STRONG BALANCED TUPLE SYSTEMS,
 2-DESIGNS, AND NEAR VECTOR SPACES

By A. NEUMAIER

A 2-(u, k, A; G)-SBTS (strong balanced tuple system) is a collection @ of k-tuples with
distinct entries from a v-set P satisfying

(1} for any two distinct points a and b, and any two distinet places { and j, there are
exactly A tuples xe Q with x;=a, x;=b,
{2) G .is'a permutation group on the k places such that for every a€@G, the tuple
(Fa1r -« -1 Xa) I8 i @ with the same multiplicity as LE T

Strong balanced tuple systems have a very close relaticnship to 2-designs, and accur
naturally in some game tournaments.

‘We study here the properties of strong balanced tuple systems, and, using near vector
spaces, derive some large classes of SBTS. From these many 2-designs are derived.

0. Introduction

THE main purpose of this paper is the introduction of a new type of
combinatorial structure called a strong balanced tuple system. This is at
the same time a generalization and a refinement of the concept of a
2-design.

In some sense strong balanced tuple systems are a collection of “situa-
tions™ satisfying a certain balance condition. A situation may be viewed
as a set of points in which the position of a point is fixed up to some
symmetries, the remaining asymmetry defining relations between the
points. In game tournaments, the relations may be being partner, oppo-
nent, or neighbour, the symmetries may be rotating the table, or partners
changing places, etc.

The blocks of a design fit into this framework in two ways: either as a
situation having all possible symmetries and hence no special relations (in
which case strong balanced tuple systems generalize designs), or as the
underlying structure of the point sets on which relations are to be
imposed in a way such that the balance condition is satisfied (in which
case strong balanced tuple systems are designs with refined structure).
Putting it another way: a strong balanced tuple system may be viewed
either as a design lacking symmetry or as a design with additional
structure.

This additional structure may sometimes help in the construction of a
2-design. In fact, using near vector spaces introduced by Quackenbush
[10] we are able to construct large classes of strong balanced tuple
systems, and they give large classes of 2-designs.

To keep the paper self-contained we start with a short introduction to
some simple results on 2-designs. '

Quart, ). Maih, Oxford (2), 32 (1981), 97-107.
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1. Designs

Let P be a finite set of elements (poinis), and B be a collection of not
necessarily distinct subsets of P {blocks) such that every block contains k
points, and any two distinct points are in A blocks. If v is the total
. pumber of points, @ is called a 2-(v, k, A}-design {on P).

Well-known counting arguments give r=A{v—1)/(k— 1) as the number
of blocks containing a given point, and b= Av{v—1)/k(k —1) as the total
number of blocks. Hence

rv{v—1)=0mod k(k-1), (la)
A(w-1)=0mod k-1 (1b)

" are necessary conditions for the existence of a 2-(v, k, A)-design. Wilson
{[11], [12}, [13]) proved that conditions (1} are also sufficient for large o,
i.e. if v>v(k, A) with a constant v, depending on k and A. Another
well-known condition for 2-(v, k, A)-designs with v >k, A> 0 is the Fisher
inequality b= v, or

k(k—1)=x{p— 1) ()

An automorphism of a design is a permutation = of the points such that
for every block B, the set {ma|aeB} is in the design with the same
multiplicity as B.

Good accounts of designs are contained in Hall [3], Dembowski [2],
and Hanani {4].

2. Strong balanced tuple systems

A tuple system is a triple (P, I, Q) consisting of a v-set P of points, a
k-set I of places, and a collection Q of not necessarily distinct k-tuples
with entries from P, the entries being indexed by the elements of I;ie.
the elements of OQ are of the form x=(x,,...,x.)=(x: i€l). Usually
we refer to Q as a tuple system, mentioning P, I only where necessary. A
tuple system is called strong if each of its tuples contains no entry twice.

An automorphism of a tuple system Q is a pair (e, 7) consisting of a
permutation « of the places and a permutation 7 of the points such that
for every tuple x € Q, the tuple (a, am)x =(mx,: iel) is in Q with the
same multiplicity as x. We call an astomorphism free if it is of the form
a=(a, 1), and pure if it is of the form w={1, 7). Free aztomorphisms
play an important role in our theory.

