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We give a classification of graphs by two parameters s and ¢ such that a graph is
regular iff ¢ 2 2, edgeregular iff # 2> 3, and distance regular of diameter 8 iff 5 = 4,
t > 28 — 2. We investigate the algebra of pelynomials in the adjacency matrix and

_relate to every graph a family of orthogonal polynomials. This generalizes various
results on distance regular graphs.

0. INTRODUCTION

Among the regular graphs, certain classes have received much attention in
the past: Strongly reguiar graphs (see, e.g., Bose [2], Hubaut [5], Seidel
[6]), edge-regular graphs (e.g., Bose and Laskar [3]), and. distance regular
graphs (see Biggs [1], Delsarte |4]). The object of this paper is to show that
all graphs can be classified in such a way that the above classes are extremal
in our classification. Also, certain properties of distance regular graphs can
be generalized to arbitrary graphs.

In view of applications in subsequent papers we state our theory in terms
of Fiedier matrices. A Fiedler matrix is a nonzero symmetric matrix with
zero row sums and off-diagonal elements <0. Fiedler matrices are always
positive semidefinite. The number s of distinct positive eigenvalues of B is
called the geometric rank of B. Another invariant ¢ is defined by properties
of the pointwise product of polynomials in B and measures the inner
regularity of B.

Various calculations give insight into the algebraic structure of the B-
algebra, i.e., the algebra of polynomials in B. This algebra can be described
in terms of a special basis Dy =1, D,,.., D, 'and a related family p,(x) of
orthogonal polynomials. If ¢ 22 2e, then D,,.., D, are (0, 1}-matrices with
zero diagonal, and if #2>2s—2, then D, is the adjacency matrix of a
distance regular graph I’ of diameter s. In this case, the B-algebra is the
adjacency algebra of I. :

If I is a graph with vertex set X, then we define a matrix 8= (b,,), ,ex
with b, =valency of x if x=y, b, =—1 if x and y are adjacent, and

318

0095-8956/81/030318-14802.00/0

Copyright € 1981 by Academic Press, Inc.
Al rights of repreduction in any (orm reserved.




GRAPHS BY REGULARITY 319

b,, =0 otherwise. B is 2 Fiedler matrix, and I is called r-regular of rank
s+ 1 if B has parameters s and £, s is not less than the diameter of I, with
equality, e.g., in the distance regular case. t-regularity is equivatent with the
constancy of certain parameters py; of the graph. In particular, a graph I is
regular (edge-regular, strongly regular) iff it is 2-regular (3-regular, 3-regular
of rank 3), and distance regular of diameter 5 iff it is (25 — 2)-regular.

Remark. The present classification is formaily dual to the classification
of distance matrices (Neumaier 9D-

Notation. We denote the identity matrix of any size by I, an all-one
vector of any size by j, and an all-one matrix of any size by J. [f 4 = (a,,)
and B = (b,;) are v X v-matrices, then we denote by A4 o B = (a,,b,,) the
pointwise product of A4 and B. In particular, 4 o J = 4 for all matrices A. We
also make use of the Kronecker symbol &, =11if i=k, d,, = 0 otherwisc.
For a v X v-matrix B, the B-algebra is defined as the algebra of polynomials
in B.

1. FIEDLER MATRICES

Let X be a v-set. A Fiedler matrix on X is a symmetric v X p-matrix
B = (b}, yex With zero row sums and off-diagonal entries <0 (cf. Fiedler
[8])- A Fiedler matrix on X is called connected if it is impossible to split X,
into two nonempty disjoint subsets ¥, Z such that b, = Oforye Y, ze Z

1.1. THEOREM. Every Fiedler matrix B is positive semidefinite, and the
all-one vector j is eigenvector to the eigenvalue a=0. B is connected {ff O is
a simple eigenvalue of B.

