MEASURES OF STRENGTH 2e AND OPTIMAL DESIGNS OF DEGREE e

By A. NEUMAIER Universität Freiburg

and

J. J. SEIDEL Technical University Eindhoven

SUMMARY. Kiefer's theory of optimal rotatable designs is reproved and discussed in the context of Euclidean t-designs. Existence of nearly optimal experimental designs is shown for arbitrary degree and strength, and an explicit construction is given yielding many optimal designs from spherical 2e-designs.

1. Introduction

The word design covers various notions. Companions to the ordinary t-designs in set theory are the spherical t-designs [5] on the unit sphere S in Euclidean \mathbb{R}^d . Recently [14] this last notion was generalized to a measure (both finite and infinite) of strength t in \mathbb{R}^d . On the other hand, optimal designs have been developed since the late fifties by Kiefer [11] and others, both experimental (finite) and abstract (as a measure). We restrict to D-optimality in terms of the determinant of the information matrix. The present paper relates these notions in the setting of the space of polynomials of degree $\leq \frac{1}{2}t$ in \mathbb{R}^d and their inner products.

In Section 2 we introduce the relevant notions, and give simple proofs of Kiefer's theorem and the Equivalence theorem for a subset X of \mathbb{R}^d admitting a subgroup Γ of the orthogonal group. Later Γ will be the full orthogonal group, and X = RS a union of concentric spheres with radii from R, a possibly infinite symmetric subset of R. In Section 3 we recall various definitions for measures of strength 2e, a.o. in terms of moments. We recognize rotatable designs of degree e as measures of strength 2e. For invariant measures the moments reduce to integrals over R, which are approximated by finite sums following Gauss-Christoffel. Section 4 gives a setting for the optimization proces, in terms of the Gram matrix of a basis for $\operatorname{Pol}_e(X)$, by use of spherical harmonics. Finally, Section 5 discusses the relevance of measures of strength 2e for [almost] optimal experimental designs of degree e.

2. Kiefer's Theorem

Let \mathbb{R}^d denote a vector space of dimension d over the reals, with positive definite inner product (\cdot, \cdot) and orthogonal group O(d). Let Γ be a closed subgroup of O(d) and let X be a Γ -invariant subset of \mathbb{R}^d , that is, $\gamma(x) \in X$ for all $x \in X$, $\gamma \in \Gamma$.

A design ξ on X is a normalized measure on X. If ξ is a design on X, then so is $\xi \circ \gamma$, for $\gamma \in \Gamma$. Any design ξ on X defines a positive semi-definite inner product

$$\langle f,g
angle_{\xi} := \int\limits_X f(x)g(x)\,d\xi(x)$$

on the linear space $\operatorname{Pol}_{e}(X)$ of polynomials of degree $\leq e$ in d variables, restricted to X. The volume $\operatorname{vol}_{e}(\xi)$ of the ellipsoid

$$\{f \in \operatorname{Pol}_{e}(X) : \langle f, f \rangle_{\xi} \leq 1\}$$

is a numerical characteristic for the design ξ . Clearly,

$$\operatorname{vol}_e(\xi) < \infty \text{ iff } \langle \cdot, \cdot \rangle_{\xi} \text{ nondegenerate.}$$

Moreover, since O(d) acts in $Pol_{e}(X)$ with |det| = 1, we have

$$\operatorname{vol}_e(\xi \circ \gamma) = \operatorname{vol}_e(\xi) \text{ for } \gamma \in \Gamma.$$

Definition 2.1: A design ξ on the Γ -invariant set X in \mathbb{R}^d is called:

- (i) aptimal if $vol_{\epsilon}(\xi) < \infty$ and $vol_{\epsilon}(\xi) \le vol_{\epsilon}(\xi')$ for all ξ' on X,
- (ii) rotatable if $\langle \cdot, \cdot \rangle_{\xi} = \langle \cdot, \cdot \rangle_{\xi \circ \gamma}$ for all $\gamma \in \Gamma$,
- (iii) invariant if $\xi \circ \gamma = \xi$ for all $\gamma \in \Gamma$.

The notions optimal and rotatable depend on the degree e of the polynomials involved. We will mention this dependence only if necessary.