Let us denote the number of tuples x € Q with x;, = a, x;=b by Ayla, b).
We define a strong balanced tuple system (SBTS) as a strong tuple system
Q satisfing the axiom

(*) Ay(a, b)=A for any two distinct points 4, b, and any two distinct
places i, J.
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If P has v points, I has k places, and G is a group of free automorphisms
of a strong balanced tuple system (P,1, Q) then we call Q a 2-
(v, k, A; G)-SBTS. A simple counting argument gives A{v—1} as the
number of x € Q with x; = q, and Av(v—1) as the total number of tuples
in Q.

ExameLe 1. Consider a tennis tournament on a single tensis court. We
are looking for an arrangement in which each person plays with each
other person once as partner and twice as opponent (Since there are twice
as many opponents as partners this requirement is natural). The relation-
ship of being partner or opponent is preserved under the dihedral group
D, generated by (12}, (34), and (13)(24). If person x; is playing on place §
such that x,, x, and x,, x, are partners, the other pairs x, x; are oppo-
nents thén we denote this situation by (x;, X5, X5, X4 | D) meaning that,
for the balance requirement, the ordering is essential only up to permuta-
tions from D,. For example, the unigue solution for 4 persons a, b, c, d
is (abed | D), (acdb | D,), (adbe [ D,). If we associate with every situation
(X1, Xp, X3, X, | D) the eight tuples (x,1, Xaz, Xa3, Xas), @ € Dy, then the
resulting tuple system Q is strong, has I, as a group of free automorph-
isms, the balance condition means simply that (*) holds with A =2, and
hence the problem considered is equivalent to the construction of a 2-
{v,4,2; D,)-SBTS. The given soluticn in the case v =4 corresponds to
the tuple system containing all tuples with distinct entries exactly once.

Note that similar arrangements occur in whist tournaments and have
been considered by Moore [7).

ExamrLe 2. Similarly, we may consider a k-set {x;,...,x} as a
sitration (x,,..., % | Si) “up to arbitrary permutations of places”; and,
associating with every k-set {x,..., %} of a 2-(v, k, A)-design the k!
tuples (X.1, .. . s Xar), & € 8¢, we obtain a 2-(v, k, A(k ~2)!; §,)-SBTS. For,
given two distinct points a and b, there are just A blocks containing a and
b; the positions of a and b are determined by i and j, and the remaining
(k—2) points may be distributed arbitrarily over (k —2} places in (k —2}!
ways.

ExampLE 3. Let P be an abelian group of odd order v, and I'={1, 2, 3}.
Define Q={{a+b,a—b,a)|a,beP, b#0}. Since the equation 2x=a
has a unique solution, two entries in a triple of Q determine uniquely the
third, and (12) is a free automorphism. Hence Q is a 2-(v, 3, 1; ((12)))-
SBTS. If P is elementary abelian of exponent 3 (i.e. v =23") then (123)
can be easily shown to be also a free automorphism. Since (12) and (123)
generate S;, we have then a 2-(3%, 3, 1; §;)-SBTS.

ExamrLE 4. Mendelsohn [6] considered 2-(v, 3, 1; Z;)-SBTSs with the
cyclic group Z, of order 3 under the name of cyclic triple systems.
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There are some divisibility conditions for the parameters of a SBTS
which are similar to the conditions (1) for designs. They depend on the
orders of stabilizers of the free automorphism group G. Here the
stabilizer G; (G,) of a place i (of distinct places i and j) is the subgroup of
G consisting of all @€ G fixing i (resp. i and j).

Prorosition 1. If a 2-(v, k, A; G}-SBTS exists, then, for any two distinct
places i, |,

A =0mod|G,l, (3a)
A(v—1)=0mod |G|, (3b)
Av(p—1)=0mod |G|. (3¢}

Proof. Given a# b, i# ], the collection Q,={xeC | x. = a, x; = b} con-
sists of full orbits of G;. Since O is strong, two permutations «, 8 of the
places satisfy ax = gx iff @ =g; in particular, all the orbits of G;; have
length |G|, and |G;| divides |Q,|= A. Similarly, @, ={xe Q | x; = a} con-
sists of full orbits of G, whence |G| divides |Q,|=A(v—1). Finally, Q
consists of orbits of G whence |G| divides |Q|= Av{v—1).

