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/SUMMARY. Kiefer's theory of optimal rotatable designs is reproved and discussed in the
context of Euclidean t-designs. Existence of nearly optimal experimental designs is shown for
arbitrary degree and strength, and an explicit construction is given yielding many optimeal designs
from spherical 2e-designs.

1. INTRODUGTION

The word design covers various notions. Companions to the ordinary t-designs
in set theory are the spherical ¢-designs [5] on the unit sphere S in Euclidean IR®.
Recently [14] this last notion was generalized to a measure (both finite and infinite)
of strength ¢ in JR®. On the other hand, optimal designs have been developed since
the late fifties by Kiefer [11] and. others, both experimental {finite) and abstract
(as a measure). We restrict to D-optimality in terms of the determinant of the
information matrix. The present paper relates these notions in the setting of the
space of polynomials of degree < %t in JR? and their inner products.

In Section 2 we introduce the relevani notions, and give simple proofs of Kiefer’s
theorem and the Equivalence theorem for a subset X of IR? admitting a subgroup I’
of the orthogonal group. Later I will be the full orthogonal group, and X = RS a
union of concentric spheres with radii from R, a possibly infinite symmetric subset
of . In Section 3 we recall various definitions for measures of strength 2e, a.c.
in terms of moments. We recognize rotatable designs of degree e as measures of
strength 2e. For invariant measures the moments reduce to integrals over R, which
are approximated by finite sums following Gauss-Christoffel. Section 4 gives a
setting for the optimization proces, in terms of the Gram matrix of a basis for
Pol.(X), by use of spherical harmonics. Finally, Section 5 discusses the relevance
of measures of strength 2e for [almost] optimal experimental designs of degree e.

o,

2. KIEFER'S THEOREM - 5

Let IR? denote a vector space of dimension d over the reals, with 'i;)ositive definite
inner product (+,-) and orthogonal group O(d). Let T be a closed subgroup of O(d)
and let X be a I-invariant subset of JRd, that is, y(z) € X forall z € X, y €.
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A design £ on X is a normalized measure on X. If £ is a design on X, then 50
iséay,fory €l Any design € on X defines a positive semi-definite inner product

(figde = ] F(2)(z) dé(z)
X

on:l_l;he _rlin'éar. spé,ce Pol,(X) of polynomials of degree < e in d variables, restricted
to X. The volume vol {£) of the ellipsoid

{fePol(X): {f,Nle 1)
is o numerical characteristic for the design €. Clearly,
_ I vol (€} < 0 iff (-, -}¢ nondegenerate.
Moreover, since O(d) acts in Polo(X) with |det| =1, we have
vole(€ 0 9) = volo(¢) for y € T.

Definition 2.1: A design € on the P-invariant set X in R is called :

(i) optimal if vole(§) < co and vole(€) < volo(¢) for all & on X,

(ii) rotatable if (,}¢ = {:, gy forally €T,

(iii) énvarient if oy = for all v eT.

The notions oplimel and refaiable depend on the degree ¢ of the polynomials
involved. We will mention this dependence only if necessary.

For any design £ on X, there is an invariant design

f::/£°7d7
r

on X. Clearly, invariant designs are rotatable. It is a consequence of the following
theorem that optimal designs are also rotatable. The theorem goes back to Kiefer
[11], <f. Kiefer-Wolfowitz [12] and generalizations in Karlin-Studden [10] (Theorem
X.7.4).

Theorem 2.2: Lei T < O(d) act on X C IR®, and let there exist an optimal
design of degree e on X. Then all optimal designs of degree ¢ on X define the same
inner product on Pol(X). Moreover, the set of all optimal designs of degree ¢ on
X is a closed conver sel consisting of rotatable designs, and conlaining an nvaeriant
design. .

Proof: Let £ be a fixed design on X with non-degenerate inner product (-} =t
(,-} on Pol¢(X). Let fi,...,fa be a {, -}-orthonormal basis for Pol(X). Let 5
denote another design on X, and let

A= Al = [{fi, fi}a)
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be the Gram matrix of our basis in the inner product corresponding to 1. Then A
is a symmetric positive semidefinite matrix and

vole(n) - (det 4)/2 = vol.(£)-
Asa cdnséquenée we have
£ is optimal iff det A(7) < 1 for all designs 7 on X. (%)

