lemma 4.1 implies the existence ol a clique of size 22+1—(d,,,,—1) (#
—-1)z24+2—2m—s5—1) (u1—1)=K. By Theorem 34, I is geomctriu onee we
know that K>y, and K(K—1)>ks. To show this we remark first that (8)
implies

A=p+n—2m=2mu—1), {10
K=2+4+i-02m—s—-DE—DZ2++D{E—1) (11)

Assume that K=<v,, ie, 2+2—2m—s—1){u— 1]<2+?+ {(z—2). Subtract

2, muitiply by 2(s+1), sort for A, and use (10) to get 4ms(;t—l){2m<2{s+1]
@m—s—1{p—1)+s(s+1){z—2) This implies s{s+1)+ (g—1{s*+35+2
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—4m)£0, contradicting (9} Next assume that K(K—1}<ks, Then by (11}, (7)
and LI, {(s+D{u—D+2Ms+Du—-+1—-m) £ K(K-1-ms) £ (k—mK)s
={2m?*-2m+1—sm)(p—1)+m? +3m+1)s. Hence by (7) and (9), 4m+sm(2Zm
—y=(1+52m—1)s) - dm = (p—D@dm{u—1—ms2m=1)) £ (=D +1)(p
~1)—msCm—1)=m?’s—ms+s—2—(2s5+ 3 (u—1)Sm?*s—ms, which is im-
possible.

- Henee I" is geometric. Since n>2(m—1)(u+1—m), and n>m(m—1) if u=m,
the prool of Theorem 4.7 of Neumaier [6] applies and shows that the cor-
-Tesponding partial geometry has e=R—1 or e=R, whence I is a Latin square
graph or a Steiner graph.

4.6, Corollary. If I is edge-transitive and n2(2m— 1} gt then

p=m?,  p=mm—1) or p<2+3i2m—1)s.

. Remark. (8) is always better than (6), and better than (1) if and only if m= 3. (6} 15
better than (1) if m=6.
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