It is known (Wilson [14]) that conditions (3) are sufficient for the
existence of a 2-(v, k, A; G)-SBTS if v is greater than 2 constant depend-
ing on k, A, and G. The proof is based on a recursive construction using
pairwise balanced designs, and deep methods developed by Wiison ([11],
(12], [13]). Neumaier [8] proved that conditions (3) are sufficient if k=3,
A=1 and (v; G)# (6; Z;). The construction of SBTSs with k =4 raises
already many interesting problems.

3. SBTS and designs

Examples 1 and 2 are special cases of general constructions which
generate all strong balanced tuple systems. The first example generalizes
as follows: Consider a strong tuple system Q of k-tuples with entries
from a set of v points, with a group G of free automorphisms. We call a
G-orbit of tuples of Q a situation, and denote the G-orbit Gx of
x=(%1,....%) by (x5,..., % | G). Suppose that G has s orbits (num-
bered with the first s positive integers) on the pairs (i, j) of distinct places.
Call two places nth associates if the corresponding pair is in the nth
G-orbit (cf. Higman [5] for the resulting “coherent configuration”). If, in
a situation (x,,..., % | G), i and j are nth associates then we say that x;
and x; are nth associates in that situation. (Note that the relation of being
nth associates need not be symmetric).

Tueorem 1. (i) If v>1, and Q satisfies
{(»+)} Given two distinct points a, b, and an integer n, 1<n=<s, there are
exactly A, situations in which a and-b are nth associates,
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then, for any pair (i, §) of nth associates, A = A, |G| is independent of n
and (i, ), and Q is a 2-(v, k, A; G)-SBTS. (ii) If Q is a 2-(v, k, A; G)-
SBTS with v>>1 then (x#) is satisfied with A, =|G;|™" - A, where (i, j) are
nth. associatés.

. Remark. In our Example 1 we have s =2, partners are first associates,
opponents are second associates, and (#«) is satisfied with A, =1, A, =2.

Proof. (i} Suppose that (+*) is valid. Given two distinct points a and b,
and a:pair (i, f} of nth associate places, there are A, situations in which «
and b are nth associates. To every situation there are exactly |Gl
cdrres'ponding tuples, of which exactly |G,| have x; =g, % =b. Hence
Ai{a, by= A, |G|, independently of a and b. Therefore, the total number
of tuples is the sum over the v(v—1) numbers A (q, b), a+# b, which is
v(v—1)A, |Gy|. This is independent of n and (i, j), whence also A=
A, |G| is independent of n and (i, j). Hence A;(a, b)=A for all a# b, i#j,
and Q is a 2-(v, k, A; G)-SBTS. (i) Conversely, suppose that Q is a 2-
(v, k, A; G)-SBTS. Take two distinct points a and b, and an integer n,
1=<n=<s If i and j are nth associate places, there are exactly A tuples
x€ Q with x; =a, x;=b. The number of pairs of nth associate places is
{G: Gy), where i and j are nth associates. Hence there are A(G: Gy)
tuples x € Q which have a and & on nth associate places. These tuples
decompose into G-orbits of length [G| each, ie. there are exactly
|GIT'AMG: G;)=|G,| "\ situations in which @ and b are nth as-
sociates. Hence (++) is valid with A, =|GJ"'A.

Tueorem 2. Let G be a 2-transitive group on k places. Then a 2-
(v, k, Ay)-design  exists Hf a 2-(v, k, A; G)-SBTS exists with A=
Ay |Gl - 1)

Proof. Let B be a collection of k-sets. We label the k entries of each
block arbitrarily as x,, .. ., x,, form the situation (x, ..., x, | G), and put
all the tuples belonging to this situation inito a tuple system Q. Con-
versely, given Q, put into & all sets {x,, ..., x} where (x,,...,x, | G) is
a situation of Q. Now G is 2-transitive iff s=1, i.e. there is only one
associate class, and |G|=k(k—1)|G;]. Hence (+*) is equivalent to the
statement that for any two distinct points there are exactly A, situations in
which a and b occur. Hence, by Theorem 1, @ is a 2-(v, k, A, )-design iff
Q is a 2-(v, k, A; G)-SBTS. Note that the SBTS determines uniquely the
design, but the design determines the SBTS only if G =8, the symmetric
group, since otherwise the points in a situation may be arranged in
different ways.