For any design ξ on X, there is an invariant design

$$\overline{\xi}:=\int\limits_{\Gamma}\xi\circ\gamma\,d\gamma$$

on X. Clearly, invariant designs are rotatable. It is a consequence of the following theorem that optimal designs are also rotatable. The theorem goes back to Kiefer [11], cf. Kiefer-Wolfowitz [12] and generalizations in Karlin-Studden [10] (Theorem X.7.4).

Theorem 2.2: Let $\Gamma \leq O(d)$ act on $X \subset \mathbb{R}^d$, and let there exist an optimal design of degree e on X. Then all optimal designs of degree e on X define the same inner product on $\operatorname{Pol}_e(X)$. Moreover, the set of all optimal designs of degree e on X is a closed convex set consisting of rotatable designs, and containing an invariant design.

Proof: Let ξ be a fixed design on X with non-degenerate inner product $\langle \cdot, \cdot \rangle_{\xi} =: \langle \cdot, \cdot \rangle$ on $\operatorname{Pol}_{\epsilon}(X)$. Let f_1, \ldots, f_n be a $\langle \cdot, \cdot \rangle$ -orthonormal basis for $\operatorname{Pol}_{\epsilon}(X)$. Let η denote another design on X, and let

$$A=A(\eta):=[\langle f_i,f_j\rangle_\eta]$$

be the Gram matrix of our basis in the inner product corresponding to η . Then A is a symmetric positive semidefinite matrix and

$$\operatorname{vol}_e(\eta) \cdot (\det A)^{1/2} = \operatorname{vol}_e(\xi).$$

As a consequence we have

$$\xi$$
 is optimal iff det $A(\eta) \leq 1$ for all designs η on X(*)

Moreover, det $A(\eta) = 1$ iff η is also optimal.

Denote the eigenvalues of A by $\lambda_1, \ldots, \lambda_n$. Then the function

$$\phi(s) := -\log \det((1-s)\mathbf{I} + s\mathbf{A}) = -\sum_{i=1}^{n} \log(1-s+s\lambda_i)$$

is convex for $0 \le s \le 1$, since

$$\phi''(s) = \sum_{i=1}^{n} \left(\frac{\lambda_i - 1}{1 - s + s\lambda_i} \right)^2 \ge 0$$

Now suppose that both ξ and η are optimal, so that, in particular, det A=1. Then also

.
$$\eta_s := (1-s)\xi + s\eta$$
, with $A(\eta_s) = (1-s)I + sA(\eta)$

is a design on X. Hence (*) implies $\phi(0) = \phi(1) = 0 \le \phi(s)$ for $0 \le s \le 1$, and the convexity of ϕ forces ϕ to be constant and $\phi''(s) = 0$. Hence $\lambda_i = 1$ for all i, and A = I. We conclude that $\langle \cdot, \cdot \rangle_{\eta} = \langle \cdot, \cdot \rangle$, proving the first claim and the convexity of the set of the optimal designs. Clearly, this set is closed. Since $\xi \circ \gamma$ is optimal whenever ξ is, we infer $\langle \cdot, \cdot \rangle_{\xi \circ \gamma} = \langle \cdot, \cdot \rangle = \langle \cdot, \cdot \rangle_{\xi}$ which proves rotatability. Finally, integration over Γ yields the invariant optimal measure $\overline{\xi}$ in the closed convex hull of the $\xi \circ \gamma$, $\gamma \in \Gamma$. \square

Remark 2.3: Continuing the situation in the proof, we observe that optimality of ξ alone implies

$$0 \le \phi'(0) = -\sum_{i=1}^{n} (\lambda_i - 1) = n - \operatorname{tr} A,$$

hence $\operatorname{tr} A \leq n$. On the other hand, $\operatorname{tr} A \leq n$ implies $\sqrt[n]{\det A} \leq \operatorname{tr} A/n \leq 1$ by the arithmetic-geometric mean inequality, hence $\det A \leq 1$. Therefore we can reformulate (*) as

$$\xi$$
 is optimal iff tr $A(\eta) \leq n$ for all designs η on X . $(**)$

Moreover, $\operatorname{tr} A(\eta) = n$ iff η is also optimal. The trace formula

$$\operatorname{tr} A(\eta) = \int_X d(x,\xi) \, d\eta(x) \quad \text{for } d(x,\xi) := f_1^2(x) + \dots + f_n^2(x)$$

now implies the following:

Theorem 2.4: $\max_{x \in X} d(x, \xi) \ge n = \dim Pol_e(X)$, with equality iff ξ is optimal. In this case, $d(x, \xi) = n$ for all $x \in X$ except on a set of zero measure with respect to ξ .

