Characterization of a class of
distance regular graphs

By A. Neumaier at Freiburg

1. Introduction

A distance regular graph is a connected graph I (finite, undirected, without loops
or multiple edges) such that the sets I;(x) of vertices (or points) at distance from xel
have the following regularity property: For x, y € I' at distance d(x, y} =i,

a; if j=i,
(1) N, () ATl =06 if j=i+1,
¢, if j=i—1

The hist
(T i=1{bg, byy .. by 15 €1, Cane vy Caky

where d is the diameter of T, is called the intersection array of I' (Biggs [1]). In particular,
I is regular of valency k:=b,, and

(2) ag=co=b,=0, ¢, =1, a+b+e=k (i=1,...,4d).

We use A:=a, for the number of common neighbours of two adjacent points,
and u:=c¢, for the number of common neighbours of two points at distance two. The
number k,:=[I;(x)| of points at distance i from a given point x can be recursively
computed by

k;b,

3) ko=1, k,=k, k. = (=0,...,d—1),

i+1

and the total number of points of I' is

(4) p=14k, 4 +ky
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From the spectral theory of distance regular graphs in Biggs [1] it follows that
the primitive idempotents £ of the adjacency algebra of I' have entries

5 : Exy=iu.- for d(x, py=1,
v
s where: (u(:), #y,...,4,)7 is an eigenvector of the tridiagonal matrix
0 % 0
e, a, b
€1
=
by
0 ¢y ay

normalized such that u,=1. Then

© s Ehat) o

is the multiplicity of the corresponding eigenvalue; it is always a positive integer.

In this paper we are concerned with distance regular graphs of diameter d with
intersection array

{

1 : : : .
(7 b,-=?(d—z)(a—c:), gi:r+(2)c (i=0,....d)

for suitable numbers ¢ and ¢. If d=2 these graphs are the strongly regular graphs with
smallest eigenvalue —2, determined by Seidel [14]; therefore we assume that d=3.
Now relations (2) show that

1

1
(8) k=?ad, /1=7[a—-2+c(d—1}), #=C+2,

)] a;=%(a~2+c(d+1—2f));



184 Neumaier, Characterization of a class of distance regular graphs

in particular, « and ¢ are integers and
(10) az2+c(d-1), ¢=0

since b;_y 21, ¢; 21, We shall prove in Section 3 that every distance regular graph of
diameter d=3 with intersection array (7) is isomorphic to one of the following
graphs:

. (i) Hamming graphs H(d, n): Points are the words of length d over an alphabet
. of n letters, adjacent if they differ in just one letter.

(ii) Egawa graphs E(d, 4): A class of graphs described by Egawa [8] with the
same parameters as H(d, 4).

(iil) Johnson graphs J(n, d): Points are the d-subsets of an n-set (n=2d), adjacent
if they differ in just one element.

(iv) Half cubes D, ,: Points are the words of even weight and length »n over a
binary alphabet, adjacent if they differ in just two letters.

(V) The Gosset graph Q on 56 vertices, refated to the 28 bitangents of a quartic
surface: Vertices and edges of the polytope 3,, (cf. Coxeter [5]).

The intersection arrays of these graphs are given by (7), where
c=0, a=2(n-1) for H(d, n),
c=0, =6 for E(d, 9,
c=2, a=2(n—-d) for J{n d),
4

c=4, a=4d-2 for D, ,, n=2d,
e=4, a=4d+2 for D,, n=2d+1,
¢=8, a=18 for @, d=3.

The case ¢=0 has been completely determined by Egawa [8]; therefore we shall assume
¢ 2 1. Previous work on characterization of the Johnson graphs by (7) with ¢ =2 includes
work by Dowling [7], Moon [10], [#1]; they prove uniqueness for certain pairs (1, d).
Here we determine the graphs with (7) by representing the edges as norm 2 vectors in
an integral lattice. We then use the relations between root systems and line graphs
discovered by Cameron, et. al [4] and some technical results (provided in Section 2) to
show that only the graphs mentioned occur.

