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Abstract. This paper describes the theory and implementation of LMBOPT, a first or-
der algorithm for bound constrained optimization problems with continuously differentiable
objective function. LMBOPT is based on the generic algorithm recently proposed by Neu-
maier & Azmi, which uses a gradient-free line search along a bent search path. LMBOPT
includes many practical enhancements such as a new limited memory quasi-Newton direc-
tion and a robust bent line search. The numerical results on unconstrained and bound
constrained problems from CUTEst [32] show that LMBOPT is very robust and efficient.
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1 Introduction

In this paper we describe a new active set method for solving the bound constrained opti-
mization problem

min f(x)
s.t. x ∈ Rn, x ≤ x ≤ x,

(1)

where x = [x, x] is a bounded or unbounded box in Rn describing the bounds on the variables
and the objective function f : x→ R is continuously differentiable with gradient

g(x) := ∂f(x)/∂x ∈ Rn.

Often variables of an optimization problems can only be considered meaningful within a
particular interval [29]. Independent of this, problems with naturally given bounds appear
in a wide range of applications including optimal design problem [4], contact and friction
in rigid body mechanics [46], the obstacle problem [50], journal bearing lubrication and
flow through a porous medium [44]. Some approaches [1] reduce the solution of variational
inequalities and complementarity problems to bound constrained problems. The bound
constrained optimization problem also arises as an important subproblem in algorithms for
solving general constrained optimization problems based on augmented Lagrangians and
penalty methods [15, 26, 36, 35, 47]. These facts led to a lot of research dealing with the
development of efficient numerical algorithms for solving bound constrained optimization
problems, especially when the number of variables is large.

1.1 Past work

A bound constrained optimization problem (BOPT) consists of minimizing a continuously
differentiable objective function subject to a feasible region defined by simple bounds on
the variables. In the past few decades, many algorithms have been developed for solving
such problems. Active set methods are among the most effective methods for solving
BOPT problems. They consist of two main stages that alternate until a solution is found.
In the first stage one identifies a good approximation for the set of optimal active bound
constraints, defining a face likely to contain a stationary point of the problem. A second
stage then explores this face of the feasible region by approximately solving an unconstrained
subproblem.

A classical reference on active set methods for bound constrained problems with con-
vex quadratic objective function (QBOPT) is the projected conjugate gradient method
of Polyak [52], which dropped and added only one constraint in each iteration. That is,
at each step of this active set method, the dimension of the subspace of active variables
is changed only by one. This fact implies that if there are n1 constraints active at the
starting point x0 and n2 constraints active on the solution of QBOPT, we need at least
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|n2 − n1| iterations to reach the solution of QBOPT. This may be serious drawback in the
case of large scale problems. Dembo & Tulowitzky [22] introduces in 1983 methods for
QBOPT that are able to add and drops many constrains at each iteration. Their basic idea
was further developed by Yang & Tolle [57] into an algorithm guaranteed to identify
in finitely many iterations the face containing a local solution of the QBOPT, even when
the solution of the problem is degenerate. For further research on the QBOPT we refer the
reader to [24, 25, 49, 50].

For BOPT with a general nonlinear objective function, Bertsekas [3] proposed an active
set algorithm that uses a gradient projection method to find optimal active variables.
He showed that this method is able to find very quickly the face containing a local solu-
tion. Further research on convergence and properties of projected gradient methods can
be found in [3, 13, 27]. The idea of using gradient projections for identifying optimal
active constraints was followed up by many researchers. Many of them [11, 14, 16] com-
bined Newton type methods with gradient projection method in order to accelerate the
convergence. For example, L-BFGS-B, developed by Byrd, Lu, Zhu & Nocedal [11],
performs the gradient projection method by computing the Cauchy point to determine the
active variables. After the set of active variables is determined, the algorithm performs line
searches along the search directions obtained by a limited memory BFGS method [12]
to explore the subspace of nonactive variables, In fact, the use of limited memory BFGS
matrices and the line search strategy are the main properties that distinguish this method
from others, especially from the trust region type method proposed by Conn,Gould and
Toint [14, 16].