Proof: Choosing an optimal η in the trace formula gives

$$n = \operatorname{tr} A(\eta) \le \max d(x, \xi).$$

If equality holds, then $d(x,\xi) \leq n$ for all $x \in X$, and the trace formula gives $\operatorname{tr} A(\eta) \leq n$ for all η . Thus ξ is optimal by (**).

Conversely, if ξ is optimal then the trace formula apiled to all unit measures η with one-point support gives max $d(x,\xi) \leq n$; and since tr $A(\eta) = n$, the trace formula for $\eta = \xi$ shows that $d(x,\xi) = n$ almost everywhere. \square

For an arbitrary basis $g = (g_1, \ldots, g_n)^t$ of $\operatorname{Pol}_e(X)$ with Gram matrix $M(\xi) = [(g_i, g_j)_{\xi}]$, the information matrix in statistics, we have

$$d(x,\xi)=g^i(x)M(\xi)^{-1}g(x)=\langle M(\xi)^{-1}g(x),M(\xi)^{-1}g(x)\rangle_{\xi}.$$

We see that Theorem 2.4 is just another form of the equivalence theorem of Kiefer and Wolfowitz [12].

We also see that ξ is rotatable iff $d(x,\xi)$ depends only on the Γ -orbit of ξ . In particular, in the case $\Gamma = O(d)$ a rotatable design is the same notion as the one introduced by Box and Hunter [2], cf. [16].

3. Measures of strength t=2e

From now on we specialize to the case $\Gamma = O(d)$. The O(d)-invariant set X is a union of spheres, possibly infinitely many. We use the notation

$$RS:=\bigcup_{r\in R}rS,\;rS:=\{x\in \mathbb{R}^d: (x,x)=r^2\},\quad r\in R\subset \mathbb{R}$$

where R=-R is symmetric about 0. Thus the whole space \mathbb{R}^d , the unit sphere S, a union of p concentric spheres, the unit ball, the case $R=\{r\in\mathbb{R}:r^2\in 2\mathbb{Z}\}$ for lattices, they all are covered by the notation RS. The unit sphere S has the standard Borel measure $d\sigma$.

The space $\operatorname{Pol}_{e}(RS)$ of the polynomials of degree $\leq e$ is the sum, for $k = 0, 1, \ldots, e$, of the subspaces $\operatorname{Hom}_{k}(R, S)$ of the homogeneous polynomials of degree k, all restricted to RS. We shall write

$$f = \sum_{k=0}^{e} f_k, \ f \in \text{Pol}_e(RS), \ f_k \in \text{Hom}_k(RS),$$

for the components. It is well-known that

dim
$$\operatorname{Hom}_{e}(RS) = \dim \operatorname{Hom}_{e}(\mathbb{R}^{d}) = {d-1+e \choose d-1};$$

$$\dim \operatorname{Pol}_{e}(RS) = \sum_{i=0}^{2p-1} {\binom{d-1+e-i}{d-1}},$$
$$\dim \operatorname{Pol}_{e}(R^{d}) = {\binom{d+e}{d}},$$

which are equal if $2p \ge e+1$, where p is the number of spheres, the one-point sphere O being counted as half a sphere.

We refer to [14], [6] for the following definitions, and their equivalence.

Definition 3.1: A measure ξ on RS has strength t if any one of the following equivalent conditions holds for all $f \in Pol_{\ell}(RS)$:

(i)
$$\int_{RS} f d\xi = \int_{RS} f d(\xi \circ \gamma), \ \forall \gamma \in \Gamma;$$

(ii)
$$\int_{RS} f d\xi = \int_{RS} f d\overline{\xi}$$
;

(iii)
$$\int_{RS} f(y) d\xi(y) = \sum_{k=0}^{t} \mu_k \int_{S} f_k(x) d\sigma(x), \quad \mu_k = \int_{RS} ||y||^k d\xi(y).$$

A Euclidean t-design is a measure of strength t having finite support.

In (ii), the measure $\overline{\xi}$ is the invariant measure introduced in Section 2. The equivalence with (iii) is proved as follows:

$$\int_{RS} f d\xi = \int_{\Gamma} d\gamma \int_{RS} f d\xi \circ \gamma = \int_{RS} d\xi(y) \int_{\Gamma} f(\gamma^{-1}y) d\gamma
= \sum_{k=0}^{t} \int_{RS} ||y||^{k} d\xi(y) \int_{\Gamma} f_{k} \left(\frac{\gamma^{-1}y}{||y||}\right) d\gamma = \sum_{k=0}^{t} \mu_{k} \int_{S} f_{k}(x) d\sigma(x)$$

The notion of strength is related to the designs introduced in Section 2.