2, Line graphs and locally line graphs

For our characterization of distance regular graphs with (7) we need preliminary
characterizations of certain locally line graphs and certain tine graphs. These are provided
in this section where, however, a slightly more general situation is treated. First we
define the following graphs:

complete graphs K, with m mutually adjacent vertices;

complete multipartite graphs K, . with 522 classes of points with sizes

Ry I,

y,. .., Mg points are adjacent iff they are in different classes (note X,
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coci’fqué _éxtens*ions of a graph 4, i.e. graphs obtained from 4 by replacing the
vertices x of 4 by disjoint sets C, (which may be empty) and joining two points e C,
‘and e C, iff x and y are joined in 4;

_ line graphs L(4) of a graph 4, its vertices are the edges of 4, adjacent if they have
a4 common point;

C t:r_fangular graphs T(m)=L(K,));
" grids mxn=L(K, ).

- We use the notation x~p for adjacent vertices x, y and x4y for nonadjacent
distinct vertices x, y. A cligue is a complete subgraph of I'. The neighbourhood of xe T’
is the set I'(x) =TI, (x) of all points adjacent with x. Subgraphs induced on I'(x) n I'(y)
for x, v at distance 2 are called p-graphs of I'. If & is a property of graphs, I is called
locally P if for each xeT, the neighbourhood I'(x) is isomorphic to a graph with
property &. We write = for graph isomorphism..

Proposition 1. Let I' be a connected graph which is locally complete multipartite,
Then T is cither triangle-free or complete multipartite.

Proof. If T' is not triangle-free then I' contains a maximal induced complete
multipartite subgraph K with 523 classes. If xe I'\K has distance one from X then
consideration of I'(y) for the neighbours y of x in K shows that K has neighbours
of x in s—1 or s classes of X, and that if x is adjacent to one point of a class it is adjacent
to all points of the class. But this implies that K« {x} is complete multipartite. Since
K is maximal and I' is connected, ' =K. !

Proposition 2. Let I' be a connected graph, locally a line graph of ua complete
mudtipartite graph, and suppose that all p-graphs contain the same number p=<6 of
vertices. Then: |

(i) If p=S5 then each neighbourhood I'(z), z € I, is a grid or a triangular graph.

(i) If T is locally triangular then =6, and there is an integer m such that T is
locally T(m).

(i) If T is locally a grid then pe {4, 6}, and there are integers m, 1 such that T is
locally mx n.

Proof. Let H be the g-graph on I'(x) n [(y) for x,y at distance 2, and let
ze H. Then TI'(z)=L{A4) for some complete multipartite graph 4, and x, y are re-
presented by vertex-disjoint edges X, ¥ of 4. The graph induced on the neighbours of z
in H (represented by the set of edges joining £ and y in 4) is a 2-coclique, a K, ;, or
a quadrangle; hence by Proposition 1, each connected component of H is triangle-free
or complete multipartite. Since |H|£6 by assumption, and points of # have valency
at least 2, each p-graph is a quadrangle, a pentagon, a hexagon, a X, , , or K, ; ;.
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Now suppose that I'(z)=L(4), where 4 is complete multipartite but neither
- complete nor bipartite. Then 4 contains a K g 4, and the points represented by vertex-
disjoint edges of a K, , , must have K, ,; as a p-graph. In particular if g5 then all
neighbourhoods I'(z) are grids (4 bipartite) or triangular graphs (4 complete), so that
(i) holds. Next suppose that I' is locally triangular. Then the graph induced on the
" neighbours of z in a u-graph H is a quadrangle so that H is a K, 5, and p=6. And
if F(2)=T(m), I'(z')=T(m'), z~ 2, then consideration of the common neighbours of z
and z' shows that m =m'. Since I' is connected, I' is locally T(m), and (ii) holds. Finally
* suppose that I' is locally a grid. Then the graph induced on the neighbours of z in #
is a 2-coclique so that H is a p-gon, pe {4,5,6}. But # is contained in the grid I'(x)
so that s % 5. Now one shows as before that all neighbourhoods I'(z) are isomorphic. [

" A semibiplane is a set B of subsets (blocks) of a set X of points such that distinct
points are in 0 or 2 blocks and distinct blocks intersect in 0 or 2 points.

