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Distance Matrices and n-dimensional Designs

A. NEUMAIER

We consider two classes of n-dimensional desipns containing all projective and polar spaces,
-and investigate their relations to distance matrices, Delsarte matrices and association schemes.

1. M,-DESIGNS

~All sets considered are finite. A design consists of a set P of points and a collection &
of subsets of P, ¢alled blocks. A quasilattice is a design, together with a set of subsets of
P, called subspaces, such that the empty set, the sets consisting of a single point, the

“intersection of subspaces and the intersection of a subspace with a black are subspaces,

In particular, this implies that the set of all subspaces contained in a given block, together
with this block, is a lattice. A variety is either a subspace, a block or the set P. Note that
if any two blocks intersect in a subspace then the varieties form an atomic lattice. A
quasilattice is called short if every subspace is the intersection of two blocks.

A quasilattice is called regular of dimension n if the following axioms (L), (B), (K} and

(R) are satisfied: '

(L) If x is a variety then all maximal chains (J = xq<x; <+ + - < x; = x of varieties have
the same length { (we call such a variety an i-variety, and we write X for the set of
all i-varieties),

(B) The n-varieties are the blocks.

(K) For i = n, every [-variety contains exactly K points; 0=Ko< K;< - - - <K,

(R} Fori=n,every [-variety is in exactly R; > 0 blocks. Note that R is the total number
of blocks.

An M, -design is a regular quasilattice of dimension » satisfying

(M) If x is an i-variety, z a block containing x, and p € z a point not in x then there
is an ({ +1}-variety y < z containing x and p.

Nete that by the intersection property, there is (for § < x —2) at most one (f + 1)-variety
y containing x and p; so this v is in all blocks z containing x.

It is easy to see that a regular quasilattice of dimension » is an M,-design if and only
if the lattice of subspaces of every block is a matroid (see e.g. Welsh [8] for a definition).

ExAMPLES

M1. Every 1-design is an M;-design; in fact the two concepts are the same,

M2, The set of all proper subsets of an (r + 1)-set P is an M,-design with K; = .

MB3. The set of all partial transversals of a partition of a v-set P into n < ¢ classes of
v/ n points each is an M,-design with K, = /; blocks are the complete transversals.

M4. The set of all proper subspaces of a projective or affine space of dimension » over
a finite field GF(g} is an M, -design with K; = (qi —-1)/(g—1).

MS. The set of all polar subspaces of a finite polar space of polar dimension n over
GF(q) is an M- design with K, = (¢" —1)/(g — 1). Several families of polar spaces
are known (Tits [7], Buekenhout and Shult [ 1]).
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166 A. Neumaier

Mé6. For polar spaces of type D, over GF(q) {Tits [7]), the set of varieties belonging
to the nodes # n in the diagram

{which we shall call a half polar space) is an M,,_;-design with K; = (¢ — 1)/ (g—1)
o, fori<n—1,Kaa={g" - 1)/(g—1).
"M7. In the same way, the starred nodes (*) of the diagrams for buildings of type D,

* ¥ X ¥ * O ¥ H O ¥ N W N F W

&g E L3 % g E

* * ¥ ¥ ¥ O W #* W ® *
i £7 i £y 5

and E, give rise to M,;-designs (for { = number of stars). This follows from the
transitivity properties of the automorphism group of the relevant buildings (Tits
[7D), together with the fact that the residue of a block (= variety belonging to the
rightmost starred node) is a truncated projective space, hence a matroid.

MS8. Perfect matroid designs (Welsh [8]) of dimension n are M,-designs; in fact a
matroid (normalized such that K=0, K;=1) is a perfect matroid design iff it
is an M,, design for the appropriate n. The only known perfect matroid designs
are projective spaces, affine spaces, Steiner systems, affine triple systems and
their truncations, see [8].

M9. The regular semilattices of Type II over GF(q) defined in Delsarte [3] are
M,-designs with K; ={q' —1)/(g - 1).

M10. For 1=i=n, the set of =< i-varieties of an M,-design is an M;-design, and the
set of =i-varieties, together with the biocks, is an M, -design. Thus, the
previous examples give rise to many others.

In 1.1-1.7, we assume that an M,- design is given.