Theorem 3.2: A design is rotatable of degree e iff it has strength 2e.

The proof is a direct consequence of the following lemma, cf. [6].

Lemma 3.3:
$$\operatorname{Pol}_{i}(RS) \cdot \operatorname{Pol}_{j}(RS) = \operatorname{Pol}_{i+j}(RS)$$
.

Here the product $F \cdot G$ is the linear space spanned by the products fg of $f \in F$ and $g \in G$. The lemma follows from the analogous formulae for $\text{Hom}(\mathbb{R}^d)$, and for $\text{Pol}(\mathbb{R}^d)$.

Theorem 3.4: If a design ξ is rotatable of degree e, then the inner product $\langle \cdot, \cdot \rangle_{\xi}$ is uniquely determined by the first e+1 even moments

$$\mu_{2i} = \int\limits_{RS} (y,y)^i d\xi(y), \quad i = 0,1,\ldots,e$$

Proof: We apply Theorem 3.2 and Definition 3.1, (iii). The polynomials $f, g \in \operatorname{Pol}_{c}(RS)$ are written in terms of their homogeneous components. Hom_{k} and Hom_{l} are $\langle \cdot, \cdot \rangle_{\sigma}$ orthogonal if k and l have opposite parity. Hence

$$\langle f,g\rangle_{\xi} = \sum_{k,l=0}^{e} \langle f_{k},g_{l}\rangle_{\xi} = \sum_{k,l=0}^{e} \mu_{k+l} \int_{S} f_{k}(x)g_{l}(x) d\sigma(x)$$

$$= \sum_{i=0}^{e} \mu_{2i} \sum_{k=0}^{2i} \langle f_{k},g_{2i-k}\rangle_{\sigma}. \square$$

For invariant designs ξ the variables may be separated:

$$y = rx \in RS, r \in R, x \in S; d\xi(y) = d\rho(r) d\sigma(x);$$

$$\mu_{2i} = \int\limits_{RS} r^{2i} d\rho \, d\sigma = \int\limits_{R} r^{2i} d\rho(r),$$

where $\rho(r)$ is a normalized symmetric measure on R.

Theorem 3.5: Let ξ be an invariant design of degree e with nondegenerate inner product $\langle \cdot, \cdot \rangle_{\xi}$. Then there is a unique symmetric weighted finite set (R_0, w) of size $|R_0| \le e+1$ such that the even moments of ξ are given by

$$\mu_{2i} = \sum_{r \in R_0} w_r r^{2i}, \quad i = 0, 1, \dots, e.$$

 R_0 is in the closed convex hull of R, $-R_0 = R_0$, $w_{-r} = w_r$, and $R_0 = R$ if |R| < e + 1, $|R_0| = e + 1$ otherwise.

Proof: The problem is to find finite symmetric R_0 and $w: R_0 \to \mathbb{R}^+$ such that, for $i = 0, 1, \ldots, e$,

$$\int_{R} r^{2i} d\rho(r) = \sum_{r \in R_0} w_r r^{2i}, \int_{R} r^{2i+1} d\rho(r) = 0.$$

The powers of r are polynomials of degree $\leq 2e+1$ which are independent with respect to the radical of $\langle \cdot, \cdot \rangle_{\rho}$. Hence for given measure $d\rho(r)$ we need symmetric R_0 and w such that

$$\int\limits_R f(r) \, d\rho(r) = \sum_{r \in R_0} w_r f(r), \quad \forall f \in \mathrm{Pol}_{2\varepsilon+1}(R).$$

This is solved by the (e+1)-point Gauss-Christoffel quadrature formula, cf. [4], p. 35 and [7], p. 80. Then R_0 is the set of the e+1 zeros of the orthogonal polynomial of degree e+1 associated with $d\rho$, and w_r , $r \in R$, are the corresponding Christoffel numbers.

Remark 3.6: For the invariant design ξ of degree e the conclusion of Theorem 3.5 is that the inner product on $\operatorname{Pol}_e(RS)$ may be taken as restricted to at most (e+1)/2 concentric spheres, the origin being counted as half a sphere. The radii of these spheres are determined uniquely.