The connection between strong balanced tuple systems and designs is
still more closely:

Tueorem 3. Bven if G is not 2-wansitive; the existence of a
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2-(v, k, A; G)-SBTS implies the existence of a 2-(v, k, A,)-design with A, =
|G| tk(k—1).

Proof. Let Q be a 2-(v, k, A; G)-SBTS. We associate with every situa-

tion (x;, ..., x| G) the set {x,,..., %} and claim that the collection of
these sets is the required 2-design. In fact, if @ and b are distinct points
.then a and b lie in the block {x;, ..., x,} iff there are distinct places i, |

-such that x; =g, x;=b. There are k(k—1) choices for i and j, A pos-
sibilities for x when i, j are given, and hence Ak(k — 1) possible tuples x.
But the |G| tuples in the same G-orbit determine the same block whence
the number of blocks containing a and & is |G|~ times this number.
We: say that a 2-(v, k, A,)-design B admits a group G if there is a 2-

. (v, k, A; G)-SBTS Q with A # 4, |G|/k{k — 1) such that the construction of

Theorem 3 produces % from Q. By Theorem 1, this means essentially
that the blocks may be ordered (with the partial symmetry induced by G)
such that the stronger balance condition (+x) is satisfied. We proved in
Theorem 2 that a design certainly admts a group G if G is large enough
(2-transitive, or even, trivially, the symmetric group); hence it is an
interesting question when a design admits a small group. This is not
always possible, not even if the necessary conditions (3) are satisfied; e.g.
for the cyclic group Z, of order 3 there is a 2-(6, 3, 2)-design but no 2-
(6,3,1; Z,)-SBTS (A proof by exhaustion is quite easy). Some large
classes of designs which admit small groups are given in section 6.

A Hadamard 2-4n—1,2n—1, n—1)-design might admit a dihedral
group D,,_, vielding a 2-(4n—1,2n-1,1; D,,_,)-SBTS. Such SBTS8s
exist if 4n—1 is a prime power (see the corollary to Theorem 5). I do not
know of other cases; a solution would imply (see Neumaier [8]) a set of
2n—3 mutvally orthogonal Latin squares of side 4n—1 (a number
presently known to be attained only for prime powers 4n—1).

Theorem 3 has a nice corollary which bounds the number of free
automorphisms of a SBTS:

CoroLLary. If Qis a 2-(v,k, A; G)-SBTS with v>1,k>1,1>0 and
|G|>A(v—1) then v=k.

Proof. Since v>1 there are two distinct points @ and b, and A>{
implies then the existence of a tuple in Q; hence v =k since Q is strong.
Now suppose that > k. Then the induced design of Theorem 3 has v >k
and A, >0. Hence the Fisher inequality (2) applies, giving |G|<A(v—1).
This contradicts the hypothesis whence v=k.

The case v=k, A =1 is equivalent to an affine plane with a group G*
of dilatations fixing an affine line, such that the operation of G* on that
line is permutation equivalent to the action of G on the places (see
Neumaier [9]). Nothing is known about the case v=k, A>1.
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- The three theorems show clearly the importance of free antomorphisms
of a SBTS; they influence the structure of a SBTS in a crucial way. There
has not been done any work on general automorphisms. But it is worth to
notice that every non-free automorphism {(«, @) of a SBTS induces the
automorphism = in the design constructed in Theorem 3. It would be
interesting fo know when all avtomorphisms of the induced design arise
in this wdy. Conversely, if & is the symmentric group then the SBTS
corresponding (by Theorem 2} to a design has the automorphisms of the
désigh as pure automorphisms. If G is only 2-transitive then the au-
tomorphisms of the corresponding SBTS depend on the chosen arrange-
ment of the points in the situations; it is not known whether the ordering
may be chosen in such a way that some (or all} automorphisms may be
lifted to (pure?) automorphisms of the SBTS.

4, Near modules and near vector spaces

A set R together with a binary operation + on R is a leop if R coatains
an element 0 satisfying x +¢=0+x = x, and if for given g, b€ R there are
unique elements x, ye R with x+a = b, a +y = b. For the theory of loops
see Bruck [1]. A commutative, diassociative loop is a loop such that any
two elements of R generate an abelian group. The exponent of a loop is
the smallest positive integer »n such that x" =1 for all x.

