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Surprisingly, the inner solution is valid even in the outer
repion. Moreover, this inner solution is the singular perturbation
solution {ugzp). That is,

(13)

On comparing (12) and (13], wo see that the effect of magnetic
field is almost negligible on the flow field.

Ugp = i = 0N

-i_.‘.'Sbluti_pn_-a,nd discussion for small suction
Reynolds number

For small &, Equ'q.tio'n {G) and conditions (7). can be written as

d¥u du .,
HS_IE"FEE?)T_E-Mu:O.’ {14)
=1 at . y.—;_O . } (15)

#wu—0 as. y-—»o00,

whore & = Ry - o o

Tor equations’ (14) and (15) a straightforward perturbation
expansion is not possible because of the infiity eondition.
However, the exact solution in this case is

—(Li2)[s+ (e F-4e M} ¢ i (18)

From (16), it is evident that the velocity field » decreases with
increasing Hartmann number, This phenomenon is true even

H=oaua

with, the suetion Reynolds number.
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An Existence Test for Root Clusters and Multiple Roots

“FPhere ia.a well-known existence and enclosure test for roots of
odd multiplicity of a continuous real function f{x) in a ringle
unknown: If f{z,) flza) = 0 then f has a root between z; and z,.
This simple test is very powerful, and ia the basis of most globally
convergent root finders (see, c.g. the comparison in NERINCEX
;and HavEeEMaNS [3]). In the context of interval analysis, some
other existence tests, based on Brouwer’s fixpoint theorem, are
in uge (see e.g. Rumr [6]); for real functions, these tests are less
‘powerful than gign tests, but, for simple rocts’ of tomplex analy-
tic fun'ctions they sre’ quite ¢onvenient. Both' the sign charige
test and the known ifiterval tests beconie more and more diffi-
cult to apply when two reots are very close, and they fail for
double roots. Indeed, there cannot be a general purpose existence
“teab for double roots {(and roota of even multiplicity} of real
functions since such roots disappear when arbitrarily small per-

turbations of suitable sign are applied to f.

.R-e

On the other hand, under small perfurbations of a complex
analytic function, a double root remains double or splits into
two simple roots. Thus the problem of deciding whether &
double raot or two simple roots are very close to a given numher
7 is well-posed. More generally, the number »(f, D) of roots in 22
of a function f which is analytic in an open, bounded set D < €
and continugus and nonzero on 3D is invariant under small
perturbations of f, if each root is counted according fo its
multiplicity. This is a particular case of the homotopy invariance
of n(f, D), which we state here ag follows,

Homotopy Invariance Theorem: Let E he a connected
Hoausdorff space, and let D, be a subset of €. Suppose thai
g: Dy X B — F {e o continuous funclion such thal each funclion
gt € B) defined by gi(z) = giz, t} for = € Dy {¢ unalylic in some
open ond bounded set D with D = D, end nonzero on 8D, Then
e, D) i8 independent of & ¢ E.

Proof: If D is simply connected and 8D is a (positively
ariented) Jordan eurve then. .

oy L [FE
MED) =g [mds

a

{1)

{HExrICI [2], § 4.10); thus n(g, D} ie an integer depending conti-
nuously on ¢, and is therefore constant. The general case follows
from the homotopy invariance theorem of Leray-Schauder
degree theery (of. OrTEGA and RuEixpsoLpT [4], Ch. 8} Bince
a{f, D) is the degree d{F, D, 0} of

P(0) = (a t 20)

this follows from d{¥, D, 0) = J sgn {det F'(x)) summed over

all 2 ¢ D with F(z) = 0, and

det F’ (“) = det (f"f | —imf
v im f ref

Any rule for evaluation of 2(f, D) amounts to an existence und
enclosure test z(f, D) 5% 0 for one or several roota of fin . That
the number n(f, D) can be expressed explicitely in terms of the
integral (1) has oceasionally been used for numerical root loca-
tion (ses HENRICI [2], § 6.11). However, to rigorously ascertain
the accurzey of & numerical integration is a highly nontrivial
matter. In the following we therefore derive a simple and prae-
tically suffieient condition for checking whether n{f, D) = k for
& given integer %. This test can be implemented rigorously on
any computer which supports rounded-interval arithmetie.

)%lf'ls_; 0.0

 Proposition: Let f: Dy— € be analytic in wn open and

bounded set D with D' = Dy, and continuous or 8D. If 7 ¢ D and
ftz '

(z — )
then n(f, D) = k.