If the finite support of a Euclidean design is contained in the unit sphere S, then a cubature formula (arbitrary positive weights) or a spherical design (equal weights) are obtained. We repeat their definitions from [8] and [5] for future reference.

Definition 3.7: A finite set $Y \subset S$ is a spherical t-design if

$$|Y|^{-1}\sum_{y\in Y}f(y)=\int\limits_{S}f(x)\,d\sigma(x),\quad ext{for all }f\in \ ext{Pol}_{t}(S).$$

A finite weighted set (Y, w), $Y \subset S$, is a cubature formula for S of strength t if

$$\sum_{y \in Y} w_y f(y) = \left(\sum_{y \in Y} w_y\right) \int_S f(x) \, d\sigma(x) \quad \text{for all } f \in \text{Pol}_t(S).$$

4. THE OPTIMIZATION PROBLEM

We are now in a position to determine the even moments of an invariant optimal design of degree e on RS, and to show their existence if R is compact and $|R| \ge e+1$. From Theorem 3.5 we know that for an invariant optimal design of degree e there are only a finite number of moments to determine. Therefore, the optimization problem to minimize $\operatorname{vol}_e(\xi)$ is a finite dimensional problem.

We shall use spherical harmonics, and first recall the simple but basic formula

$$\operatorname{Hom}_k(\mathbb{R}^d) = \operatorname{Harm}_k(\mathbb{R}^d) \oplus r^2 \operatorname{Hom}_{k-2}(\mathbb{R}^d).$$

Here $\operatorname{Harm}_k(\mathbb{R}^d)$ is the space of the homogeneous polynomials of degree k which are harmonic, that is, which are annulled by the Laplace operator. It follows that

$$h_k := \dim \operatorname{Harm}_k(\mathbb{R}^d) = {d+k-1 \choose d-1} - {d+k-3 \choose d-1}.$$

We let $f_{k,1}, \ldots, f_{k,h_k}$ denote any $\langle \cdot, \cdot \rangle_{\sigma}$ -orthonormal basis for $\operatorname{Harm}_k(\mathbb{R}^d)$, and notice that $\operatorname{Harm}_k(\mathbb{R}^S) \cong \operatorname{Harm}_k(\mathbb{R}^d)$. By iteration of the basic formula, and substitution of l = k + 2j, this implies

$$\operatorname{Pol}_e(\mathbb{R}^d) = \sum_{l=0}^e \operatorname{Hom}_l(\mathbb{R}^d) = \sum_{k=0}^e \sum_{k+2j \leq e} r^{2j} \operatorname{Harm}_k(\mathbb{R}^d).$$

Assuming $|R| \ge e + 1$, we have as in Section 3,

$$\operatorname{Pol}_{\epsilon}(RS) \cong \operatorname{Pol}_{\epsilon}(\mathbb{R}^d),$$

hence the polynomials $r^{2j} f_{k,i}(y)$ constitute an independent basis for $\operatorname{Pol}_{\epsilon}(RS)$, which we call a harmonic basis for $\operatorname{Pol}_{\epsilon}(RS)$. We calculate their inner products $\langle \cdot, \cdot \rangle_{\xi}$ corresponding to the invariant design ξ that we wish to establish:

$$\begin{array}{rcl} \langle r^{2j} f_{k,i}(y), r^{2j'} f_{k',i'}(y) \rangle_{\xi} & = & \int\limits_{R} r^{2(j+j'+k)} d\rho(r) \int\limits_{S} f_{k,i}(x) f_{k',i'}(x) \, d\sigma(x) \\ & = & \mu_{2(j+j'+k)} \delta_{k,k'} \delta_{i,i'}. \end{array}$$

As a consequence, the Gram matrix G of the harmonic basis reads

$$G = \sum_{k=0}^{\epsilon} \oplus h_k M_k, \quad M_k := \left[\begin{array}{ccc} \mu_{2k} & \cdots & \mu_{2k+2j} \\ \vdots & \ddots & \vdots \\ \mu_{2k+2j} & \cdots & \mu_{2k+4j} \end{array} \right]$$

with $j = \lceil \frac{1}{2}(e - k) \rceil$. For example, for e = 3,

$$G = \left[\begin{array}{cc} \mu_0 & \mu_2 \\ \mu_2 & \mu_4 \end{array} \right] \oplus h_1 \left[\begin{array}{cc} \mu_2 & \mu_4 \\ \mu_4 & \mu_6 \end{array} \right] \oplus h_2 \mu_4 \oplus h_3 \mu_6.$$

Theorem 4.1: Let $-R = R \subset R$ be compact and $|R| \ge e+1$. Then optimal designs of degree e on RS exist. Their even moments μ_{2i}^* follow from the unique solution of the optimization problem to maximize

$$\det G = \prod_{k=0}^{e} (\det M_k)^{h_k},$$

the determinant of the Gram matrix G of a harmonic basis, over the normalized measures ρ on R.