A non-monotone line search was first introduced for Newton methods by Grippo, Lam-
pariello & Lucidi (GLL) in [33], in order to improve the ability to follow a curved valley
with steep walls. Later several papers [18, 21, 28, 34, 55, 58] on non-monotone line search
methods pointed out that in many cases these methods are more efficient than monotone
line search methods. Other papers [4, 8, 19, 20, 30, 45, 54] indicate that gradient projection
approaches based on a Barzilai-Borwein step size [2] have impressive performance in a
wide range of applications. Some recent works [5, 6, 7, 8, 9, 53] on Barzilai-Borwein gradi-
ent projection methods (BBGP) have modified them by incorporating them with the GLL
non-monotone line search: For instance, Raydan [53] developed the BBGP method for
solving unconstrained optimization problems, Dai & Fletcher [19, 20] proposed BBGP
methods for large-scale bound constrained quadratic programming. Birgin, Mart́ınez
& Raydan [8, 9] developed the idea of Raydan [53] to an effective algorithm (SPG) for
the minimization of differentiable functions subject to closed convex set. Later they used
the SPG algorithm in the active set framework [5, 7] for dealing with bound constrained
problems. In both of these methods, the task of SGP is to search through different faces of
the feasible region.

To deal with the objective function within faces, [5] used the second-order trust region
algorithm of Zhang & Xu [59], and [7] designed a new algorithm whose line search iteration
is performed by means of backtracking and extrapolation. More recently, Hager &Zhang
[40] developed an active set algorithm called ASA CG for large scale bound constrained
problems. ASA CG consists of two main steps within a framework for branching between
these two steps: a non-monotone gradient projection step which is based on their research on
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cyclic Barzilai-Borwein method [21], and an unconstrained step that utilizes their developed
conjugate gradient algorithms [37, 38, 39, 41]. ASA CG version 3.0 has been updated by
calling CG descent version 6.0 which uses the variable HardConstraint to evaluate the
function or gradient at a point that violates the bound constraints, so that it could improve
performance by giving the code additional flexibility in the starting step size routine.

A considerable amount of literature has been published on line search algorithms, most
of which satisfy the Wolfe conditions (Wolfe [56]) or Goldstein conditions (Goldstein
[31]). A problem of line search algorithms satisfying the Wolfe conditions is the need to
calculate a gradient at every trial point. On the other hand, line search algorithms based on
the Goldstein conditions are gradient-free, but they have very poor behaviour in strongly
nonconvex regions. Neumaier & Azmi [51] introduced an efficient gradient free curved
line search CLS (Algorithm 3.3 in [51]) using a new active set method BOPT (Algorithm
9.1 in [51] = Algorithm 1.1).

1.2 Mathematicaly background and notation

We define some notation that will be used frequently throughout the paper.

In the pseudo-code for all algorithms, a Matlab like notation is used.

• ∼ (or not) denotes logical negation.

• ◦ and // denote componentwise multiplication and componentwise division, respectively.

• A\b denotes the solution x of the system of linear equations Ax = b.

• The notation == is comparison operator for equality.

• A:k denotes the kth column of a matrix A.

• length(v) denotes the length of the vector v.

• ones(n, 1) denotes a n× 1 vector whose entries are 1.

• zeros(n, 1) denotes a n× 1 vector whose entries are 0.

• isnan(A) returns an array of the same size as A containing logical 1 (true) where the
elements of A are NaNs and logical 0 (false) where they are not.

The reduced gradient at x is gred(x) the vector defined with components

(gred(x))i :=


0 if xi = xi = xi,
min(0, gi) if xi = xi < xi,
max(0, gi) if xi = xi > xi,
gi otherwise,

(2)

where gi := gi(x) is the ith component of gradient vector at x.
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The bound xi or xi (and the index i) is called active if xi = xi or xi = xi, respectively.
The set of free indices of x is defined by

I−(x) := {i | xi < xi < xi}, (3)

and the set of free or freeable indices of x is presented by

I+(x) := I−(x) ∪ {i | (gred)i 6= 0}
= I−(x) ∪ {i | xi = xi < xi, gi < 0 or xi < xi = xi, gi > 0}

(4)

where
g := g(x), gred := gred(x).

Given a descent direction p with gTredp < 0, the each line search along a bent search path

x(α) := π[x+ αp], (5)

is obtained by projecting the ray x+ αp (α ≥ 0) into the feasible set, using the projection
π[x] with components

π[x]i := sup(xi, inf(xi, xi)) =


xi if xi ≤ xi,
xi if xi ≥ xi,
xi otherwise.