LemMMA 1.1. Suppose that O0sisj<sk=n, isisk I<n—1. Then, for given x € X,
ye X}, z € X, with x sy <z, the number of l-varieties u with u <z, uny==xis

(Ki = Kj) (K — Kjaa)} - - - (K — K13}
(K;—K;)(K;“KH]] "t (Kr*K:_l) . )

N = (1)

PrROOF. Obviously, Ni/ =1, and for i ={ the product (1) is empty. Hence we may
assume by induction that { </, and the formula holds for N&Y We count the number N
of pairs (p, u) € X1 X X; with p# x, p e u <z, u ny = x, For each of the K, — K points p£ y
with p € z, there is a unique (i + 1)-var1ety v containing x and p, and we have p < v since
p, ¥ = u. By induction there are N possible u, whence N = (K — K;)Nu‘fll On the
other hand, given u, p can be chosen in K, — K; ways, whence N = N9 (K,—K)), and (1)

follows.
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COROLLARY 1.2, For given x € X, z € Xy with x < z, the number of j-varieties y with
x<sys=zis

; (K —K) (K —Kiw) - o (K — K1)

_ - (2
ik {&—K;)(Kj_Ki‘f-l)' . (K,-'*K;—l) )
CoﬁoLLAREY 1.3. The number of i-varieties contained in a k-variety (k <n) is
[k] =K;.;(Kk —K‘l) e (Kk —-K;_1) (3}
{ Ki(Ki— K+ (Ki—Ki-1) '

o . i
Remark. For the M,-designs of Examples M2 and M3, [:] is the ordinary bi-

: k
nomial coefficient, and for the M, -designs of Examples M4 and M35, [1] is the Gaussian

binomial coefficient. This explains the notation used.

CORC_)‘LL;ARY 1.4. The set of subspaces of a block of an M,-design is a perfect matroid
design.

PrROOF. The set in question is a matroid, and by 1.2, (K), (R) are satisfied with K ; = K;,
Ri=pi'

LemMa 1.5.  Fori=<n —1, the number of i-varieties contained in two given blocks x and
yis

{u} _ Bp—K) e (p—Kicy)

il KKKy (K=K @

where w is the number of points contained in x and y.

Proor, Will be deleted (similar to the proof of 1.1).

Note that {T} is a polynomial of degree i in w, and

-7} ®

A

Lemma 1.6, The intersection of two blocks is either a subspace, or a union of
(n — 1)-varieties.

ProoF. Let x, y be blocks. Every point of x ny is in a maximal subspace of xny
whence x ny is the union of its maximal subspaces. Let z be such a maximal subspace.
If z is an i-variety with f <# —2, and p a point of x ny notin z then x and y contain the
unique {{ + 1)-variety containing z and p, whence z is not maximal. Hence there is no
such p, and x ny ==z, -

CoroLLARY 1.7. Two blocks with at most K,y common points intersect in a subspace.
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We restate some of our results in matrix form. Denote by [ the identity matrix of any
size, by J (resp. ) any all-one matrix (resp. vector), and by fe A (where A = {a.,) is a
matrix and f a function) the matrix ( flah.

Let us.define the incidence matrices Ap = (an(x, yrex, ve xoWhere ap(x, y)is lifx <y,
and O otherwise, the intersection matrices C;=ALA,, and the distance matrix C =
K.J—Cy. C and G are b x b-matrices. The off-diagonal entries of C,, i.e. the numbers
of points in the intersections of two biocks, are called the intersection numbers of the
 design. The next result is an immediate consequence of the above results.

LeMma 1.8, For an M,-design, the following is true.
(1) For i ﬁ] =k, we have AffA,‘k = ,(.L,{kA,';;.

Kn -
(i) Forisn—1,Ci=f<C, the?'Bff(f):{ ; 5}
(i) Aox=j", Co=J, C, =1
(i) A, J=RJ, ATT = [ﬂj C;J’=R;[ﬂf.

'THEOREM 1.9. A short regular lattice of dimension n is an M, -design iff there are
~ polynomials f.(£) of degree i (i=0,...,n—1) such thar =fioCfori=0,...,n-1,

PROOF. By 1.8 (ii) every M,.-design has the stated property. Conversely, assume this
property. Since C;=f,° C with linear f1{¢), this is equivalent with the existence of
polynomials g;(£) of degree i such that Ci = g ° Cy. If we compare the (x, y)-entries we
find that the number of ;-varieties contained in two given blocks x and y is g;(u), where
# is the number of points contained in x and ¥-

Let x and y be blocks whose intersection is a f-variety. Then u =K. For i > J, there is
no i-variety contained in x and ¥, and for / = j there is exactly one. Hence K; is a zero of
g: for i>j, and g:(K;) = 1. Since & has degree i, g,(¢£ = const. (§—Ko) - (£~K;_)), and

since g;(K;}=1, we have gl&)= {ﬂ, as defined in (4).