Let K be a {commutative, associative) ring with unity 1. A K-
nearmodule is a loop (R, +) with K as a left operator ring satisfying

(N1) a{x+y}=ax+ay,

(N2) ax+(bx+y)={(at+b)x+y,
.(N3) (ab)x = a(bx),

(N4) 1x=x,

for every a,be K, x,ye R If K is a field then we call R a near vecior
space over K. In this case (N1) and (N2) imply that the K-nearmodule
generated by two elements of R is a vector space of dimension =<2 over
K

Examples of commutative, diassociative loops are abelian groups, and
commutative Moufang loops (see Bruck [1]). Examples of near modules
are ordinary K-moduies, and commutative di-associative loops of expo-
nent n, with K being the integers mod n. Near vector spaces can be found
by a method of Quackenbush [10], see Theorem Q below.

Similarly as in the construction of projective geometries from vector
spaces we obtain from any near vector space R over K a 2-design by
calling points the 1-dimensional subspaces Kx (x# 0), and blocks the set
of 2-dimensional subspaces Kx-+ Ky (x#0,y¢ Kx). If |R|=1v, |K|=¢g
then the resulting design has parameters 2-({v—1)/(g—1),g+1,1). In
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particular, v =1 mod (q — 1). Although nonisomorphic near vector spaces
may produce isomorphic designs, the construction has a converse:

Tueorem Q (Quackenbush [10P. Let g be a prime power, and K=
GF{(q) be the field with q elements. Then a near vector space over K with v
elements exists iff there is a 2-({v—1)/(g—1), g + 1, 1}-design.

' 5. SBTS from near modules and near vector spaces

ProrosiTION 2. Let K be a ring with uniry, and K™ be the group of units
of K. Let R be a finite K-near module with v elements. Suppose that I is a
k-subset of K such that

i-je K™ foreveryl,jel, i#j. (4)

Then Q={(ix+y: icD)|x, yeR x#0} is a 2-(v, k, 1)-SBTS. Moreover,
if the permutation i+>egi+a (a€K, e € K™} preserves I then it is a free
automorphism of Q.

Proof. If (i—j)e K™ then ix+y =a, jx+y = b have the unique solution
x=(i—j)""(a—b), y=a—ix. From this it follows easily that Q is a 2-
(v, k, 1)-SBTS. The permutation «: i+~>gi+a transforms the tuple
[x, yl:i=(ix+y: iel} into {((ei+a)x+y: ie)=(@extax+y: iecl)=
[ex, ax + v}, and both tuples occur in Q with multiplicity one. Hence if a
preserves I then it is a free automorphism of Q.

For example, if we take for K the integers module an odd number »,
then I={0, 1, —1} satisfies (4) and is preserved by i — —i. Hence Q is a 2-
(2,3, 1;{(1, —1))-SBTS. If R is an abelian group of odd order then this is
the SBTS given in section 3, Example 3; but now we see that we get a
SBTS in the same way from any commutative, disassociative loop of odd
exponent.

Since it is not easy, in general, to deal with condition (4), we now
specialize to the case when K is a field, and R is a near vector space over
K. In this case, (4) is satisfied for all subsets I of K, which makes
everything easier. We shall construct SBTS with the following groups of
free automorphisms:

A.(g", d)=the split product of an elementary abelian group V of order ¢
acting semiregularly on the places, and a cyclic group Z of
order d acting semiregularly on the orbits of V;

Al(g", d) =the split product of an elementary abelian group V of order ¢’
acting semiregularly on the places, and a cyclic group Z of
order d fixing one orbit of V and acting semiregularly on the
remaining orbits;

Z.(d) =a cyclic group of order d acting semiregularly on the places:

1(d) =a cyclic group of order d fixing a place and acting semiregu-

larly on the remaining places;
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A(q)  =the (2-transitive) group of all integral linear transformations
of a field with ¢ elements;
D,  =the dihedral group of degree k and order 2k.