Progf. Qbviously, Bj =0. Let z be an eigenvector for the eigenvalue o of
B. Then u has some nonzero entry, and we can normalize u such that the
maximal positive entry is I Define Y= {y EX|u, =1}, Z =X\Y. Then
Y+@, and for yE Y, a=au, =3 exby:ti: 2 3 cxby, =0 since b, <O,
u,< 1 for z#y, and u,=1. Hence « >0, and B is positive semidefinite.
Moreover, @ = 0 implies that b, u,=b,, forally€ ¥,z € X, whence b,, =0
forall ye Y, ze Z. If B is connected, then Z =@, ¥ =X, whence u =j, 50
0 is a simple eigenvalue. If B is not connected, we may split X into
nonempty disjoint subsets ¥, Z with b,, =0 for y€Y, z € Z. Then the
vector u with u, =1 if x€Y, u,=01if x€Z satisfies Bu=90, and is
independent from j, whence 0 is not a simple eigenvalue of B. ’

We write S for the set of nonzero eigenvalues of B, and §' =S\ {0}. The
multiplicity of the eigenvalue a €.5” is denoted by f,, so that fy=1iff B is
connected. The number s = | S| of distinct nonzero eigenvalues of B is called
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the geometric rank of B. We also introduce the annihilator polynomial
Anng(x} of B by

Anny(x)=p 3 (1—%:-). (L.1)

el

" 1.2. 'LEMMA. The minimal polynomial of a Fiedler matrix B is a scalar
multiple of x Anng(x). Moreover, B is connected iff

Anny(B)=.J. (1.2)

Progf. The minimal polynomial of a symmetric matrix B has as zeros
just the cigenvalues of B, all simple. Hence the first result follows from the
definition of Ann,(x). If B is not connected, and ¥, Z are as above, then the
entry of B’ at a place (y,z)& Y X Z is zero, for all i (induction). In
particular, Anng(B) contains zero entries and (1.2) does not hold. If B is
connected, then H = Anny(B) is symmetric and satisfies BH = 0. Hence the
rows of H are multiples of j whence H is a multiple of J. Now HJ = oJ = J*
implies H =J.

For a Fiedler matrix B, we denote the B-algebra by V. By Lemma 1.2, ¥
had dimension 5 + 1. Let us define the polynomials

y—X
— , s 1.3
A= T1 (7o) ec (1.3)
Then for a, fE S,
Ay(x) = Anng(x), (1.42)
Ao) = A‘:; j&")ﬁ-“l 5 e, (1.4b)
A, (B) = v3,y, (1,5a)
A (x) Ap(x) = vd 34 (%) mod Ann(x), (£.5b)

and we have

L.3. THEOREM. The matrices J,=A,(B), a €8 form a basis of the
B-algebra V, and satisfy for a, B € 8",

T Jy=vd, 4, (1.6)

(/) = (1.7)

PB)Y=v"" > playJ, for polynomials p{x), (1.8)
&S’

3 T =l ' (1.9)

®ES’
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Moreover, if B is connected, then
Jo=J, (1.10)
| P(BV = p(OV. (1.11)
Proof. Equation (1.5b) implies (1.6). From (1.3), J, has the eigenvalue
‘A, (a) = v with multiplicity f,,, and other eigenvalues zero. The trace is the
_sum of all eigenvalues weighed with their multiplicities, whence (1.7) holds.
A=pB)—v 'Y oo pla)J, is a symmetric matrix whose eigenvalues are
all. zero, whence 4 = 0, and (1.8) follows. Equation (1.9) is the special case

- fix)=1v of (1.8). Equation (1.10} follows from (l.4a) and Lemma 1.2, and
; (111} from (1.10), (1.8), and (1.6).

2. REGULARITY

~ Let B be a fixed connected Fiedler matrix of geometric rank s, and ¥ be
the corresponding B-algebra, For {=0,...,5, ¥, denotes the subspace of V
consisting of all polynomials in B of degree at most i. Obviously, V; has
dimension { + 1, and Vyc V', .- V =V,

2.1. LeMMA. There are unigue matrices E,.,..., E satisfving
Vi={(Ey, £ for i=0,..,s, (2.1)
JIEEY=6, for i,k=0,.,s (2.2}

Proof. Define on V¥ an inner product (4, B)=/;7(4 « B}j. This is the
canonical inner product on v X v-matrices considered as v’-dimensional
vectors, whence it is positive definite, Hence, by the Gram-Schmidt
algorithm there is a unique basis E,.,..., £, of V, orthonormal with respect to
( , }and satisfying (2.1).