Proof: Define g Dy x 0,11 =€ by glxt) =¥z +
{1 — 8) (z — ). Thengy(z) = (z — 7 and gpiz) = f(z). Now

0. forall 2¢0D @)

gz} 52 0 for £ € [0, 1] and z € 80 this is trivial for £ = 0 and
foll'iows for ¢ € [0, 1] since .

oz £z)

(2 — 2 (z—2)
Hence, by the hemotapy invariance theorem, n{f, D) = nlg, D}
= ﬂ{gus —D) =k

We now apply this proposition to circular dises
Kiayry={zeCllz—2 =7} . (3
Theofem: Let f be.analytic in the interior of K(z;r), and let
0 e<r-If - .
X = 'k_ oy gt
‘Rf’ﬂ ){l ) N 1 f(*:{‘z)

={Re

+1lt>1—t=0.

{4)

T gi-k  for all v e K3 ¢)

=0

then £ has precisely.k rools in K(%; 6), where each toot is counted
wecording to {68 multiplicily. -

Proof: Put D = int K{Z; &), and denote the right hand side
of (4) by ¢. By continuvity, Ref(¥}z) has conatant sign on
K(%; £), and without loss of generality we may take it positive,
go that in particular - '
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k -
Re 'ﬁ )(")>u forall zeD.

Now 'l'aylor’s theorem implies

S f“(z),, ik
e -(,4 Rl

f(n{;z {1 —82) pem ldt)

(k— 1}
]
QR RGN T
i<k L)
JWEE R —02)
‘{ U0 s ar,

For é'e- BD, the sum aquals o= f okt~ d¢; hence
o

g O
(z—z)’"_

and the pr{}poaltion applies. [

— Re fi)(ﬁ_-i'k(f.___t_)‘z_)) Bk—1dl < 0,

Remorks:

1. With (rounded) complex interval arithmetic (see HENnToI
[2], § 6.6 for circle arithmetic, ALEFELD and HERzuxRGER [17 for
rectangle arithmetic) it is casy to find an enclosure for the
numbers Re fid)z)fk) with z ¢ K{z; &) (or, in rectangl eanthmetlc.
with z in the square enclosing K({z, &)) defined by

Re(z —z), Im(z — 2) € [—e, 2]

onee an arithmetical expression for f is known. The higher deri-
vatives can be computed automatically and (-f‘flclently by simple
recursions, see Ratt [6].

2. Tn practico, the theorem is best nsed as an uposteriori tost
for existonee, starting with an approximate root % computed by
standard numerical methods. The theorem then provides a
rigorous existence test, multiplicity count, and enclosure for the
roob or the root eluster near Z. The successful application requi-
rea that we “guess” the right % and a snitable £. Since & should
be kept small, 2 reasonable procedurs is the following: Let e, he
the positive real root of

J&)z) FSHSHE
TEOE

it

’
'x‘=1

then (4) forces & = ep- If & i3 small then fE){z) = FENZ) + O()
go that it is sufficient to take ¢ only slightly bigger than ep. In
practice it is nsually sufficient to caleulate gy to a relative pre-
cision of 1¢ percent only and t choose & = 2ep; since L is wn-
known one tries & =1, 2, ..., until ene suceceds or a limit on &
ia attained.

3. If k roots are at distance 5 Z from z and the remaining
roots are far away then we have ronghly

f6)3) ~ (f)fwzﬁlzy (E)i

il

1% 7. angew. Math. JMech., Bd, 63, 11. 6

This shows that if f(¥{z) is not real, we must divide by fi¥(Z) (or

a real multiple of it) before applying the theorem, If we do this

we find that

ex == B2 — 1) < LBEE,

so thal we get with our choics an overestimation of roughly 34.
4. The Schur-Cohn alporithm (Hexric: [2], § 6.8} ealeulates

n{f, D) for polynomials f of degree # and cireles 1 in (»*) opera-

tions. In contrast, our sufficient eriterion requires for polynomi-

als only O(n) operations, and can also be applied to nonpaly-
nomial funetions.

Example: The most important case is that of & double root
(or twa very close roota), i.e. & = 2. In tliis case, o suitable guuss
for the radius £ is

£=2, = p+ |p* + 4q,

where p = [2F(Z}f" (=), g= 127(z)f~{z)], and the condition
guaranteeing for two roots in the circle s = K(z; ¢) {to be verified
e.g. in complex circle arithmetic) is

int (ReZA2) > -+ sl
We apply this to f(f.t) =gz — 2% —* - 2+ 1 which hes

a double root z* = + (1 4 F&)~: 1. 618033989 end obtain for
various approximations the enclosures |o* — 2] = & given in
Table 1.

Table 1

L0

H gflz* — 7
fupward rounded}

b BT 10 enclosore not guarunteed
1.4 861 10-2 4.4
1.61 ¥.92 1= 4.4
1.818 1.65 10-# 4.8
1.8180%4 5.44 10-* 4.83
1.82 0.48 LO-? 4582
1.45 1.48 101 4.08
1.7 3.49 1071 enclosure not guaranteed

Of course the test doesn't guarantee for the existence of a
double raot but only for that of two (possibly coineiding) roots
a* with |a¥ — | < &
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