Proposition 3. Let I' be connected and locally T(mn). Then:

() T is the point graph of a semibiplane with block size m.

(i) If I" contains at least 2"~ points then I is a half-cube.

Proof. If m<£4 then I' is locally complete multipartite; hence it is K, K, or
K, ; 1., and the proposition holds. If m=5 then ihe local structure of I implies that
the set of m-cliques as blocks is a semibiplane. Since gach point is in m blocks, the

incidence graph is a rectagraph (see Neumaier [12]) of valency m, hence has at most
2™ points, with equality iff the rectagraph is a cube. This implies (ii). 0

Proposition 4 (Moon [10]). Let I' be a connected graph which is locally mxn,
m=n. If each y-graph is a quadrangle then either I' is a Johnson graph J(m-+n, m) or
2
m=n and |F|<( m) (For details on the exceptions if m=n see Blokhuis and
Brouwer [2].) m .

Proposition 5. Let A be a connected graph such that each pair of nonadjacent
vertices of the line graph L(4) has ¢ or ¢+ 1 common neighbours. If L(4) is not complete
then ¢ <4, and one of the following holds.

(i) c=4 and 4=K,,
(i) c=3 and A=K, 1 1»

(i) ¢=2 and 4 is a coclique extension of the Jfollowing graph:
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(iv) c=1and disa regular coclique extension of the pentagon, a complete bipartite
.graph, a triangle, or one of the graphs

(v} c=1 and L(A) is not regular,

(vi) ¢=0 and A has neither triangles nor quadrangles.
Proof. Two nonadjacent vertices of L{4), i.e. two disjoint edges of 4, can have at
most 4 common neighbours; hence ¢<4. We consider the possibilities for ¢ when A

contains prescribed induced subgraphs on 4 vertices containing a pair of disjoint edges:

type 0 type 1 type 2a

| I V1

type 2b type 3 type 4

Type i is possible only if ce {i, i—1}. Now if ¢=0 then we clearly have (vi). If
¢2 2 then let 4, be a maximal subgraph of 4 of the kind described in the proposition.
If xe A4, is a point adjacent to some point of A, then, in each case, the maximality
of 4, implies that A4 contains a forbidden subgraph on four vertices. This contradiction
implies 4= 4, since 4 is connected. Finally, if ¢=1 and we are not in case (v) then
L{4) is regular.

If A is bipartite with bipartite classes X and X, then points of X, must have the
same valency s; +1, and points of X, must have the same valency 5,+1. If 5, =0 or
s, =0 then A=K, ,. Otherwise, the set of points at distance 1 from an edge

X, Xy (X, €X,, X, X))

contains s;_;>0 points in X; ({=1,2). A point ;& X, at distance 2 from x,x, can
have valency at most s; since disjoint edges are forbidden. Hence this cannot occur,
points of X and X, are mutually adjacent, and 4=XK,, , since 4 is connected,
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. If 4 is not bipartite then, since L(4) is regular, 4 itself is regular. if 4 contains

no triangle then one easily sees that A is a coclique extension of a pentagon. So let A
contain some triangle xyz, and let 4, be the set of points adjacent to the point w e {x, y, z}
but not to the other points of the triangie. Since types 0, 3, and 4 are forbidden,
+ A, A, A; are cocliques of the same size and A={x, y,z) U 4, v 4, U 4,. Moreover,
. each point of A4, is adjacent to at least one point of each edge in 4, U 4, (and similarly