2.2, THEOREM. There are nonnegative numbers d; and polynomials p;(x}
of degree i (i =0,..., 5) such that the matrices

D;=pBy=v=" > pla}/, (i =0, 5) 2.3)

a€es’

satsisfy for I, k= 0,..., s the relations
.fT(D: @ Dklj = ‘ka(.fTDi.f); (2.4)
DJ=dJ, p0)=d, (2.5)
D=L  p@)=1 d,=1L @8)
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Moreover, if d;=0, then D; =0 and px) =0. (Here the zeroc polynomial is
assumed to have arbitrary degree.)

Rmo_ﬁ Define ¢,=/7E,j, and D;=e¢kFE; Then j(D,oD}j=
ey J (B0 E)j = Suer =& /7D, ie., (2.4) holds. Since E, is a polynomial
of degree i in B, so is D,, and (2.3) follows from (1.8). Equation (2.5)
follows from (1.11), and (2. 6) directly from Dn—pu(B) dyf and (2.4).
Finally, (2.5) implies d;v=j"D,j=¢,j'E;j=¢} >0, whence d; =0, with
equality iff ¢;=0,'ie., D,=0.

_ 23 'LEMMA

() WaeDi=d Liep()=Amy),  Digdi=v
(i) "d,>0, D,#0.
©{iii)  V is generated by J, Ey,... E,_,.

Proofl J= Anng(B) € V\V,_, since Anny(x) has degree 5. Hence in the
representation J=3"3_,a;E;, we have a,#0. Now with e, as before,
=JE, j=FJ(E;cJ)j=a; by (2.2). Therefore J=3%_,e,E;=Y"_,
and e, % 0. Now (i} follows from (2. 3) and (2. 5) (ii) since d v=e¢;, and (m)
from (1) since E, = e '(J — {2, ¢, E)).

2.4, THEOREM. The following conditions are equivalent for any t:

(i) B'oB*=f,(B) with a polynomial f,,(x) of degree < min(i, k).
Jori+ kgt i kgs.

(i) VieV,SVanuofori+kLs i k<s.

(iii} E;oE,=(const}d, E,, for i+k<t, i, k<s, consts0
They imply

(iv) Do =6,D fori+k<t, ks, andd; >0 jor 2i <!

Proof. (i)- (ii) since ¥, is generated by B°,..., B'.

(ii)— (iii}: This is obvious for t =0, so assume by induction that (iii}
holds with r—1 instead of ¢ If i4+k<t, i k<gs, then
E;o E, =300 gl E, for certain numbers aj,. If i <k, then for m 1,
0=E,-E, oE =3 _gal(E o E)=al{const)E,,, so af=0 for all
m g:‘, and E, oEk=Ek o E;=0. If i=k, then in the same way a; =0 for
m < iso that E; o E; = a}.E;. Hence (iii) holds.

(i) (1): By (21), B oB*EV, oV, =(E, 0 E,. | I'<i, K k)=
(Ex | ¥ € min(i, k)) = Vi - and (i) follows.

(ii) > (iv): Take e as beforee By (2.2), 1=j7(E,cE})j=
(const) /', j for 2i < t, whence in this case e;% 0, and so d;> 0. Since
D;=e,E;, we have D;o D, = (const) §,D,, f‘or z+ k<t Lk<s, and by
(2 3) and (2.4), this constant is 1.
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We say that B is (-regular if the conditions of Theorem 2.4 are satisfied.
Obviously, +regularity implies i-regularity for all i< ¢

2.5. THEOREM. A connected Fiedler matrix B is always O-regular; it is 1-
regular iff’ the diagonal enfries of B are constantly r, and 2-regular iff, in
addition, its off-diagonal entries are 0 and —A, for some A > 0. (Thus we
obtain a regular graph on X by calling x, y € X adjacent iff b,,= -A.)

- Proof. ' O-regilarity requires fo/=(const)] which is always true. I-
regularity requires in addition that B o f=(const)l, i.e., B has constant
diagonal, 2-regularity requires in addition that BoB=ul- AB, and
B?oT="{const)l. The first equation implies that b7, =—2b,,, ie,
b, € {0, —A} for x# p. If b, =r, then for given x there are exactly A
elements 'y € X with b,, = —A (since B has zero row sums). Hence Blol=
(+* + FA)I; so the second equation is a consequence of the first.

2.6. Lemma.  The following conditions are equivalent:
. (i) D;oD;=Dy,

(i) D,isa (0, 1)matrix,

(iil) D, is an integral matrix.