In every n-dimensional regular quasilattice, (M) holds for /-varieties with i > 5 — 2. By
induction, assume that (M) holds for i-varieties x with i > J, where j=<n—2, Fora given
block z, we count the number N of triples (p, x, y) EXIXX; XX withpexsy=<g, PEY.
Applying the hypothesis (with x=y=z} we find g;...(K,) possibilities for ¥, and for
each y, g;(K;.1) possibilities for x (since y is the intersection of two blocks). For each
x, y there are Kj.1—K; choices for p. Hence N = (Kir1— K g Kie ) gre1 (K ) =
(K. —K;)g;(K,), by the above formula for g(¢). On the other hand, there are g (K,)
choices for x, then K, — K choices for p, and since we have a lattice, at most one choice
for y. Since N = (X, —K;)g/(K,), there is always such a y. Hence (M) holds for J-varieties
£. This proves (M) for all x.

2. DELSARTE MATRICES AND 11-DESIGNS

We start with a summary of some definitions and results of Neumaier [4]. A distance
matrix is a real, symmetric matrix C = (¢xy) with the properties ¢, =0, Coy =0, \/Z,A-
Cyz >V ¢y, (triangle inequality), for all rows X, ¥, z. A distance matrix has strength t if,
for all non-negative integers i, k with i + &k < t, there are polynomials ;. (£) of degree =<j

such that
COC®=fy o C; (7)

here C¥' = (ci.,,). A Delsarte matrix is a distance matrix C without off-diagonal zeros such
that C has strength ¢ for all «.
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¥ 5 is the number of distinct non-zero entries a1, . . . , @, of a distance matrix C without
ofi-diagonal zeros then C is a Delsarte matrix iff C has strength 25 —2, and in this case,
the rows of C form an s-class association scheme, two rows x and y being /th associates
iff ¢,y = . From the proof of this result ({4], Theorem 3.4) we can easily deduce the
foltowing slightly stronger lemma.

L_EMMA' 2.1. A distance matrix C without off-diagonal zeros is a Delsarte matrix iff,
for 0si=k=s—1, there are polynomials f(£) of degree <i such that (7) holds; here s is
!he humber of distinct non-zero entries of C.

If A is the incidence matrix of a 1-design with block size k then C=kJ/—A"A is a
distance matrix of strength 1. C has strength 2 iff the design is a 13-design, i.e. satisfies
the ‘follow_mg axiom:

(%) Ixisa point and y is a block then the number of pairs (&, z) consisting of a point
u and a block z with x <z, u <z, u <y depends only on whether x is on y or not.

We want to give sufficient conditions for the distance matrix of a 13-design to be a
Delsarte matrix. For x € X, y € X, we define oy (x, y) to be the number of pairs (i, z) e
XixX, with x <z, u <2, u<y. We consider the following generalization of (*):

(S) If xe X, yeX,, xnyeX; then au(x, y) = aly, for all non-negative integers i, f, k
with i < n, j < k < n. An M, -design with property {(S) is called an S,,-design.

EXAMPLES

81,

S2.
83,

S4.

S35.

56,

Every 13-design is an S,-design; in fact the two concepts are the same. Moreover,
if we apply (8) for i = k =1, we see that the points and blocks of any S,-design
form a 1%—design.

The set of all <n-subsets of a v-set is an S,-design (Cameron [2], Delsarte [3]).
The set of all partial transversals of a partition of a v-set into n <o classes of v/n
points each is an §,-design (Delsarte [3]).

The set of all <k-subspaces of a projective space PGin,q) is an Si-design
(Cameron [2], Delsarte [3]).

The set of all polar subspaces of a finite polar space or half polar space of polar
dimension » and odd characteristic is an S,,-design (Stanton [5]: for the case n =3,
see also Thas [6]).

The regular semilattices of type Il are M, -designs (Delsarte [3]).