- . for any permutation of x, y, z). Now let s be the maximal number such that a point

w e 4\{x, y, z} has 5 neighbours in some A,. If s 2 then 4 must be one of the graphs
under (iv), so we assume that s2=3. W.l.o.g., let we 4, have s neighbours in 4, and ¢
neighbours in A4,. Then 4 has valency s+t+1, and |4 =14 |=14,|=5+¢—1; in
particular /=1, Any point w'e A, nonadjacent with w is adjacent with all points of
A(w) n A,. Now suppose that there is a point wy e A, \A4(w). A neighbour w, of w,
cannot be adjacent to both w and w', hence is adjacent to all s points of A(w) N A4,.
‘But then w, has Zs+1 neighbours in A4,, contradicting the maximality of 5. Hence
A,= A(w), and t=1. Let v be the unique neighbour of w in A4, and let v’ be the unique
neighbour of v in A,. Then each point of A, is adjacent to y and the 25 —22s5+1
points of A, w A \{v, v'}, and since 4 has valency s+ 2, v and v’ cannot have neigh-
bours in 4,. But then v has valency =s+1, contradiction. O

3. The characterization

In the following, I' always denotes a distance regular graph with diameter d= 3,
intersection array (7), and ¢=1. Let G be the vxv-matrix, indexed by points of I,
- whose (x, y)-entry is

k
(11) . ny=m—d(x’ y)'

It is easy to check that for the intersection array (7)., the vector (uy,...,u,)" with

At+2 . . : :
;=1 —Tf (=0,...,d) is an eigenvector of T(I"} corresponding to the eigenvalue

k
k—2—A. Since ny=m u, if d(x, y)=i, G is a positive multiple of the corresponding

primitive idempotent; in particular, G is. positive semidefinite of rank f given by (6),
a_pd G has zero row sums. Therefore, G may considercd as the Gram matrix of a set
I'={X|xeTl} of vectors spanning R’ (in fact of a spherical 2-design, see [6]) such
that

¢ o _
and
(13) ' £=0.




Neumaier, Characterization of a class of distance regular graphs 189

- Now let x,,%, p;, y, € I'. Then by (12),
(14) %, — Vi X2 —73) =d(x,, y2)+d(y13 X3) ‘d(-\'p X3) _d(y]s Va)

s integral. Therefore the vectors ¥— j {(x,ye ') span a lattice L. Moreover

o - o1
as) feo L

I.f"or' all x el since by (13), v¥= 3 (- j)e L. In particular, L spans R,
L yerl

'Pi?oposition 6. () Iy,pel(x), »t ¥, then y, and y, have ¢ or c+1 common
‘neighbours in I'(x). In particular, I'(x) is a regular connected graph of diameter 2,

' :-(ii) Eaéh u-graph of ' is complete multipartite with classes of size 1 or 2.
| Froof. (i) Let z be a common neighbour of ¥, and y, which is nonédjacent to x,
Then by (14), a=7,— % and b =Zz—J, have (a, a)=(b, b) =(a, b) =2 whence
(@a—b,a~b)=0, a=b, 7=3+75,—x.
Therefore there is at most one such point z, and the remaining ¢ or ¢+ 1 points adjacent

to y, and y, are adjacent to x.

(i) If a p-graph I'(y;) N I'( ¥,} is not as claimed it contains three points x, z, z'
such that x is nonadjacent to z and z’; but this configuration contradicts the uni-
queness of z in (i), 1

Proposition 7.  The lattice L is an irreducible root lattice, i.e. L is isomorphic to
one of the lattices

Ay ={xeZ" " x, + - +x,,,=0},

D,={xeZ"x, + - +x, even},

1 1
EB = <D3, (?)"'a 3_)>:

Ey={xe Eglx,+ - +x,=0},
Eg={xeEg|lx, + - +xg=x,+ x5 =0}.

Proof, Let x; yel'. Since I' is connected there is a path y=xy~x ~-- ~x =x and
¥—Jp= 2(%;—X,_,). Therefore L is generated by vectors ¥—j with x~ y. But by (14)
J=1

“such vectors have norm (X —J, X—7)=2. Now suppose that L is the direct sum of two
lattices L, and L,. If we call an edge xp of type / if the norm 2 vector X—yisin L,
cach edge is either of type 1 or type 2, If xyz is a triangle then (*—y,x—2)=1 by
(14) so that edges in the same triangle have the same type. Since I" is connected and
locally connected (Proposition 6) this implies that all edges have the same type, whence
L=L, or L=L,. Therefore L is irreducible. But by Neumaier [13] (or indirectly from
Witt [18]), an irreducible lattice generated by norm two vectors is one of the above
lattices. |

9 Journal fir Mathematik. Band 357
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ThlS proposition allows us now to make use of ihe rclations between line graphs
and root systems discovered by Cameron, et al. [4].

