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Abstract — Zpsammenfassung

Inner Preduct Rounding Error Analysis in the Presence of Underflow. Wilkinson's classical error analysis
for sums and inner produets is extended to the case where underflow may occur. This is relevant for the
construction of rigorous error bounds for an inner product evaluated on computers which do not give
underflow messages. The analysis also covers calculations with gradual underflow.
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Rundungsichleranalyse von jnneren Produkten bei Unterlauf. Die klassische Methode von Wilkinson fiir
dic Fehleranalyse von Summen und inseren Produkten wird erweitert auf den Fall des Exponentenun-
terlaufs, Dies ist wichtig fiir die Konstruktion von Fehlerschranken von inneren Produkten bei der
Berechnung auf Computern, die Exponentenunterlauf nicht anzeigen. Die Methode umfalt auch den
Fall des graduellen Exponentenunterlanfs,

1. Introduction

In his now classical book on error analysis, Wilkinson [6] treats in detail the
computation of inner products on a computer which performs all operations with
bounded relative error. Real computers satisfy this requirement only if neither
overflow nor underflow occurs. Whereas the danger of overflow is small, and nsually
interrupts the computation, the occurence of underflow is more likely {c.g. in the
computation of small residuals), and is usuaily not noticed by the user. Thus, for the
design of a portable routine for the computation of inner products with rigorous
error bounds, Wilkinsons’s error analysis has to be modifted to handle underflow
effects.

This is done in the present paper. The analysis given is general enough 1o cover
fixpoint arithmetic, normalized floating point arithmetic, and floating point
arithmetic with gradual underflow (the latter as described e.g. in i ahan and Paimer
[13}. Moreover, empbhasis is given to the problem of presenting the error bounds in
such a form that they remain strict bounds even if their evaluation involves roundofl
errors, The latter technique was introduced by Olver [4] in connection with
absolute and relative precision; the treatment given here avoids the exponential
expressions occuring in Olver’s paper.
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The paper is concluded with three portable algorithms (written in an informal
programming language) performing three specific tasks:

SUM (x; n,s) computes an upper bound s for a sum of nonnegative numbers x;
(i=1,...n):

3,

it
-
HA

with slight overestimation only.

IPROD {4, B, c,i, f1, j2,k,7, e) computes an approximate inner product r with error
“bound e:
j2
c— E ag 5 b K -r
J=i1

e

“with small e.

DIV (a, b, ¢, ¢) computes an approximate quotient ¢ and a small residual error bound

. e such. that

la—ch|Ze.

These algorithms are applied in Neumaier [2] to the construction of a portable
algorithm for the computation of a matrix inverse with rigorous, realistic, and
componentwise error bounds with n* + O (n*) multiplications.

2. Roundoff Error Control: Error Analysis

We begin with some remarks concerning computer arithmetic. Let .# be the set of
machine numbers used for our calculation on a given computer. We denote by ¢ the
result of an arithmetic expression ¢ when evaluated on the computer, and make the
following assumptions on .# and the basic arithmetical operations . € {+, —, ., /}.

A1l: There are small numbers ¢, # such that for all a, be # for which the results
a o b is defined,
asb=(@- Bl +a)+o, |e|Ze, |&|=y, ae' =0,

The number ¢ is the relative precision and # the underflow threshold of the
computer. We require that n (but not necessarily ¢) is in 4.

A2: There is a large integer N such that if i,k are integers in the range
—Ngi, k<N then i, ke . # and

iok=(ick){1+a), laliSe;
moreover, ¢=0 if i - k is also an integer in this range.
A3: Ifacb20 then ao b20. |
If the computer works with normalized floating point numbers with basis B,

mantissa length L, exponent range [— E, F] with E, Fz L, and if the arithmetic
registers have at least one guard digit then A1l is satisfied with e=B*~" and
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#=B~*"F (cf. Olver [3], Sterbenz [5], Wilkinson [6]), and A2 holds with

N=B"—1. On some computers with gradual underflow, # is significantly smaller,

#=B"""¥(cf. Kahan and Palmer [1]). If the computer works with fixpoint numbers

" with K digits before and L digits after the fractional point then 41 holds? withe=0
and #=B"% and A2 holds with N=BX—1.,

We how define

: g=(1-¢7". 1

-Noté that usually ¢ is not a machine number.

Proposition 1:
If a,be #f and a< b is defined then

aob=(aobh){l+a)+o, (2)
. . aob=(aob)(1+a")—o, (3)
where
' lal,]a"|2g—1,{d'| Sy, o' 0" =0. “@)

In particular, if a o b is nonnegative then
asb={a-b)g+n, &3
aocbZ(a-blg+y. (6)
Progf: Since ao’ =0, A1 implies
aob={@-bY(l+a)—a'=a-b(l +a")—2o
with .
' lo"]=] —a/(1+e)] e/l —¢).