Progf. (i)« (ii) > (iii) is obvious. (iii) - (ii) follows from (24) fori=k
which states Y d, (1 —d,,) =0 where D, = (d;,,)-

9.7. THEOREM, Let B be a connected t-regular Fiedler matrix of
geometric rank s, and t < 25.

(i) If !> 2e, then Dy,.., D, are nonzero (0, 1)-matrices, and dy,..., d,
are positive integers.

(i) Ift2s— 1, then all polynomials in B have constant diagonal; in
particular, D,,..., D, have zero diagonal.

(iii) If ¢t 25 —2, then V is closed under pointwise multiplication, and
B is 25-regular.
Proof. (i) follows from Theorem 2.4(iv), Lemma 2.6, and (2.5).
(i) If ¢3s—1, then E;ol=(const) E;c E,=0 for i=1,...5—1L
Since J o [ = I, the first assertion follows from Lemma 2.3(iii). Now D;o /=
¢, E; 0 I=0 for i = l,...,s — I, and by Lemma 2.3(i) and (2.6),

Dyol=> Diel=({—1ol=0
i=1

(iii) If ¢»2s—2, then by Theorem 2.4(iii), E;oE;&V for
{,j=0,..,5 — 1, and obviously E;o J,JoJE V. Hence by Lemma 2.3(iii), ¥
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is closed under pointwise multiplication. By (i) and Lemma 2.3(i), Dy,..., D,
are matrices whose sum is J, and by (i}, D,,..,D,_, are (0, ])-matrices.
Hence D, is a (0, 1)-matrix, too, and D;e D, =§,D,. By (i) and
Lemma 2.3(ii}, all D, are nonzero, so that D; = e, E; implies Theorem 2.4(iii)
with ¢t = 2s, i.e., 2s-regularity.

" Remark.. Theorem 2.7(iii) implies that V is the adjacency algebra of a P-
polynomial association scheme in the sense of Delsarte [4].

3. THE CHARACTERISTIC MATRIX

In the following, B is a fixed connected Fiedler matrix. We show that the
pi{x) form a family of orthogonal polynomials, and derive some formulas
which .allow us to calculate in the B-algebra. These results are relevant, e.g.,
for the investigation of perfect e-error correcting codes in 2e-regular graphs.
This will be done somewhere else. (For the case r = 25 — 2 see, e.g., Delsarte
4]} - :

We shall always assume that &, > 0 for i =0,..., s. By (2.1) and the proof
of Theorem 2.2, this is equivalent to the assumption that D,,..., D, generate
V.

3.1. LEMMA

() DDy=v7'Y s PU@) D) T,
(i) tr(D,D)=j"(D;e D))j=vdd,.
(i) Jo=Ju2io0d; ' Di(@)D;.

(iv) D:DJZZLUP:}DM

where

D Japde) pile) pa). (3.1)

I
pi’j 7
o | aes’

Proof. (i) follows from (2.3} and (1.6), and (ii) from (2.4) and (2.5). By
the above remark, J, =} ,d{a) D, for certain numbers d;(«). Hence
tr(/o D} =310 d(@) tr(D,D;) = vd;dj(e). On the other hand, tr{/, D))=
tr(pyla)J.)=1vf, pla} by (2.3) and (1.6). Hence dj{a)=d; Y, pia), ie.,
(iii) holds. (iv) follows by inserting (iii) into (i).

3.2. LeMma (Orthogonality relations)

() 3 Jopda)ple)=1vd5,.

aeSs’
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5

@) ) 5o P P = 7o

(i) pfy=d,d;.
Gv) ph=O|i—jl=lori+j=1
(v) ply 0 implies |1 —j| I i+

" Progf. (i) and (i) follow by substituting (2.3) and Lemma 3.1(jii) into
each other and ¢omparing coefficients. (iii) follows from (1), (2.6}, and (i).
Lemma 3.1(iv) implies that pj; =0 for {> i+ j, and #0 for {=1i+j, since
DiD;E Vi, AV, for i +j<s. Since by (3.1), d, pl; is symmetric in 4, j,
and /, this implies (iv) and (v).

" The matrix' T = (z;;), where for i, { =0,... 5,

= —— 3" afy p{e) @), (3.2)

vd, .5

plays an important role and is called the characteristic matrix of B. We also
define 7, _, = 0.