. Proposition 8. Either I' is locally a line graph, or L=E,, <8, d=4, and one of
the following holds:

(Ay d=3, a=2c¢+2, c¢=8,
3
WD) ={3¢+3,¢+2,1;1,¢+2,3¢+3}, (,\'-,y‘)=7—d(x,y),

(B) d=3, a=4c+4, c<3,
WMy={6e+6,3c+4,¢c+2;1,¢+2,3¢+3}, (X, 7y=2—d(x, y),

(C_} d=4, a=3¢c+2, c<4,
(M)={6¢c+4,3¢c+3,¢c+2,1;1,¢+2,3c+3,6c+4}, (& 7)=2—d(x, ).
Proof. The set of vectors {J — %|p € I'(x)} has Gram matrix 2/+ 4, where 4 is the
adjacency muatrix of I'(x). Hence I'(x) has smallest eigenvalue = —2. But Cameron
et al. [4] and Bussemaker et al. [3] show that a regular, connected graph with smallest

eigenvalue = —2 is either a K, , , (but in this case b, =1 and hence d=2), or a line
graph, or a graph with k points and valency 1 related by

(16 L~rE 2 24 k=28
) )+2 ¥ 2! 3 ) —_ E

of. [3], Proposition 5.10 and [4], Theorem 4.4. Moreover, in the latter case the
corresponding norm 2 vectors span Ey, £,, or E,;. Hence, if I' is not locally a line
graph, then L=E,, <8, and by (12) and (16),

an (%, y=r—d(x,y) for x,yel.
Since (¥, ¥)=r, this implies that » —d= —r and therefore d<2r £4. If d=3 then we
must have r e {v;—, 2}, and k=r{A+2) yields the first two cases; if d=4 then we have
r=2 and get the third case (in each case, k <28 yields the restriction on ¢). O
Proposition 9. If L=A, or D, then I'" is a Johnson graph or a half cube.

Proof. By Propositions 6 (i) and 8, each I'(x) is a connecied regular line graph
satisfying the hypothesis of Proposition 5 with ¢>0. Therefore ¢ e {1, 2, 3, 4}.

If c=4 then I'(x)=L(K,) for some m and Proposition 2 (ii) implies that I is
locally T (). Hence k= (?;) A=2(m—2) and (8) implies ad=m(m—1), a+4d=4m—-2.

. -1
This has the solutions (¢, a) = (; , 2m —2) and (a, d) =(m,) . 2m). Hence I' has the

same parameters as the half cube D, .; in particular 1=2""" so that I' is a half cube
by Proposition 3.

If ¢=3 then I'(x)=L(K,) for some m, but u=>35 contradicts Proposition 2 (ii).
Hence this case is impossible.




Neumafer, Characterization of a class of distance regular graphy 191

- If c'-%2 then I'(x)=L(K,,,) or L(K, , ,); hence Proposition 2 implies that I" is
locally mxn (m=n). As before, I' has the same parameters as the Johnson graph
J(m+n, m), and since p=4, Proposition 4 shows that I is a Johnson graph.

_ If ¢=1 then y=3. For x e T, let I'(x) be isomorphic to L(4,). If some 4, contains
© .a triangle then by Proposition 5 (iv), L(d,) has & points and valency A, where
C ok, Ay e {(3.2), 9, 4), (36, 6)}; but this conflicts with (8) and (10) since 4= 3. Hence no

' A, contains a triangle and no 4(x) contains a X, , ,. Now choose oo e I'. Since LS Z""/,

* ‘an easy induction argument shows that we can choose the basis of Z""! in such a way
that for all xel', x—o is a (0, 1)-vector with precisely 2d(x, «0) nonzero entries.
Let x € I';(o0), and consider the code on the 6 nonzero entries of x. We see that two
‘nonadjacent points in 4 =1I"(c0) N I',(x) must have 1 or 2 common neighbours in 4,
and two nonadjacent points in B=TI,(c0) N I'(x} must have 1 or 2 common neighbours
“in B; moreover |4|=c¢,=|B|. An attempt to construct A and B now leads to a
.. contradiction. O

By considering the cases left open in Proposition 8 we now obtain our main
result.