Since ¢=<¢/(1—¢)=¢—1 the first part follows. The second part is an obvious
consequence. []

Proposition 2:
If a;,b,e .# are nonnegative for i=1,..,n then

)":aaé((iaa)ﬂn—l)n)q””, (7
i

ia;b:g((i aib,-)+(2n~1m)q". ®)

Proof : We assume that the sum is evaluated in the natural ordering (the result can be
shown to be true also for other orderings). We denote the true and computed partial
sums in (7} by

' Moreover,if. & { +, —} then also &' =0, In particular, the following considerations can be sharpencd in
this case.
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4 H .
f:=zﬂs, SFZG;: (%)
. ) i=1 i=1
thén we have
Fi=51=a), Iy 1 =+ 84, S0 1 =8 T84y (10)

For n=1,(7) is obvious; assuming therefore that.(7)/holds for some t = 1 in place of n
we have
rS(s + e~ g (11
Using ¢ =1 and Proposition 1 we get
e =ret o S(54a, HE=1)n)g 7 Sl +a ) gtnHe-Bin)d T =
_ =0, g +10g T =(s4 004"
" "Therefore, (7) holds in general.
- To prove (8) we apply Proposition 1 and (7):
| Yab,2 Y (@:b)a+n)=(Cakdg+nns
(Y ah+n—n)g" L gtng s ab +Qu-Dn)g". O

Now we consider the evaluation -of the expression
i2
r=c— Y, a;by (12)
=i
on the computar. The calculations proceed according to the formulae

Sh1-1=¢,

py=ayb, s;=s;_1-p; ((=jl,...j2), (13)
§=5j3.
To describe the errors we compute nonnegative quantities e;, f,e by
e =12l fn=[8ul
e;i=e;_1+Ip;l, fi=fio s = 1+1,...,j2), (14)

e=(£2+e-'z).

Then we have

Proposition 3:
If s and ¢ are computed by (13) and (14) then with

n=j2—jl+1, (15)
the true value v of (12) satisfies the bound
lr—s|<(elg—1)+2nn)q". | (16)
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Proof: Define for t=j1—1,...,j2 the partial residuals
I

Hn=c— Z afjbjk—s,. (l?)

i=j

" We show by induction that for t=j1,...,j2,

el [ +ed(@—-D)+29(e+1-j1)] 477 (18,

: lndeed_,_ by (13) and Proliosition 1 we have

Guby=p (1 + &)+ o, 5,y —p=5(1+)+

A

.i . with quantities &, f;’ of absolute value < g—1, and a,, §; of absolute value <#. By
- (1) we have

Irrler:-i +S:—1_a£¢btk—srl=
=l o+ U+ Bi—p (L +6)— o) —5, | =
=t 5B —pot + B~ ],

_ [rel=lr—y 1+ (sl +p ) (g~ 1)+ 27. {19)
Stnce fjl_l%c—sjl_lzo, IS |=fi1s | s [=e; we get immediately (18;,). For

©+ t2f1+1 we observe that (14) and Proposition 1 give

: ey Hpl=eg+y, fioi+lslSfg+y. (20)

Now (19}, ¢ =1, (18,_,), and (20) imply that

RS- +e-)@—ND+2n—iDla' 4 [(s, 1+ pDg—1)+25] g =1
S+l e+ Ng—1)+20+24(—j1)] ¢
slfig+n+eq+n@—D)+2n+200—j0lg 71
=[(fi+e)lg—1)+2n+2q90@—jl) g~ 4"~
sh+e)a—D+2q0+1—j D147,

Therefore (18,) holds for ¢=j1,...,j2. In particular, (18;;), (15), (14) and
Proposition 2 show that

lr—s|=|rp|E[(fiz+e)g—1)+2nnlg" !
sleq+mg—11+2nn]g?
Sleglg~D+ng+2r-Dnqlg"*

=[e(g—1}+2nn]g",
as asserted, [

Our next aim is to find expressions which when evaluated on the computer provide
bounds for (a+mn)g". We treat the fixpoint case (e=0) first.

Proposition 4:
If =0 then for all nonnegative numbers ae .4 and integers m, n=0 we have

(atmn)g"Sa+(m+2)n if mEN-2, (21)

a5
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Proof: We have g=1 and a+(m+2)nSa+(m+2n+nSat{m+2)n+2n; the
computation of m+ 2 is error free by A2. Now subtract 2n. O

For the floating point case (¢#0) we need a convenient bound for ¢". To find this we
choose a large integer M such that

Mz=g™!, MEN; (22)

in most cases M=¢~! is already such an integer. Then we have the following
estimate whose proof (by induction) is left to the reader.