Moreover, dét A(n) = 1 iff 7 is also optimal.
. De_ﬁote the t_éigénvaiues of A by A1,...,An. Then the function
$(s) = — log det((1 — s)I + sA);= — > log(1— s+ ski)

i=1

is convex for 0 < s < 1, since

1 - Ai—l g
¢(5)=Z(m) 20

Now suppose that both £ and 7 are optimal, so that, in particular, det A = L. Then
also
1 = (1= 6)¢ + sn, with A(n) ={1—s)I+ sA(n)

is a design on X. Hence (*) implies $(0) = ¢(1) =0 < #(s) for 0 < s < 1, and the
convexity of ¢ forces ¢ to be constant and ¢"(s) = 0. Hence A; =1 for all 1, and
A = I. We conclude that {-, -}y = (-,+), proving the first claim and the convexity
of the set of the optimal designs. Clearly, this set is closed. Since £ o v is optimal
whenever ¢ is, we infer {,goy = {~} = {:,-}¢ which proves rotatability. Finally,
integration over I' yields the invariant optimal measure £ in the closed convex hull
ofthefoy,yel. O

Remark 2.3: Continuing the situation in the proof, we observe that optimality

of £ alone implies

0<¢'(0)==> (—1)=n—tr4,

i=1

hence trA < n. On the other hand, trA < n implies v/detA < trA/n <1
by the arithmetic-geometric mean inequality, hence det A < 1. Therefore we can -
reformulate (+) as ’

£ is optimal iff tr A(n) < = for all designs n on X. S £

Moreover, tr A(n) = n iff y is also optimal. The trace formula

A = [ de,€)dn(e) for ) = FH() +oo- o+ L)
¢
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now implies the following:

'The()re'm 2.4: maxgex d(z,€) > > n = dim Pal, (X), with equality iff £ is opti-
mal. In this case, d(z, E) =n for allz € X ezcept on a set of zero measure with
respect ta £.

 Proof: -Choosing an optimal 3 in the trace formula gives |
| | n = tr A(n} < maxd(z,§).

If ‘equality holds, then d(2,£) < n for all £ € X, and the trace formula gives
ir A(n) < n for all 5. Thus £ is optimal by ().

.“Conversely, if £ is optimal then the trace formula aplied to all unit measures
n with one-point support gives max d{z,£) < n; and since tr A(n) = n, the trace
formula for y = £ shows that d(z,£€) = n almost everywhere. O

For an arbitrary basis g = {g1,++.,9n)* of Pol{X) with Gram matrix M(E)
{(gi: 95)¢], the information matriz in statistics, we have

d(z,€) = g'(z)M(£) " g(=) = (M(‘f)"lg(l') f)_lg(-*»
We sce that Theorem 2.4 is just another form of the equivalence theorem of Klefer

and Wolfowitz {12].

We also see that £ is rota.tabl_q iff d(x,€) depends only. on the I-orbit of £. In
particular, in the case I' = O(d) a rotatable design is the same notion as the cne
introduced by Box and Hunter [2], cf. [16]. '

3. MEASURES OF STRENGTH t = 2¢

From now on we specialize to the case I' = O(d). The O(d)-invariant set Xisa
union of spheres, posmbly infinitely many. We use the notation

RS::UrS, rS:={xERd:(x,x)=f‘ }y r€ERCR

réR

where /i == —R is symmetric about 0. Thus the whole space JR?, the unit sphere
S, a union of p concentric spheres, the unit ball, the case R={re R: 7% ¢ 27}
for lattices, they all are covered by the notation RS. The unit sphere § has the
standard Borel measure do.

The space Pol.(RS) of the polynomials of degree < e is the sum, for £ =
0,1,...,¢, of the subspaces Hom;(R, ) of the homogeneous polynomials of degree
k, all restricted to RS. We shall write

f= ka: f € Pol.(RS),  fr € Homy(RS),
k=0

for the components, It is well-known that

dim Hom,(RS) = dim Hom,(R?) = (472+¢);
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2p—1
dim Pol.(RS) = E (4=1re-iy
i=0
dim Pol,(R%) = (%),
which are equal if 2p > e-+1, where p is the number of spheres, the one-point sphere
O being counted as half a sphere.
We refer to [14], [6) for the following definitions, and their equivalence.