3.3. THEOREM

(i) The characteristic matrix T= (z;;) is tridiagona! and satisfies

7,=0 i I<i—1, (3.3a)
Tiio1 #0, (3.3b)

Ty =—Ti 1 i— V1.4 (3.3c)
T+ 0, (3.3d)

1, =0 if I>i+ 1. (3.3e)

(ii) d, can be recursively defined by
d,=1, (3.4a)
Tovdy=t_d_,  Jor i=1..s (3.4b)
(i) pyx) can be recursively defined by
p_,(0)=0, px)=1, (3.5a)
Torat Prsa(0) = (6 = 7) pilx) — 71 Pica (%) (3.5b)
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(iv) D, can be recursively defined by
D_ =0, Dy=1, (3.62)
T.".‘+1Df+l‘:BD.’_IHDJ'_'T:'..’—!D;‘—P (3.6b)

Progf. By (3.2) and Lemma 3.2(i1), 227_¢ 7y pda) simplifies to ap,(a).
Hence

xpi(x) = Zs 7 Pi(x) mod x Anng(x), 3.7
=0

A c‘oniparisbn of the degree shows that 7, =01if {>/+ 1, and 7,07 0. By
(3.2),. :

Tady=rt,ud,, (3.8)

whence also v, =0 if / <i— I, and T 0. Now 7y 4141, , =
ZL'G, Ty =(1/vd)) ¥oes S35, pila)) pla)=0 by Lemma 2.3(i) since
a Anng(a}=0 for a €5, This proves (3.3a)-(3.3¢). Using (2.6), (3.4)
follows now from (3.8), (3.5) from (3.7), and (3.6) from (3.5) and {2.3).

Remarks. (1) Resu[ts Lemma 3.2(i,ii) and Theorem 3.3(jii) show that
the p,(x} are a family of orthogonal polynomials, cf. Szegé |7].

(2) The characteristic matrix contains a lot of arithmetical infor-
mation about B: We can compute the d; by (3.4), the p,(x) by (3.5), v and
Anng(x) by Lemma 2.3(i), § as the set of zeros of Anng(x), and thé £, by
Lemma 3.2(ii).

3.4, THEOREM

(i) The algebra U of polynomials in T is generated by the pairwise
orthogonal idempotents

L= (S np@)  acs. (39)

?

() p(N=3,cs pl&) T, for all polynomials p(x).
(iii) The minimal polynomial of T is a scalar multiple of x Anng(x).
(iv) z,=(pfa)) is eigenvector of T for the eigenvalue o € 8',

(v) The correspondence T— B induces an isomorphism @ between the
algebras U and V. Moreover ¢(T, )= v, -
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Proof. By Lemma 3.2(ii), (3.2), and Theorem 3.2(iii), we gei easily

I= > T, (3.10)
aeS’
T= Y o, (3.11)
aEeSs’
T, Tp=0,7T, for a,fes. (3.12)

* By induction from (3.10)(3.12), T"=3,cs @"T,, and (ii) follows. By

{3.12), the T', are linearly independent, so (i} implies (iii). By (ii) and (iii),

I/ is contained in the algebra generated by the T, and has the same

- dimension s + 1, whence (3.1) holds. By (3.7), Tz, = az,, which implies (iv).
(v) follows from (3.12) and (L.6).

3.5, ProroSITION, If B is 2e-regular, e 2 1, then

pL<0  Jor ,j1=0,.6 (3.13)
Tii-1 < 0, i1, <0 for i= 1,..., e. (3.14)

Proof. If B is 2e-regular, then D,,..., D, are (0, 1}-matrices whence for
L/ 1=0une, 0<t(D,D,D)=0"" tr(Xocs PA@) PAQ) P} T,) = v, Py
by (2.3), (1.6), (1.7}, and (3.1). This implies (3.13). By (2.2), BE€ (D, D)
with Dy=1, and D, a (0, [)-matrix, so Theorem 2.4(jii) implies that
B=rD,—AD,, ie, x=rpy(x)—Ap,(x), whence 7, ,=miy' — i =
—pirt <0, by (3.1), (3.2), (3.13), and Lemma 3.2(iv). Equation (3.14)
foliows now from (3.4b).