Proof: By Theorem 2.2, the class of the optimal designs of degree e on RS, if not empty, contains an invariant design $\xi = \rho \sigma$. The optimization problem is to maximize over R the determinant det G, which is positive by $|R| \ge e+1$, and whose moments depend only on the radial measure ρ . Since R is compact the maximum of det G is attained for an invariant measure ξ^* , say, which is optimal as well by Theorem 2.2, and unique by Theorem 3.4.

Corollary 4.2: For an invariant optimal design of degree e with compact R and $e \leq |R| - 1$, some non-zero points of the finite set R_0 must lie on the boundary of R.

Proof: Det G is a strictly increasing function of μ_{2e} , since μ_{2e} occurs in M_{2e} linearly with a positive coefficient. Hence the unique maximum of det G is attained on the boundary of the admissible domain for ρ .

Example 4.3: We illustrate Theorem 4.1 and Theorem 3.5 in the case of the unit ball B = [-1,1]S, for e = 1,2,3. We are in particular interested in the discrete solutions. The dimensions of the spaces of harmonic polynomials are

$$h_0 = 1$$
, $h_1 = d$, $h_2 = \frac{1}{2}(d+2)(d-1)$, $h_3 = \frac{1}{6}(d+4)d(d-1)$,

corresponding to the bases for $\operatorname{Harm}_{\leq e}$ consisting of the polynomials

1,
$$x_i$$
, $x_i x_j$ and $x_i^2 - x_1$, $x_i x_j x_k$ and $x_i (3x_j^2 - x_i^2)$,

in number 1, d, $\binom{d}{2}$ and d-1, $\binom{d}{3}$ and d(d-1).

For e = 1, the discrete measure and the moments are

$$\xi(-1) = \xi(1) = \frac{1}{2}; \ \mu_0 = \mu_2 = 1.$$

For e=2 the discrete measure and the moments are

$$\xi(0) = \delta, \ \xi(-1) = \xi(1) = \frac{1}{2}(1-\delta); \ \mu_0 = 1, \ \mu_2 = \mu_4 = 1-\delta.$$

The unknown δ is determined by the optimization of

$$\det G = (\mu_0 \mu_4 - \mu_2^2) \mu_2^{h_1} \mu_4^{h_2} = \delta (1 - \delta)^{\frac{1}{2}d(d+3)},$$

which yields $\delta = 2/(d+1)(d+2)$.

For e=3 the measure and the moments are

$$\xi(-1) = \xi(1) = \frac{1}{2}(1 - \delta), \ \xi(-\sqrt{\alpha}) = \xi(\sqrt{\alpha}) = \frac{1}{2}\delta;$$

$$\mu_0 = 1, \ \mu_2 = 1 - \delta + \delta\alpha, \ \mu_4 = 1 - \delta + \delta\alpha^2, \ \mu_6 = 1 - \delta + \delta\alpha^3.$$

The unknown $0 < \delta < 1$ and $0 < \alpha < 1$ follow from the optimization of

$$\det G = (\mu_0 \mu_4 - \mu_2^2)(\mu_2 \mu_6 - \mu_4^2)^{h_1} \mu_4^{h_2} \mu_6^{h_3}$$

= $\alpha^d (\delta(1-\delta)(1-\alpha)^2)^{d+1} (1-\delta+\delta\alpha^2)^{h_2} (1-\delta+\delta\alpha^3)^{h_3}$.

Logarithmic differentiation of det G w.r.t. α and δ yields:

$$\frac{d}{\alpha} - \frac{2(d+1)}{1-\alpha} + \frac{2h_2\delta\alpha}{1-\delta+\delta\alpha^2} + \frac{3h_3\delta\alpha^2}{1-\delta+\delta\alpha^3} = 0,$$

$$\frac{(d+1)(1-2\delta)}{\delta(1-\delta)} - \frac{h_2(1-\alpha^2)}{1-\delta+\delta\alpha^2} - \frac{h_3(1-\alpha^3)}{1-\delta+\delta\alpha^3} = 0.$$

For a further discussion of these equations in α and δ we refer to [1], and for numerical results to [13].