Definition 3.1: A measure £ on RS has strength t if any one of the following
equivalent conditions holds for all f € Pol(RS):

Y f fdg= ] fd(€on), VrET;
. RS Rs
(i) [ fde= [ fdE;
" RS RS
(i) f S0) ) = Thoo s [ fr(@ dole), s = [ [0il*dE(v).
"' A Euclidean t-design is 2 measure of strength ¢ having finite support.
In (ii), the measure £ is the invariant measure introduced in Section 2. The
equivalence with (iii) is proved as follows:
Jfde = [dy [ fdéoy= [ de(y) [ Fv~ly)dy
RS & Rs : RS F
= Theo f loll*det) [ 5 () dv = Tico [ @) doz)

The notion of strength is related to the designs introduced in Section 2.
Theorem 3.2: A design is miatabfe of degree e iff il has strength 2e.
The proof is & direct consequence of the following lemma, cf. [6].
Lemma 3.3: Pol;(£S)- Pol;(RS) = Poli;;{ RS).

Here the praduct F- G is the linear space spanned by the products fgof f€ F
and g € G. The lemma follows from the analogous formulae for Hom(Rd), and for
Pol(IRY). -

Theorem 3.4:  If a design £ is rotatable of degree e, then the inner product {-, )¢
is uniquely delermined by the first e + 1 even moments

sz:/(y.,y)idé(y), i::O,_I,;..,e
A .

Proof. We apply Theorem 3.2 and Definition 3.1, (iii). The polynomials f,¢ €
Pol.(RS) are written in terms of their homogeneous components. Homy and Homy,
are {:,-}o orthogonal if & and ! have opposite parity. Hence

(f! g)f = E:,f:ﬂ(fk}m)'f = Z:,E:O #k'l'f{fk (2)3"(3:) do’(x)
= YizoMa Z:i:u(fhﬁziwk)o— a
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For invariaﬁt?designs ¢ the variables may be separated:

y=rr€RS, r€ R, ¢ € 5;di(y) = dp(r) do(a);

Sy P
. __ /S R
where p(r) is-a normalized symmetric measure on R.

.5 ‘Theorem 3.5: Lel ¢ be an invariant design of degree e with nondegenerale inner
product -, )e. Then there is a unique symmelric weighted fintte sel (Ro,w) of s1ze
[Rol'< e+ 1 such thal the even moments of § are given by

fai = Z werX, i=0,1,...,¢e.
rERy
By is it the closed convez hull of R, —Rq = Ro, w—r = w,, ond Ro = R i
|R| < e+1, |Ro| = e+ 1 otherusse. ‘
Proof: The problem is to find finite symmetric Ro and w : Ry — R* such
that, for i = 0,1,...,¢,

/rg"dp(r) = > wr¥, /r2‘+1dp(r) =0.
R

R refa

The powers of » are polynomials of degree < 2e +1 which are independent with
respect to the radical of {-,+),. Hence for given measure dp(r) we need symmetric
Rp and w such that

[ dpte) = 3 w0, ¥ € Polena(R)
R

réfo

This is solved by the (e + 1)-point Gauss-Christoffel quadrature formula, cf. (4],
p. 35 and [7), p. 80. Then Ry is the set of the e + 1 zeros of the orthogonal polyno-
mial of degree e + 1 associated with dp, and w,, 7 € R, are the corresponding
Christoffel numbers.

Remark 3.6: For the invariant design ¢ of degree e the conclusion of Thecrem
3.5 is that the inner product on Pol (RS) may be taken as restricted to at most
{e + 1)/2 concentric spheres, the origin being counted as half a sphere. The radii of
these spheres are determined uniquely.

If the finite support of a Euclidean design is contained in the unit sphere .S, then
a cubature formula (arbitrary positive weights) or a spherical design (equal weights)
are obtained. We repeat their definitions from (8] and [8) for future reference.

Definition 3.7: A finiteset Y C Sisa spherical t-design if

dk z fly) = /f(.?:) da(z), for all f € Pol(S).
5

yeY
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‘-A.ﬁniie weighted set (Y,w), Y C S, is a cubature formula for S of streagth ¢ if

Zwyf(y) = (Zwy) /f(z) de(z) for all f € Poli(S).
5

yEY yeY
4, THE QPTIMIZATION PROBLEM

We are now in a position to deterinine the even moments of an invariant optimal

.design'ofdegree e on RS, and to show their existence if R is compact and 1Rl = e+1.

From Theorem 3.5 we know that for an invariant optimal design of degree e there
are only a finite number of moments to determine. Therefore, the optimization

problem to minimize voly(¢) is 2 finite dimensional problem.

© ' We shall use spherical harmonics, and first recall the simple but basic formula

Homy (R} = Harmy (R*) @ r?Homy._2(IR%).