LemMa 2.2, (8) implies the existence of integers Bix such that fori <n, k <n,

k
ArCr = Ea B ::kA::cAIm (8)
X i 4
Cick = IED .8 ik H fan- (9)

Proor. The (x y) entry of the matrix on the left of (8) is just the number counted in
(8), whence it is af if x Ay is a j-variety. On the other hand, the (x, y)-entry of ALA,

is the number of /-varieties contained in x ny which is [ I]' Hence (8) holds iff

ah=3 [7]at, (10)

i=0
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for all { <n, j<k <n. But this is a system of linear equations for 85 with a triangular
matrix which has ones on the diagonal. Hence there is an integral solution. (9) is obtained
from (8) by left multiplication with 4%, where we simplify with 1.8 (i),

THEOREM 2.3. Let C be the distance matrix of an S,-design. Then C has strength n,
and if there are no repeated blocks and at most n distinct intersection numbers then Cis even
. a Delsarte matrix.

Proor. For i<n, C; is a polynomial of degree i in C, whence each C s a linear
combination of Cy, . . ., €. Hence (9) implies the existence of polynomials f;, (£) of degree
. <k with (7) for i <a, k<n. Now C*’C®=C"J hasan (x, y)-entry T, ¢l =Y. ch 'ews
. which is the diagonal entry of C*" " VC =/, ;0 C. Therefore C"CP=f, ;,(0)] =
faae C with f,,0(£) = fu-1,1{0) of degree 0. Hence C has strength n. Since the entries of C
are K, minus the intersection numbers, the second part foltows from Lemma 2.1,

~ COROLLARY 2.4. The blocks of an S,-design without repeated blocks and.with s <n
distinct intersection numbers form an association scheme with s classes.

CoroLLAaRrY 2.5, The blocks of a lattice which is an S.-design form an association
‘scheme.

Proor. In this case, the intersection numbers are contained in {Ky, K, ..., K,-1},
whence s <,

For n =2, these are well known results, implying the existence of a strongly regular
graph on the blocks for quasi-symmetric 2-designs, partial geometries and Steiner systems
S$(2, k, v). For r > 2, the corollary is related to Theorem 7 of Delsarte [3]. For, if a lattice
is an §,-design then it is a regular semilattice. In fact, Delsarte’s JI(j, 7, s) equals ol, if

r<n, and [j] if # = n. Hence his Theorem 7 implies 2.5.

Lemma 2.6. Let B be an M, -design with s < n distinct intersection numbers. B is an
S.-design iff the following axiom holds:

(§%) The number of z€ X, withx <z, |y nz|=p is a constant vilw), for every x € X,
y € X, with x ny € X, every intersection number ., and all integers J, k withj<k <n.

ProoOF. Suppose first that (S*) holds. In the pairs admissible in axiom (S}, there are

vk (u) choices for z with |y ~z|= u, and then {”} choices for «, Hence
i

=2 {4}, (11)
[l

independently of x and y. Hence (8) holds. Conversely, if (8) holds then we have (11) with

vk (1) possibly depending on x and y. Since (11) holds for all i, and since &' is a linear

combination of {’g} s {’;‘} we have, fori=0,...,5-1, %, u'yk(u) =independent of

x and y. Since these equations have a Vandermonde matrix, they have a unigue solution,
whence v} (i) is independent of x and y.

REMARK. {S§%) implies (§) for every M, -design.
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- LEMMA 2.7. (8) implies the existence of polynomials q;:(€) of degree i (for all i < n) such
that the matrices J; = q; o C satisfy, for i <n, k <n,

N - JiJi = RoduJi, (12)
Ci=Ry' ¥ Bl (13)
'PﬁOOF: By (9}, the vector space V; generated by Cy, ..., C; is an algebra. Let J; be a

non- zero matrix in the orthogonal complement of V., m V,, or, if Vio;=V, let J; =0,
Then J? =const. J; and we may normalize J; such that J? = RoJ.. Then (12) holds and V;
is generatcd by Jo, - .., Ji. Hence C; = Zk odk.fk for appropriate dy., dz 70, By (12) and
9), Th=o Rodudpte = CC Yo Bmu. I (Th—o d;k.fk) Comparing the coefficients of J; we
obtain Rod;d; = Bl ,nd“, and since i, =1, dy=Rg ,B,j, which proves (13). Finally, V; is
also generated by C, .. ., C¥ whence J; = g; « C with a polynomial ¢;(¢) of degree i.