OPTIMAL EXPERIMENTAL DESIGNS

For the actual application in statistical experiments the continuous designs ξ must be approximated by discrete designs having rational weights. An experimental design on RS is a finite collection Y of points of RS, with repititions allowed. In statistical terms, n_i uncorrelated observations are taken at distinct points $y_i \in Y$, $i=1,\ldots,r$, so we have $\sum_{i=1}^r n_i$ points. The normalized measure ξ corresponding to the experimental design (Y, n) is given by

$$\int_{Y} f(y) d\xi(y) = \sum_{i=1}^{r} n_{i} f(y_{i}) / \sum_{i=1}^{r} n_{i}.$$

The first case to consider is that of an experimental design on a single sphere, say on the unit sphere S, with $R = \{-1, 1\}$. The second case deals with an experimental design on the unit ball B = [-1, 1]S.

Theorem 5.1: An experimental design on the unit sphere is optimal of degree e iff it is a spherical 2e-design (with repeated points allowed).

Proof: By Theorem 2.2 the optimal designs of degree e on S are rotatable on S, hence by Theorem 3.2 are measures of strength 2e on S. An optimal experimental design on S has finite support $Y \subset S$, which may be taken to have equal weights. Therefore, it satisfies Definition 3.7 for a spherical 2e-design.

Theorem 5.2: An experimental design (Y,n) on the unit ball B=[-1,1]Sis optimal of degree e iff (Y,n) is a Euclidean design of strength 2e whose even moments are

$$\sum_{\mathbf{y} \in Y} n_{\mathbf{y}}(\mathbf{y}, \mathbf{y})^{i} = \left(\sum_{\mathbf{y} \in Y} n_{\mathbf{y}}\right) \mu_{2i}^{\star},$$

where μ_{2i}^* are the moments of the solution ξ^* of the optimization problem for det G in Theorem 4.1.

Proof: Theorem 4.1 exhibits an optimal design and its moments. Theorem 2.2 asserts that all rotatable designs of degree e with the same inner product are optimal, and no others. Theorem 3.4 says that this condition is equivalent to having the same moments. \Box

We continue to show the existence of experimental almost optimal designs with small support. The basic ingredient in the following theorem is due to Caratheodory [3].

Theorem 5.3: Let X be a compact subset of \mathbb{R}^n , and let C be the closed convex hull of X. Then every boundary [interior] point of C is a convex combination of at most n [resp. n+1] points from X.

Theorem 5.4: Let ξ be a design on X, with information matrix $M(\xi)$ on $\operatorname{Pol}_{e}(X)$. Then there exists a design η on X with $M(\eta) = M(\xi)$, and finite support X_0 of size at most dim $\operatorname{Pol}_{2e}(X)$.

Proof: Let g_1, \ldots, g_n be a basis of $\operatorname{Pol}_{e}(X)$. The set Σ of the $n \times n$ matrices $[g_i(x)g_j(x)], x \in X$, spans a space of dimension $N \leq \dim \operatorname{Pol}_{2e}(X)$. The $n \times n$ information matrix

$$M(\xi) = [\langle g_i, g_j \rangle_{\xi}] = \left[\int_X g_i(x)g_j(x) d\xi(x) \right]$$

is an element of the boundary of the closed convex hull of Σ . Hence $M(\xi)$ can be written as a convex combination of at most N matrices from Σ , for $x \in X_0$, say, with $|X_0| \leq N$. This defines a design η with support X_0 having the desired properties. \square

In particular, if ξ is optimal then η is optimal as well. By approximating the weights of η by rational numbers we can obtain experimental designs which are arbitrarily close to being optimal. In particular, combining the present results with Theorem 5.1 we obtain:

Corollary 5.5: For every $e \ge 0$ there exist cubature formulae of strength 2e on the unit sphere in \mathbb{R}^d , which have at most $\binom{d+2e-2}{d-1}$ points.