. Lemma:
If1=n=M—1 then

q"=

s——. O 23)

To discuss the quality of the bound (23) we assume that M =¢~'. Then

ﬂ—(1+ L Voqsl sig
=T/ = T M

and for n(n+1)=M, we have

M n+1
£14 .
M—n M
In many cases,
1_+_n+1
M
is the smallest machine number
H
>14+—,
: M

whence (23) is cxcellent for n(n+1)£ M. For larger # we usc

" 1 aM

for large M, which leads to the following table.

-
N . M
v q
M M—n
005 1.051 1.052
01 1.105 1.1i1
0.2 1.221 1.25¢
0.5 1.649 2.000

A still better upper bound than (23) would be (2M — 1 4+ n)/(2 M —1—n), valid for
n<2M—2; but we use (23) because of its simplicity.
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Proposition 5:
If-m+3,n+4§M then jor all nonnegative ae 4, we have

(a+my)g"<(at(m+4)n){(M/M -3 —n)). (24)

In 'ﬁakrfeufa_r
: ag+n=(a+5n)(M/AM-4)}. 25)

Prjbof : Put i=m+4, k=n+3 (they are computed without error, by 42). Then by
Proposition 1 and (23) for n=1 we have

o inz(in—-ng 'zni-DM-1)/MZGE-2)n=(m+2)y (26)
w;h_ence_by Proposition 1, 42, (26), and (23} we have
L @i MM -R) ¢ 2@+ in)(MIM—B) ¢ —nd?
a+in—n MM —l—ng*z(a+m+ D) MAM —k)—ng*
z{a+m+)n)g*—ng* z(@+mn g =(a+mn)g"*>.

Now divide by ¢* to get (24). (25) follows then from ag-+# £ (a+ 1) ¢ and (24) with
m=n=1. O

We make the correction term (24) available in the procedure COR,

procedure COR (a,m, n);
comment valid only if m+3SM, n+4=M;
real a;
integer m,n;
begin a:=a+(n+4)+ n;
a =a*({Mji(M-3-n),
end;

We are now ready to describe the algorithms mentioned in the introduction. We
restrict ourselves to the floating point case (¢ 0).

The construction of SUM exploits Propositions 2 and 5:

procedure SUM (x, n, 5);

comment valid only if n+2= M and all x,20;

real array x;

integer u;

real s;

5:1=0;

begin for i:=1,...,n do
si=s5+x();

end;

COR(s,n—1,n-1);

end;

Inorder to get an algorithm for IPROD we apply (23) and Proposition 1 and 5 to the
bound (16). We get
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Ir—s|S(elg—1D+2nn)g"=(e/(M —1)+2nn)q"
Z{lef(M —Dg+2n+Dn)g"<(e/(M -1} +2n+1)n)g"* .

This leads to the following program (s; is stored in r):

procedure TPROD (4, B,¢,i,jl,j2,k,r,e);
comment valid only if j2—j1 +4ZM/2;
-real array A, B,

real ¢, r,e;
- integer i,j1,72,k;
begin real p,f;
 integer j,n;
begin r:=c;
pi=aa*by e:=[pl;
ri=r—p; fi=lr|;
for j:=jl1+1,...,j2 do
begin p:=a;* by, ri=r—p;
ex=e+|pl; fi=f+|rl:
end;
e:={f+e)f(M—1);
ni=j2—jl+1;
COR(e,2*n+1,n+1);
end ;
end;

To get a program for DIV we estimate |a—cb| for c=a/b. We have
c=(a/b)(1 +o)+o with [2|Sg—1=(M~1)"", |o'|Snand e’ =0. If =0 then

la—ch|={o'b|ZlbIn=]bly-g+n
and if &' =0 then

la—cbl=]—a«|ZjalM—1)-g+1.
Therefore -

ja—cbh|=Max([al{M —1),|b]7)g+7.
Combined with (25) we get the following program

procedure DIV (a,b,c, ¢);
real a,b,¢c,e;

begin if 5=0 then
begin ¢:=0; e:=|al; end
else
begin c:=a/b;

e:=Max(ja|/(M—1), | b|n);
e:=(e+5+ ) (M/(M-4)),

end;
end;
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Finally we mention the following lower bound for a difference; the proof is similar as
for Proposition4 and is left to the reader.

.?roposition- 6 _
If a,beﬂ, and

RN d:=({a—b)—5n)- (M —-4/M)20
then a—bzd. [
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