Remarks. (1) By (3.1), (3.9), and Theorem 3.4(ii), p}; is the (i, /)-entry
of p/T).
(2) If B is 2-regular, then, in the notation of Theorem 2.5,
px)=(r—=xY4, d,=r/A

In the next section we shall need the following result which holds without
the assumption that all d; are positive.

3.6. LEMMA. Lef B be a t-regular Fiedler matrix, and e = [t/2]. Then
D,D,o D,=piD, for all i,j,1=0,.,e satisfying i+j+I1<t Moreover,
(3.3d} and (3.6b) hold for i=10,..,e— L.

Progf. Define the polynomial gi(x) by E;= p(B), so that D,=¢E;,
pix)=e¢, pi(x), div=e}, and by Theorem 2.7(i), d;;# 0 for i=0,..e.
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Essentially the same proofs as for Lemmas 3.1 and 3.2 and Theorem 3.3
show that

s -
EfEJ-.= Z p’;jEf, (3.15)
1=0
pi#0  implies I<i+j, (3.16)

where 5}, = E;esrfc_. Pia) g(a} pa); and

1By =BE,—TE —T,;,_ | E,_|, (3.17)
where -
Ty = Z Jo Bile} §i(a), {3.18}
oES’
T # 0. - (3.19)

By (3.15),'(3.16), and Theorem 2.4(iii, iv), we have for /,j, ! in the required
range, £,E;0 B, =3P pRE o E,=plE, 0 E,, whence D;D;oD,=
e,e;e(E,E; o E))=ey 'e;e; (D, D)=pl.D,. Finally, (3.3d) and (3.6b)
follow from (3.17)-(3.19).

4, -REGULAR GRAPHS

All graphs considered are nonempty, undirected, without loops or multiple
edges. The valency of a vertex x is the number of vertices adjacent to x.
d(x, ¥) denotessthe distance of two vertices x and y, and p;(x, ) denotes the
number of vertices z such that d{x,z) =1 and d(y, z) =/. The diameter of a
grah is the largest occurring distance.

We consider the following conditions:

. {i) Every vertex is adjacent to exactly & other vertices.

(ii) The number of vertices adjacent to any two adjacent vertices is 1.

(iii) The number of vertices adjacent to any two nonadjacent vertices
is g

(=) Ifd(x, p)=1 then px, y) = p}.

A graph I is called regular, edge-regular, resp. strongly regular if (i), (i)
and (ii), resp. (i}-(iii) hold, and distance regular if I' is connected, and (z},)
holds for all i, /,/=0,..,diam I, It is easy to see that a distance regular
graph is edge-regular, and the distance regular graphs of diameter 2 are just
the connected strongly regular graphs. In his book, Biggs [1] deals exten-
sively iwith regular and distance regular graphs and -proves many special
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cases of the results of Sections 1-3, interpreted in terms of graphs.
For a graph I" of diameter §, with vertex set X of size v, we define
symmetric v X v-matrices 4, = (yy)r.pexs § = O & and B = (byy); yex bY
Oy =1 if dx, »)=1,

=0 otherwise,

b, = valency.of x if x =y
==1 if x adjacent p,

=0 otherwise.

Thén.Ad =1, A,y A4 are (0, 1)-matrices, and B is a Fiedler matrix. We call
A, the adjacency matrix of I', and B the Fiedler matrix of I (cf. Fiedler [8]).
We call I t-regular of rank s + 1 if the Fiedler matrix of I is t-regular and
has geometric rank s.

4.1, THEOREM. If risa connected graph. with diameter & and rank
s+ 1, then s 2 6.

Proof. Let a,, b; be vertices of distance i, i =0,..,6. Then the (a;, b;)-
entry of B is 0 if / < i, and =0 if { = Hence if ¢oB®+ - +¢;B° =0, then,
considering the (a;, b)-entry for i= 8,6—1,.,0, we find ¢;=
¢s_y = =¢,=0. Hence the minimal polynomial x Anny(x) has degree
s+ 1> 8. Therefore s 3 &. : '

Problem. Characterize the case s = 4.

4.2. ProPOSITION. T is l-regular iff T is 2-regular iff T is regular. In
this case, '

D/ =A,=kI-B. (4.1)
Proof. By Theorem 2.5 and Remark (2} after Lemma 3.5.