(6)

According to Neumaier & Azmi [51], the convergence of BOPT is guaranteed when the
following conditions hold for some positive constant δ > 0, any index set I = I±(x), the
gradient g = g(x), and the search directions p

pi = 0 for i 6∈ I, (7)

gTI pI
‖gI‖‖pI‖

≤ −δ < 0, (8)

gipi ≤ 0 for all i if I = I+(x) 6= I−(x), (9)
‖gI‖2 ≥ ρ‖gred‖2, (10)

where pI stands for the restriction of p to the index set I. The examples in [51] described
the unfavorable zigzagging behaviour depending on which variables enter into the working
set I. By definition of the reduced gradient, (10) always holds for the choice of I = I+(x).
But the choice of I = I−(x) might violate (10); in this case the working set is updated by
I+(x).

1.1 Algorithm. (BOPT, bound constrained optimization)
Purpose: minimize smooth f(x) subject to x ∈ x = [x, x]
Input: x0 ∈ Rn (starting point)
Parameters: β ∈ ]0, 1

4 [, q > 1 (line search parameters)
0 < δ < 1 (reduced angle parameters)
0 < ρ < 1/n (factor safeguarding (10))
and parameters specifying a pair of monotone dual norms

6



x = x0; I = I+(x); freeing=0;
while gred(x) 6= 0,

Update x by performing the line search
CLS along a bent search path (5)
with q satisfying (7), (8), and (9);

update I = I−(x);
freeing=((10) fails);
if freeing, update I = I+(x); end;

end;

In this paper, our goal is to present and test the limited memory method for bound-
constrained optimization (LMBOPT). it uses a gradient-free line search along a bent search
path. Since it conforms to the assumptions of [51], it finds all strongly active variables and
fixes then after finitely many iterations. Novelties compared to the literature include a new
quadratic limited-memory model for progressing in a subspace and safeguards for the line
search in finite precision arithmetic.

Numerical results for small and large unconstrained and bound constrained CUTEst prob-
lems [32] show that compared to other state of the art, LMBOPT ranks highest according
to several criteria.

The paper is organized as follows. In Section 1.3 we give a list of all algorithms defined
in present paper whose in-out dependence are compiled as a data structure. We use some
notations for implementation of the robust version of bent line search algorithm [51] in
Section 2. In Section 3, we describe how to implement the subspace step. The master
algorithm is introduced in Section 4.6 , and some results are given in Section 5.

1.3 Algorithms and data structures

The LMBOPT solver solves a bound constrained optimization problem with continuously
differentiable objective function, using routines for evaluating the function and the gradient.
It uses beyond the theory in [51], a new limited memory quasi Newton method and the
robustified bent line search method. It is followed as follows:

Step dependencies
LMBOPT Preprocessor, Determiner, Updater, Postprocessor
Preprocessor Initializer, Improver, Problem object
Determiner Reducer, Worker selector, Successor, Unsuccessor
Updater Worker, Info, Subspace
Successor Subspace selector, Director, Problem object
Problem object Generator, Adjuster
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Director Local solvers, Conjugator

Conjugator
Robustifier I, Gamma, Regularizer
Conjugate gradient direction

Unsuccessor Enforcer, Bender, Nullifier
Nullifier Neighbourhood, Problem object

Bender
Robustifier I, Bent line search, Robustifier II
Problem object

Table 1: Mathematical dependcy graph of LMBOPT

The top levels. LMBOPT calls a Preprocessor to initialize all necessary information, then
alternates calls to a Determiner and an Updater. Once the norm of reduced gradient in the
current best point is below a given threshold, it ends up. Finally, it calls a Postprocessor
to prepare the output.

Preprocessor uses an Initializer initializing the subspace and other necessary information,
then calls an Improver to improve the starting point, and calls a Problem object to compute
and adjust the function value and the gradient vector.

Determiner includes a Reducer computing the reduced gradient, a Worker selector changing
or keeping the free index set I−(x), a Successor containing the successful iterations and an
Unsuccessor containing the unsuccessful iterations.

Updater calls a Worker generating the working set (the free index set), an Info updating all
necessary information such as the best point, and a Subspace updating the subspace and
quasi Newton.

The lower levels. Successor first calls a Subspace selector to determine the type of sub-
space and then uses a Director to compute the direction. Afterwards, it uses a Conjugator
producing the conjugate gradient method.

Director calls local solvers to compute the search direction such as a new limited memory
quasi Newton and then uses a Conjugator generating the conjugate gradient direction.