‘Here Harmg(IR?) is the space of the homogeneous polynomials of degree k which

are harmonic, that is, which are annulled by the Laplace operator. It follows that
hy, := dim Harmk(JRd) = (“éf; 1) - djf; 3).

Welet fr,1,..., fr.n, denote any (-, };-orthonormal basis for Harrmy (R?),and notice
that Harm;, (RS) = Harmg(R?). By iteration of the basic formula, and substitution
of | = k + 25, this implies

&

Pol(R%) = iHorﬁ;(R&) = Z Z % Harmy (IR%).

=0 E=0 k+25<e
Assuming |R| > e + 1, we have as in Section 3,
Pol.(RS) = Pol (IR%),

hence the polynomials r% f; ;(y) constitute an independent basis for Pol,(RS),
which we call a harmonic basis for Pol (RS). We calculate their inner products
()¢ corresponding to the invariant design £ that we wish to establish:

(% Fri(y) ¥ frr o (9)e i:[ P2+ dp(r) sf fri{z)} o o{z) do(z)

= pogasrak)beebir

As a consequence, the Gram matrix & of the harmonic basis reads

e Hak Tt Mok
G=Z$hkMk, My = ' :

k-0
Hokyo; 't M2k4dj

with 7 = [3{e — #)]. For example, for ¢ =3,

Ho [z Hz  Ha
G= ®h ®h hapts.
[Fz_m] 1[#4 Hs] 24 ® Batie
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- "I‘-heorem.‘l4.1: Lei —R = R C IR be compact and |R| > e+ 1. Then optimal
' designs of degree e on RS ezist. Their even moments py; follow from the unique
solution of the optimization problem io marimize

g
det G = H(det M)t
E=0

the deierﬁ‘silnant of the Gram mairiz G of & harmonic basis, over the normalized
measures p on R. '

Proof: By Theorem 2.2, the class of the optimal designs of degree e on RS, if
not empty, contains an invariant design £ = pv. The optimization problem is to
maximize over R the determinant det G, which is positive by |R| > e-+1, and whose
moments depend only on the radial measure p. Since R is compact the maximurn

of det G is attained for an invariant measure §*, say, which is optimal as well by
Theorera 2.2, and unique by Theorem 3.4.

Corollary 4.2: Foran invariani optimal design of degree ¢ with compact R and
¢ < |R| — 1, some non-zere poinis of the finite set Ry must lie on the boundary

of R.

Proof: DetGisa strictly increasing function of poe, since jrze OCCUTS in Mo,
linearly with a paositive coefficient. Hence the unique maximum of det G is attained
on the boundary of the admissible domain for p-

Ezample 43: We illustrate Theorem 4.1 and Theorem 3.5 in the case of the
unit bail B = [-1,1]S, for e = 1,2,3. Wearein particular interested in the discrete
solutions. The dimensions of the spaces of harmonic polynomials are

1
ho=1, hy=4d, ha= -2-(d+2)(d—- 1), ha= %(d+4)d(d—- 1),
corresponding to the bases for Harmege. consisting of the polynomials
1, z;, 2y and £} — Ty, %%k and z;(8x§ —zd),

in number 1, d, (3) and d -1, (3) and d(d— 1).

Yor e = 1, the discrete measure and the moments are
(- =E) =5 m=pm =L
For ¢ = 2 the discrete measure and the moments are
(0) =6, (D =EN = 510 po=1 = pa=ib
The unknown & is determined by the optimization of
dot G = (os — pRushr 2 = 80 = HFHED,

which yields § = 2/(d + 1)(d + 2).
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For ¢ = 3 tiie measure and the moments are
' 1 1
E(=1) = () = 5(1 - 8), §(-VE) =E(VA) = 3
_ ,u_o=_1,pg=1—6+6(x,p4=1—5+6a2,p5=1—6+6a3.
“The unknown' 0 < § <land 0 <o < 1 follow from the optimization of
et G = (pons — #i)uats = 3P g

_ = a?(6(1 - 6)(L - a1 (1-6+ sa®)2(1 -6+ sad)he.
;-'Logarithmic differentiation of det G w.r.t. o and & yields:

d 2(d + 1) 4 2hada 3h35&2

2T Tica TToiteer 1-6+8a
(d+1){(1—28)  ha(l —a®)  hs(l - ) 0
6(1—8) 1-6+6a2 1—6+6a%
For a further discussion of these equations in o and § we refer to [1], and for
numerical results to [13].