(The split product of an abelian group V and a group Z of automorph-
isms of V' is the group of transformations of V of the form x +— sx+q,
aeV/ecZ A group acts semiregularly on a set X if only the identity
fixes an element of XD

Pnoposmorq 3. Let q be a prime power, and let K = GF(q*) be the field
with g°* elements. In the following cases there is a k-subset I of K which is
preserved by a linear transformation group isomorphic 10 G:

) .G= A (g, d) and d|q-1, k= Omodq‘d k=g°~gq',
(b} G=Al(g" d)and d|q-1, k=g'mod g'd, k<g", I{S,
(c) G=Z(d) and d|g—1, dlk":q -1;

(d) G=Zj(d)and d|g—1,d |k—1=g"—1;

{e) G=A(q) and k=gq.

Proof. K contains a subfield K= GF(q). Since d | g1, K contains a
cyclic subgroup H of order d. Let K, be a vector space of dimension ¢
over K contained in K,

(a) Since k=0mod q'd we may take for I the union of some sets of
the form K,+Hb (becK-K,). The transformations i~ gi+a
(a €Ky, e € H) preserve I and form an A,(q", d).

{b) The same transformations preserve also K, whence they preserve
I'=TUK, and act on it as AL(q’, d).

(c) and (d) are the special cases ¢ = 0 of (a) and (b), and (e} is the special
case t=1, k=g, d=g—1 of (b).

A combination of the two propositions gives

Txeorem 4. Let q be a prime power, K = GF(q*), and R be a finite near
vector space over K with v elements. Then, in the cases (a)-(e) of above, a
2-(v, k, 1; G)-SBTS exists.

To obtain another class of SBTS we use slightly varied version of
Proposition 2 to prove

Tueorem 5. Let R be a near vector space over K=GF(g) with v
elements. Then a 2-(v, k, 1; D,)-SBTs exists when

k|g—1, kodd, g¢odd. (5)
Proof. Let a be a primitive k-th root of unity in K. By (5) the elements
%1, %@, ..., =a*"" are distinct and form a subgroup H of K*. Choose a

set Sy of representatives of the orbits of H on R—{0} and define
S=8,UaS,U---Ua*"'S,. § has the properties

aS=8, SN-§=g, SU-S=R-{0} (6)
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With any set S satisfying (6) we form
Q={{a®x+y: imodk)|xe§ yeR, e==%1}.

Clearly Q is strong. To show that Q is a SBTS we have to prove that
Ay(a, b)=11if a# b, i# ] Now Ayla, b} is the number of solutions of

__ ax+y=a; a®x+y=bh (7
These imply
x=(a"—ay N a~-b). 8)

Now.a i —a~ =—a " (a'—a’) whence by (6) the expression (8) is in §
for exactly one choice of ¢==x1. Therefore &, x, and (by (7)) y are
uniquely determined by (7). Hence Q is SBTS. The transformations
i~>ai and i~ i~! are free automorphisms of Q and generate D.

If we take R = K in Theorem 5 we obtain the

COROLLARY. A 2-(v, k, 1; D,)-SBTS exists whenever k is an odd integer
and v is a prime power with v=1mod 2k.

6. Some classes of 2-designs

THEOREM 6. Let g be a prime power, and suppose that a 2-(w, q¢° +1, 1)-
design exists. Then a 2-(w(g* —1)+1, k, A)-design exisls in each of the
following cases:

(a) ¢' | k=qg"—4q, k=1]A, k(k—1) | ag'(g—1), t=5;
M) q'| k=g, k|q'A k(k=1){Arg'(q—1), t=<<5;

() k=q*—1, k—1]A, k(k—1}| Alg—1)

@ k=g, k| A, k(k—1)|Ag-1);

(e) k=g, A=1;

f) k | g —1, A=4k—1), k odd, g odd.

In particular, in these cases a 2-(g°%, k, A)-design exists.

Proof. (a)-(e) follow from Theorem 4, and (f) from Theorem 5 (with g
replaced by g*) using Theorem 3 and Theorem Q. The details are left for
the reader. The near vector space R =K gives in these cases a 2-
(g%, k, A)-design.

Remark. For s =1, designs with parameters (¢} were derived by Quac-
kenbush [10] by a different method, but alsc using near vector spaces.

Remark. Theorems 2 and 3 are part of my thesis [8], and Theorems 4,
5, and 6 generalize Theorems of [8].
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