Problem object calls possibly many times a Generator to compute the function value in each
iteration and only once in each iteration to compute the gradient vector. Afterwards, it
calls an Adjuster to adjust the gradient vector.

Conjugator contains a Robustifier I finding a good starting step size, a Gamma calculating
γ, a Regularizer doing a regularization for numerical stability, and a conjugate gradient
direction.

UnSuccessor tries to enforce the angle condition by an Enforcer, then calls a robust bent
line search method to update the best point, and uses a Nullifier avoiding too many null
steps.
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Nullifier calls a Neighbourhood to generate a point around the current (previous) best point
and then a Problem object to compute and adjust the function value and gradient vector.

Bender calls a Robustifier I to find a good step size and performs a bent line search along
a regularized direction. Afterwards, it calls a Robustifier II to obtain the robust step size
and then computes and adjusts the function value and the gradient vector.

Initializer initInfo
Improver projStartPoint
Determiner getSuccess
Working selector findFreePos
Worker findFreeNeg
Info updateInfo
Subspace updateSubspace
Subspace selector typeSubspace
Local solvers scaleDir, quasiNewtonDir, AvoidZigzagDir
Generator fun, dfun
Adjuster adjustGrad
Reducer redGrad
Robustifier I goodStep
Gamma getGam
Regularizer regDenom
Conjugate gradient diection ConjGradDir
Enforcer enforceAngle
Nullifier nullStep
bent line search BLS
Robustifier II robustStep

Table 2: The lowest level

The subalgorithms of LMBOPT are listed in Table 3. They depend on one or more data
structures point, step, tune, par and info according to the input/output list indicated.
These data structures themselves are briefly described in Table 4.

Algorithm 2.1 function [step] = goodStep(point, step, tune);
goodStep Try to find the starting good step size
Algorithm 2.2 function [point, step] = robustStep(point, step, tune);

9



robustStep Try to find a point with smallest robust change
Algorithm 2.3 function [point, step, info] = BLS(fun, point, step, tune, info);
BLS Find a step size α satisfying a sufficient descent condition

Algorithm 2.4 function [point, step, par, info] = · · ·
nullStep(fun, point, step, par, tune, info);

nullStep Try to prevent producing the null steps
Algorithm 3.1 function [point] = adjustGrad(point, tune);
adjustGrad Adjust the gradient vector
Algorithm 3.2 function [point] = redGrad(point);
redGrad Compute the reduced gradient
Algorithm 3.3 function [point, par] = findFreePos(point, par, tune);
findFreeNeg Update the working set
Algorithm 3.4 function [point, par, info] = findFreeNeg(point, par, tune, info);
findFreePos Find the free index set
Algorithm 3.5 function [point] = updateSubspace(point, step, par, tune);
updateSubspace Update the subspace information
Algorithm 3.7 function [step] = enforceAngle(point, step, par, tune);
enforceAngle Enforce the angle condition
Algorithm 3.8 function [point, step] = quasiNewtonDir(point, step);
quasiNewtonDir Compute quasi Newton direction
Algorithm 4.5 function [par] = typeSubspace(tune, par);
typeSubspace Determine the type of subspace
Algorithm 3.9 function [step, par] = scaleDir(point, step, par);
scaleDir Choose components of sensible sign and scale
Algorithm 3.10 function [step] = AvoidZigzagDir(point, step, tune, info);
AvoidZigzagDir Modify the direction to avoid zigzagging
Algorithm 3.11 function [point, step, par] = searchDir(point, step, par, tune, info);
searchDir Construct starting trial search direction

Algorithm 3.12 function [point, step, par, info] = · · ·
getGam(fun, point, step, tune, par, info);

getGam Compute γ
Algorithm 3.13 function [par] = regDenom(point, step, par, tune);
regDenom Construct regularize denominator

Algorithm 3.14 function [point, step, par, info]= · · ·
ConjGradDir(fun, point, step, par, tune, info);

ConjGradDir Construct the conjugate gradient direction
Algorithm 4.1 function [point] = projStartPoint(point, tune);

10



projStartPoint Improve the starting point

Algorithm 4.2 function [point, step, par, info] = · · ·
getSuccess(fun, point, step, par, tune, info);

getSuccess Determine whether subspace iteration is successful or not
Algorithm 4.3 function [point] = initInfo(point, tune);
initInfo Initialize best point and factor for adjusting acceptable increase in f