4.3. THEOREM. Let I' be a t-regular graph, and e = [t/2. Then

(i)_ D;=A, for i=0,.,e
(i) (z}) holds for all i,j,1=0,..., ¢ satigfying i +j+1<h with pj; as
in Lemma 3.1(iv).

. Proof. Of course, D, =1I=A,. Hence assume that e > 1, and D; =4, for
i =0...., ¢, where ¢ € {0,...,e — 1}, By Theorem 2.7, D,,, is a {0, 1)-matrix,
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and by Theorem 2.4(iv} and our assumptions, D_,, 0 4,=0 for { < c. Now
by Lemma 3.6 and Proposition 4.2,

~Toer1 Doy =4 A+ (Te — k) Ay + 70 A, (4.2)

4,4, has nonzero entries just at places (x, ¥) with ¢ — | < d(x, y)<c+ 1, 50
Toc41# O implies that D, , has nonzero entries just at places (x, y) with
d{x,y)=c+ 1. Hence D, ,=A,,,, and (i) follows by induction. To prove
(i), we'simply observe that the (x, y)-entry of 4;4; is pylx, y), and by (i)
and Lemma 3.6, we have 4,4 ¢ A,:pi,A; for i, j, ! in the required range,

4.4 THeoREM. Let I” be a graph of diameter 8, and e < — 1.
Gy IF (7h;) holds for i=0,.,e—1 and I=i—1,i,i+ 1, and (7877
holds for i=0,..., e, then I' is 2e-regular.
() If T is 2e-regular and satisfies (z5}'~") for i=0,...,e, then I is
(2¢ + 1)-regular.
Progy. ‘Note first that (ﬂ,{j) is trivially satisfied (with p§J=0) unless

li—jl<I{<i+j Hence A A, =(p,(x,y)) implies, together with the
assumptions of (i), that for i =0,..., e,

A A, =pii'4,_, +Pi:Ar+Pﬁ1A;‘-r-z if iz#e, (4.3)
djadd, =0 if l<e—i (@.4)
Ae—EOAa‘Ae=p?c_fAtr-—f" (4'5)

and pif', pi; '+ 0. (n},) implies that I' is regular, whence by Proposition 4.2
and (4.3), 4, is a polynomial of degree i in B (induction for i = 0,.., e), and
hence for i=10,...,¢,

Vi={dgn A, (4.6)
Viee={Agsms Ags A (A ry 4,4, (4.7)

The A4, are (0, 1)-matrices whence
Ao d;=0d,4,. (4.8)

Now (4.4}-(4.8) imply V,o V,S V¥, for i+j< 2, i</ (and hence { <e),
whence by Theorem 2.4(ii), I" is 2e-regular.
The additional assumption of (ii) implies similarly

AE+l—iDAiAe=p|€e+i_iAe+l—i (4.9)

for i =0,..,e, whence ¥,o VeV, fori+j=2e+ 1, 1 <i<j. Hence I is
(2¢ + 1)-regular if we show that JoA,4,4,= {const) to cover the case
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i=0. But a diagonal entry of 4,4,4, is a row sum of 4, 04,4, hence
constant by {4.9) for i =¢ since A, has constant row sum X.

4.5. COROLLARY. A graph is t-regular iff, with e=[t/2], condition
“4.3(ii) is satisfied. (Here we assume t < 25.)

4.6. COROLLARY. A graph is 3-regular iff it is edge-regular.

‘4,7. THEOREM. Let I' be a connected graph with diameter § and
rank s + 1. Then the following conditions are equivalent:

(i) T is 26— 2)-regular, and s =4,
(i) I is (25 — 2)-regular,
(i) T is 2s-regular,
“(iv) T is distance regular.

Proaf. (i)— (i)« (iii) & (iv) by Theorem 2.7(iii) and Corollary 4.5.
(iii) — (i): By Theorem 4.3(i), 4, is a polynomial in B of degree i. Moreover,
J=dAy+ - +4,, and BJ=0. Hence the minimal polynomial of B has
degree <6 + 1, whence by 4.1, s =4. Hence [ is 2d-regular, in particular
{26 — 2)-regular.

4.8. CorROLLARY. The strongly regular graphs are just the 2-regular (or
3-regular, or 4-regular) graphs of rank 3.
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