Example 5.6: Finally we mention the construction of a class of optimal designs on RS with finite support, on the basis of a spherical 2e-design X, cf. [9] Theorem 5.1 and [15] Corollary 5. We wish to find a finite weighted set (Y, w) with

$$Y = r_1 X \cup \cdots \cup r_n X; \ R_0 := \{r_1, r_2, \ldots, r_n\} \subset R,$$

where X is a spherical 2e-design on $S \subset \mathbb{R}^d$, and the weights w_r are homogeneous on the various spheres. For (Y, w) we have:

$$\int_{RS} y^{\mathbf{k}} d\rho d\sigma = \int_{R} r^{\mathbf{k}} d\rho(r) \cdot \int_{S} x^{\mathbf{k}} d\sigma(x),$$

$$\sum_{y \in Y} w_y y^k = \sum_{r \in R_0} w_r r^k \cdot \sum_{x \in X} x^k,$$
$$\sum_{y \in Y} w_y = \sum_{r \in R_0} w_r \cdot |X|.$$

Since X is a spherical 2e-design, the weighted set (Y, w) has strength 2e iff (R_0, w) has strength 2e. In order to obtain optimal designs (Y, w) of degree e it suffices to choose $\rho(r)$ so that it matches the optimal moments μ_{2i}^* .

We observe that also $r_1 X^{\gamma_1} \cup \cdots \cup r_n X^{\gamma_n}$ works, for any $\gamma_i \in O(d)$, since by definition [5] the spherical 2e-design satisfies

$$\sum_{x \in X} x^{k} = \sum_{x \in X^{\gamma}} x^{k}, \ \gamma \in O(d), \ k = 1, \dots, 2e.$$

Acknowledgement. The authors thank B. Bagchi for several useful remarks, for instance on Definition 3.1, part (i).

REFERENCES

- [1] BAGCHI, S. (1986): A series of nearly D-optimal third order rotatable designs. Sankhya, Ser. B, 48, 186-198.
- [2] Box, G. E. P. and Hunter, J. S. (1957): Multifactor experimental designs for exploring response surfaces. Ann. Math. Statist., 28, 195-241.
- [3] CARATHEODORY, C. (1907): Math. Annalen, 64, 95-115.
- [4] DAVIS, P. J. and RABINOWITZ, P. (1975): Methods of Numerical Integration, Academic Press.
- [5] DELSARTE, P., GOETHALS, J. M. and SEIDEL, J. J. (1977): Spherical codes and designs. Geometriae Dedicata, 6, 363-388.
- [6] Delsarte, P. and Seidel, J. J. (1989): Fisher type inequalities for Euclidean t-designs. Linear Algebra Applic., 114/115, 213-230.
- [7] GAUTSCHI, W. (1981): A survey of Gauss-Christoffel quadrature formulac. Christoffel Volume (P. L. Butzer and F. Feher eds.), Birkhäuser, 72-147.
- [8] GOETHALS, J. M. and SEIDEL, J. J. (1981): Cubature formulae, polytopes and spherical designs. The Geometric Voin (C. Davis et. al., Eds.), Springer, 203-218.
- [9] KARLIN, S. and STUDDEN, W. J. (1966): Optimal experimental designs. Ann. Math. Statist., 37, 783-815.
- [10] _____(1966): Tchebychev Systems with Applications in Analysis and Statistics. Wiley.
- [11] Kiefer, J. (1961): Optimum experimental designs V, with application to systematic and rotatable designs. Proc. Fourth Berkeley Symp., 381-405.
- [12] KIEFER, J. and WOLFOWITZ, J. (1960): The equivalence of two extremum problems. Canad. J. Math., 12, 363-366.
- [13] LAU, T. S. (1988): D-optimal designs on the unit q-ball. J. Statist. Planning Infer., 19, 299-315.
- [14] NEUMAIER, A. and SEIDEL, J. J. (1988): Discrete measures for spherical designs, eutactic stars and lattices. Proc. Nederl. Akad. Wetensch. A 91 (≡ Indag. Mathem. 50), 321-334.
- [15] SEYMOUR, P. D. and ZASLAVSKY, T (1984): Averaging sets: a generalization of mean values and spherical designs. Advances Math., 52, 213-240.
- [16] Rotatable designs. In Encyclopedia of Statistical Sciences (S. Kotz et. al. Eds.), Wiley, Vol. 8, (1988), 187-189.

Institut für Angewandte Mathematik Universität Freiburg Freiburg D7800, Germany Department of Mathematics and Computing Science Technical University Eindhoven Eindhoven, P. O. Box 513 The Netherlands