5. OPTIMAL EXPERIMENTAL DESIGNS

For the actual application in statistical experiments the continuous designs €
must be approximated by discrete designs having rational weights. An experimental
design on RS is a finite collection ¥ of points of RS, with repititions allowed. In
statistical terms, n; uncorrelated observations are taken at distinct points y; € Y,
i=1,...,r, so we have S =y ni points. The normalized measure £ corresponding
to the experimental design (Y, n) is given by

[ swaw =3 nif(ue) | Som.
7 i=1 i=1

The first case to consider is that of an exp erimental design on a single sphere, say on
the unit sphere §, with R = {~1,1}. The second case deals with an experimental
design on the unit ball B = [-1,1]S.

Theorem 5.1: An ezperimental design on the unil sphere is optimal of degree
e iff it is a spherical 2e-design (with repealed poinis allowed).

Proof: By Theorem 2.2 the optimal designs of degree e on S are rotatableon 5,
hence by Theorem 3.2 are measures of strength 2e on 5. An optimal experimental
design on S has finite support Y C S, which-may be taken to have equal weights.
Therefore, it satisfies Definition 3.7 for a spherical 2e-design.

Theorem 5.2: An ezperimental design (Y,n) on the unil ball B = [-1,1]S
is oplimal of degree e if (Y,n) is a Euclidean design of strengih 2e whose even

momenis are )
Z ny(y,y) = ( Z ny) Bais

yeY yeY
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where Hai are the moments of the solution £* of the optimization problem for det G
in Theorem 4.1.

Pmbf' Theorefn 4.1 exhibits an optimal design and its moments. Theorem
2.2 asserts that all rotatable designs of degree e with the same inner product are
optimal and no others. Theorem 3.4 says that this condition is equivalent to having
the same moments 0

We continue to-show the existence of experimental almost optimal designs with
small support. The basic ingredient in the following theorem is due to Caratheodory {3].

Theorem 9.3: . Let X be ¢ compaet subset of B®, and let C be the closed conver
hull-of X.. Then every boundary [inerior] point of C is & conver combination of at
most n [resp. n + 1] points from X.

" Theorem 5.4: - Let £ be a design on X, with information mairiz M€} on
Polo(X). Then there ezists a des:gn non X w:ih M(n} = M(£), and finite support
Xo of size af most dim Poly, (X}. :

Proof: - Let g1,...,0n be a basis of Pol «(X). The set T of the n x n matrices

lgi(2)g;(2)], = € X, spans a space of dimension N < dlm Pol(X). Thenx n
information matnx

M(&) =g 95)el = [/m(z)g; dE(r)}
X

is an element of the boundary of the closed convex huli of ¥. Hence M (£} can
be written as a convex combination of at most N matrices from Z, for z € X,
say, with |Xp| < V. This defines a design 5 with support X, having the desired
properties. O

In particular, if § is optimal then 3 is optimal as well. By approximating the
weights of # by rational numbers we can obtain experimental designs which are
arbitrarily close to being optimal. In particular, combining the present results with
Theorem 5.1 we obatin:

Corollary 5.5: For every ¢ > 0 there exist cubature formulae of sirength 2e on
the unil sphere in R?, which have al most (‘H' 2e - ) points,

Ezample 5.6: Finally we mention the construction of a class of optimal designs
on BS with finite support, on the basis of a spherical 2e-design X, cf. [9] Theorem
5.1 and [15] Corollary 5. We wish to find a finite weighted set (¥, w) with

Y=mXU:---UrX; Ryp:={ry,rs,...,rn} CR,

where X is a spherical 2e-design on § ¢ IR?, and the weights w, are homogeneous
on the various spheres. For (¥, w) we have:

/ yYodpdo = / rEdp(r) - [ zXdo(z)
RS R $
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ngyk = Z wrrk . Z :ck,

yey rERp TeX

L : yey reRo
Since X is a spherical 2e-design, the weighted set (Y, w) has strength 2e iff (Rq, w})
has strength 2e: I order to obtain optimal designs (Y, w) of degree ¢ it suffices fo
choose p(r) so that it matches the optimal moments p3;.

_ We observe :th__at also 1 X7 U+« Ura X7 works, for any v; € O(d), since by
definition [5] the spherical 2¢-~design satisfies

BICAEDY 2, yeO(d), k=1,...,2%.

K N . TeX €X'
Acknotwledgenmieni. The authors thank B. Bagchi for several useful remarks, for
instance on Definition 3.1, part (3).
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