Theorem. Let I' be a distance regular graph with diameter d2 3 and intersection
array

U & A U
bi==5 (d—1) (a=ci), L;—H-(z)f ((=0,...,d).

Then I' is isomorphic to one of the graphs H(d, n), E(d, 4), J(n, d), D, ,, or Q, described
in Section 1.

Proof. By Proposition 9, the only possible exceptions arise with (A), (B), (C) of
Proposition 8. In case (A), a result of Taylor and Levingston [16] shows that I' is a
doubled twograph, and then Taylor [15] shows that there are unique solutions for
¢=2,4,8 (and no others). The resulting graphs are therefore isomorphic to J(6, 3),
Dg ¢, and Q which realize these parameters.

22
In case (B) we get from (3) and (6) a nonintegral value fz? for c=1, and a

nonintegral value &k, for ¢=3. For ¢=2, the parameters are those of J(9,3) and by
Moon [10], the only possibility is J(9, 3) itself.

In case (C) we have r=2, and by (17), I' itself spans a lattice containing E, and
hence coinciding with E; therefore I' is embedded into E, as a sct of norm 2 vectors
with d(%, 7)=2—(x, ). Now if ¢=1 then the graph obtained from I' by identifying
antipodal pairs is strongly regular and has the parameters of T(7); hence it is T(7)
(see e.g. [14]). But T(7) is locally a Petersen graph; hence the same holds for I'. But
there is no locally Petersen graph with the required 42 vertices (Hall [9]). If ¢=3 then
k, is nonintegral and there is no graph. The remaining possibilities c=2 and ¢=4 are
more difficult.

Take now ¢=2, then (3) and (6) give /=7 so that I' is embedded into E,.
Each I'(x) is a graph with 16 vertices and valency 6 in E,, and by the tables of Busse-
maker et al. [3], I'(x) is either the Shrikhande graph (No. 69) or a line graph L(X)
of a graph K with <8 vertices. In the latter case, K must have 8 points and valency 4;
hence K=K, , since otherwise the vectors corresponding to I'(x) span Dy & E,. For
both admissible local graphs two nonadjacent points in I'(x) have just two common
neighbours in I'(x), and hence (¢ =4) a unique neighbour in I, (x}. Now |[,(x)|=4,=136
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" and I'(x) has 72 unordered pairs of nonadjacent points y,, ¥,. Hence by Proposition 6
(i), a point of I;{(x} is determined by precisely two pairs of nonadjacent points, the

" p-graphs of ' are quadrangles, and the two common neighbours in I'(x) of y, y, are
always nonadjacent. But this is the case only if I’ (x)= L(K, ,)=4x4; therefore I' is
- locally 4x4 and hence J(8, 4).

' Finally, if ¢=4 then each I'(x) is a graph with 28 vertices and valency 12 in Eg,
- -and by [3] again, I'(x) is either a Chang graph (No. 161, 162, 163), or a line graph of
~a graph K with at most 9 points; clearly K= K. In both cases two nonadjacent points
" in I'(x) have just four common neighbours in I'(x), and hence (1= 6) a unique neigh-
- bour in I, (x). Now |, (x)| =k, =70 and I'(x) has 210 unordered pairs of nonadjacent
* points y,, y,. Hence by Proposition 6 (i1}, each y-graph of I" is a K, , ,, and the four
. common neighbours in I'(x) of y,, y, must form a quadrangle. But this is the case only if
© F(xy= L(Kg)=T(8); therefore I' is locally 7(8) and hence Dy . [}

Remark. After preparation of the manuscript I was informed by R. A. Liebler
that also Paul Terwilliger [17] recently proved the uniqueness of all Johnson graphs
Jn, d), d=3.
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