Algorithm 4.4 function [point, par] = updateInfo(point, par, tune, info);
updateInfo Update best point and factor for adjusting acceptable increase in f

Algorithm 4.7 function [point] = LMBOPT(point, step, tune, par);
LMBOPT Minimize smooth f(x) subject to x ∈ x = [x, x]

Table 3: List of algorithms defined in present paper. The main algorithm LMBOPT solves
a bound constrained problem; the others are called within LMBOPT.

fun and dfun (structure with information about function handle)
point (structure with information about points and function values)
x, f , g (old point, its function value and gradient vector)
xnew, fnew, gnew (newest point, its function value and gradient vector)
xbest, fbest (best point and its function value)
xinit, finit (starting point and its function value)
x, x (lower and upper bound)
y (the difference of current gradient with its old one; gnew − g)
I (working set), I+ (the set of free or freeable indices), I− (the set of new free indices)
m (subspace dimension), mf (memory for Df), ch (counter for m)
m0 (the length of subspace), Df (list of mf acceptable increase in f )
S (a list of m previous search directions), Y (a list of m vectors y1, · · · , ym)
H (Hessian matrix), q (extrapolation factor)
df (acceptable increase in f), ∆f (factor for adjusting df)
step (structure with information about the step management)
pinit (starting search direction in each iteration), p (Krylov search direction), gp (gT p)
αgood (the starting step-size generated by goodStep), s (search direction; xnew − x)
A (list of some step-sizes generated by BLS)
tune (structure with fixed parameters for tuning the performance)
ε (accuracy for reduced gradient), m (subspace dimension), mf (memory for Df)
∆x (tiny factor for interior move), ∆u (factor for adjusting x)
∆g (factor for adjusting gradient), ∆angle (regularization angle)
∆w (for guaranteeing w > 0), ∆r (factor for finding almost flat step)
∆pg (tiny factor for regularizing gT p in ConjGradDir)
∆reg (tiny factor for regularizing gT p in BLS)
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∆α (tiny factor for starting step), ∆b (tiny factor for breakpoint)
∆H (tiny regularization factor for subspace Hessian)
∆m (tiny factor for regularizing ∆f if not monotone)
∆po (gradient tolerance for skipping update)
typeH (choose update formula for Hessian (0 or 1))
gfac (parameter for scaling direction), θ (parameter for adjusting the direction)
β > 0 (threshold for determining efficiency), del (parameter for null step)
exact (enforce exact line search on quadratics), nnulmax (iteration limit in null step)
βCG (threshold for efficiency of CG), lmax (iteration limit in efficient line search)
nlf (number of local steps before freeing is allowed)
rfac (restart after rfac∗nI local steps), facf (relative accuracy of f in first step)
nsmin (how many stucks before taking special action?)
nwait (number of local steps before CG is started), mdf (parameters for updating df)
bis (bisection (0: geometric mean, 1: cubic, 2: geometric mean and cubic))
ζmin and ζmax (Safeguarded parameters for ζ in ConjGradDir)
mbis (parameter for bisection), nstuckmax (iteration limit in number of stucks)
par (structure with parameters modified during the search)
estuck (a robust increase is counted as success if stuck enough)
freeing (parameter for finding appropriate free variables)
flags (null step ?), cosine (descent direction ?),
monotone (parameter for improvement on function values)
CG (parameter for determining the type of subspace)
success (successful/unsuccessful subspace iterations, 0 or 1)
fixed (parameter for changing activity), nlocal (number of local steps)
nstuck (number of stuck iterations), nnull (number of null steps)
quad (determine whether f is close to quadratic or not)
hist (list of at most m subspace basis)
perm (permute subspace basis so that oldest column is first)
firstAngle (calling enforceAngle (1: first call, 0: second call))
info (structure with information about the info management)
nf (number of function evaluations), ng (number of gradient evaluations)
nsub (number of successful iterations), nfmax (maximal number of function evaluations)
ngmax (number of gradient evaluations), nf2gmax (nfmax + 2ngmax)
eff (efficiency status for BLS), nstuck (number of stuck iterations)

Table 4: Global data structures for the algorithms of the present paper
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2 A robust bent line search

A bent line search along the lines proposed by Neumaier & Azmi [51] is used to project the
ray obtained by a search direction into the bound constraints and to impose a sufficient descent
condition.