REMARK. If (v ) is the inverse of the triangular matrix (B%), with B = 0if i <k, then

! Kn“
Ji=Xi=0 RovuC,, whenee q:ciﬁ):z?ﬂR””‘{ i é}.

- LemMMA 2.8, If there are s distinct infersection numbers then

Bhuk =Blanh, for i, k<min(s, n 1), I <k. (14)

PROOF. (..., C; are linearly independent polynomials in C. Hence they commute
with each other and, by comparing the coefficients of J; in C;Cy, and C,C; in {(9), the resuit
follows,

LEMMA 2.9.  Let f; be the rank of J.. Then Cy and Ay, have rank fo+ -+« +fe.

Proor. Denote by Hom(k} the row space of 4,,. Then Hom(k) is also the row space
of Cx =Ar.Ar, and contains the rows of all matrices C; = (u5) AT AnA, with i<k
Therefore Hom(k) contains the rows of all J;, i <k, and hence its dimension is at least
fo+ -+ +fi. On the other hand, C, is a linear combination of Jy, . . ., Jx whence we have
equality.

REMARKS
1. By Lemma 2.9, we have

fot - HhsiXl ' (15)

There are already two-dimensional examples (partial geometries) with rank A,,<|X|,
hence strict inequality in (15) is possible. On the other hand, we have equality for Examples
51 and 84 (see Cameron [2]).

2. By (13), the rank of C; equals the sum of the f, with Bﬁ‘k # (). Hence we have

Bl #0 foralli=k. (16)
THEOREM 2.10. The distance matrix of an M,-design B with exactly n distinct
intersection numbers is & Delsarte matrix iff B satisfies the following axiom:

(So} aulx,y) is a linear combination of aox(x. ¥}, ..., ax—1x{x, y) and iv, for all
Lhk<nlxeX,yeX,).
Here i, =1 if x <y, i, =0 otherwise.
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ProoF. First we show that (So) is equivalent to either of the following two statements:

(81) A,,C; is a linear combination of A,,C%, ..., AxnCi-1, Aw, forall i, k <n;
(S;) C.C, is a linear combination of CiC, . . . , CkCio1, C, for all i, k <n.

In fact, (So) and (84) are equivalent since am(x y} is the (x, y)-entry of Ak,.C,, and (8z2)
~follows from (§,) by left multlpllcatlon with AL, If (Sz) holds, say CkC; Y20 piCiCr+ pCre
then define X = A, (C,~ Y50 piCi— pI). Then AFL.X =0, whence X" X =0,andso X =0
which 1mp11es (S1).
Now suppose that the distance matrix C of 2 is a Delsarte matrix. Then 1.8 (ii) implies
that CC; is alinear combination of Ca, ..., Cy for i, k <<n;andsince p.;,, “0fori=sk<n,
(9)-holds with certain constants 8% Since the proofs of (12)-(16) depend only on (9) they

- are still valid. Hence
min{i k)

GG = Z BluB i (17)

and induction on i proves that for i <k, CCo, ..., GC; generate V; (use {16)). Hence
CiCo, . . . » CelCy_1, Cr generate Vi and (17) implies (S2).

Finally, suppose that (Sz) holds, and assume that we know already that, for all { <k and
all i, CC; is a linear combination of Cy, ..., C; (this is true for k =1). Since C and &
commute. as polynomials in C, (S;) implies by our assumption that C.C; is a linear
combination of Cp, . . ., Cr. Hence this holds for all k, and C is shown to be a Delsarte
matrix exactly as in 2.3.

TueoreM 2.11.  The distance matrix of a short regular lattice B is a Delsarte matrix iff
B is an M,-design satisfying (Sg).

ProoF. If C is a Delsarte matrix then each C; is a polynomial of degree 7 in C, and
hence in €. This implies that the hypothesis of Theorem 1.9 is satisfied. Therefore, % is
an M,-design. Since @ is a short regular lattice, the intersection numbers are
Ky, ..., K._1. Hence 2.10 applies. The converse follows from Theorem 2.3.

REMARKS
1. In the situation of Theorem 2.11, must & be an S, ~design? For n =2, the answer is

yes: Since agx (x, y) = Ry, (So) implies (S)
2. Axiom (S) states that ay (x, y) = aj if x ny is a j-variety. By (10), (14) and (16), aly
is a polynomial of degree i in K, when (So) is a consequence of (S}.
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