2.1 The starting step size

If the step size is too small, rounding errors will often prevent in practice that the function value
is strictly decreasing. Due to c ancellation of leading digits, the Goldstein quotient can become
very inaccurate, which may lead to a wrong bracket and then to a failure of the line search. The
danger is particularly acute when the search direction is almost orthogonal to the gradient. Hence,
before doing each line search method, we need to produce a starting step-size by a method we call
goodStep. It works as follows:

• The minimum of the lower and upper breakpoints is computed in finite precision arithmetic,
whose the corresponding bounds is guaranteed to be active, and updated due to roundoff error.
• The minimal step size is found by a heuristic process and then the target step size is chosen.
• The role of boolean variable exact is to enforce at the second trial step an exact line search on
quadratics.
• When the good step size αgood equals with the minimum of the breakpoints, adverse finite-
precision effects are avoided.
• If the number of stuck iterations reached its limit, the trial step is increased by the factor
2 ∗ nstuck to avoid remaining stuck.

2.1 Algorithm. (goodStep)

Purpose: Try to find the starting good step size
function [step]= goodStep(point, step, tune);
ind = {i | pi < 0 & xi > xi}; % find the index of first breakpoint
if (ind 6= ∅), αbreak = min{(xi − xi)/pi | i ∈ ind}; else, αbreak = +∞; end;
ind = {i | pi > 0 & xi < xi}; % find the index of second breakpoint
if (ind 6= ∅), αbreak = min{(xi − xi)/pi | i ∈ ind}; else, αbreak = +∞; end;
αbreak = min(αbreak, αbreak); αbreak = αbreak(1 + ∆b);
% define minimal step size
ind = {i | pi 6= 0};
if (x == 0 & ind 6= ∅), αmin = ∆α|f/gp|;
else,

if (ind 6= ∅), αmin = ∆α max
(
|f/gp|,min

{
|xi/pi| | i ∈ ind

})
;

else, αmin = 1; αgood = 1; return; % zero direction
end;

end;
Continued on next page
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αtarget = max(αmin, df/|gp|);
if exact, αtarget = min(αtarget, αbreak); end;
if (qαtarget ≤ αbreak), αgood = αtarget; else, αgood = max(αmin, αbreak); end;
if (nstuck ≥ nsmin), αgood := 2(nstuck)αgood; end;

2.2 A robustified step size (robustStep)

If the line search fails to give an improvement on the function values, we find a point with small
significant change by performing the following algorithm:

2.2 Algorithm. Robusted step size (robustStep)

Purpose: Try to find a point with smallest robust change
function [point, step] = robustStep(point, step, tune);
dFb = min(dF); irob = {i | dFi = dFb}
if (dFb < 0), αnew = Airob; fnew = f + dFirob; return; end;
% treat failed line search (no improvement); find point with smallest robust change
ind = {i | dFi > 0 & dFi < +∞}; dFb = min

i∈ind
(dF);

inew = {i ∈ ind | dFi = dFb}; irob = indinew ;
% quality robust with robust change
if (dFb ≤ df), αnew = Airob; fnew = f + dFirob; return; end;
idF = {i | dFi ≤ 0};
if (inew == ∅ or idF 6= ∅), % function almost flat; take step with largest dF

ind = {i | dFi < +∞}; dFb = min
i∈ind

(dF); inew = {i ∈ ind | dFi = dFb}; irob = indinew ;

% function is flat; take largest step
if (dFb ≤ 0), αnew = max

i∈ind
(A); inew = {i ∈ ind | Ai = αnew}; irob = indinew ; end;

else % take largest almost flat step
if (dFb > ∆rdf)

ind = {i | dFi ≤ df}; αnew = max
i∈ind

(A); inew = {i ∈ ind | Ai = αnew}; irob = indinew ;

end;
end;
αnew = Airob; fnew = f + dFirob;

robustStep first needs to check whether there exists an improvement on the function value or not;
if there is no improvement then it tries to find a point with smallest robust change. There would
be found a point with robust change if the minimum of dF is smaller than or equal df. Otherwise,
if the function is almost flat or flat; then a step with largest dF is chosen. Otherwise, a point with
nonrobust change might be chosen provided that the minimum of dF ≤ ∆rdf.
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2.3 The bent line search (BLS)

The bent line search BLS is a variant of the curved line search of Neumaier & Azmi [51] with
enhancements for numerical stability.

• At first, the acceptable increase df in f is updated.

• A regularized directional derivative is used.

• goodStep is recalled to find the starting good step-size αgood, the target step size αtarget and the
minimum step size αmin.

• Change to find a step size α > 0 satisfying the sufficient descent condition

µ(α)|µ(α)− 1| ≥ β (11)

with fixed β > 0, where
µ(α) := f(x(α))− f(x)

α2g(x)T p for α > 0 (12)

is called the Goldstein quotient (Goldstein [31]). (11) enforces that µ(α) is neither too close
to one nor sufficiently positive. It prevents the step sizes which are too long or too small, leading
to convergence.

• Once the sufficient descent condition holds, it ends, giving an efficient line search.

• In the first iteration if µ < 1, the secant step for the Goldstein quotient is used. Otherwise
an extrapolation is done by the factor q > 1. In the next iteration, if the Goldstein quotient
doesn’t satisfy, then the function is far from the quadratic and bounded. In such a case, either an
interpolate is performed if the lower bound for step-size is zero or an extrapolation is done by the
factor q > 1 until once a bracket [α, α] is found. Then, either the geometric mean or the cubic
bisection or the geometric mean alternated with the mbis cubic bisection is used.

• A limit on the number of iterations is used.

• At the end, robustStep is used to robust the step size if the line search is not efficient.

Moreover, two arrays A and dF use to restore step sizes and gains, respectively. The variable eff
indicates what is the status of step, belonging to {1, 2, 3, 4}.

2.3 Algorithm. Bent line search (BLS)

Purpose: Find a step size α with µ(α)|µ(α)− 1| ≥ β
function [point, step, info] = BLS(fun, point, step, tune, info);
if (ng == 1), df = ∆f ;
else

if (mod(ng, mdf) == 0), df = ∆f (|f |+ 1); else, df = max(Df); end;
end;
gp = min(gTI pI ,−∆pg(|gI |T |pI |)); % regularized directional derivative

Continued on next page
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goodStep; % get αgood

first = 1; descent = 0; rob = 0; eff = NaN; i = 0; α = 0; α =∞;
α = αgood; dF1 = 0; A1 = 0;
while 1,
xnew = max{x,min{x, xinit + αp}}; fnew = fun(fun, xnew); i = i+ 1;
if (isnan(fnew)), fnew = +∞; end;
dFi+1 = fnew − finit; Ai+1 = α; µ = (finit − dFi+1)/(αgp);
if (µ|µ− 1| ≥ β or eff == 1)

eff = 1; % line search efficient
if ∼ exact, break; end;

elseif (i > 1 & ∼ descent & rob > 0)
eff = 2; % robust nonmonotone step accepted
break;

elseif (i ≥ lmax) % limit on function values reached
if descent, eff = 3; % descent else, eff = 4; % no descent end;
break;

end;
% update bracket
if descent

% update bracket for descent
if (µ ≥ 1

2), α = α;
else % linear decrease or more

if (α == αmax), break; end;
α = α;

end;
elseif (dFi+1 < 0) % first descent step

descent = 1;
% create bracket for descent
ind = {i | dF < 0}; α = max(Aind); rob = −1; % lower part
ind = {i | dFi ≥ 0 & Ai > α};
if (ind == ∅), α = +∞; else, α = min(Aind); end;

else % no descent; update robust bracket
if (dFi+1 ≤ df), α = α; rob = dFi+1; else α = αnew; end;

end;
if first, first = 0; % first step

if (µ < 1),
α = 1

2α/(1− µ); % secant step for Goldstein quotient
if (α == 0), α = αmin; end;

else, α = max{αmin, qα}; % extrapolation
Continued on next page
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end;
exact = 0;

else
if (α ==∞),α = αq; % extrapolation
elseif (α == 0), α = 1

2α/(1− µ); % contraction
else

switch bis
case 0 % geometric mean bisection
α0 = max{α, αmin}; α = √α0 α;

case 1 % cubic bisection
α0 = max{α, αmin}; α = α(α/α0)1/3;

case 2 % geometric mean and cubic bisection
gc = mod(nf, mbis); α0 = max{α, αmin};
if gc, α = α

√
α/α0; else, α = α(α/α0)1/3; end;

end;
end;
α = min(α, αmax);

end;
nf = nf + i;
robustStep; % robust step size

2.4 Avoiding too many null steps (nullStep)

If at least nnulmax null steps were found , nullStep algorithm tries to get rid of this weakness,
depending on the output parameter eff in BLS. If the maximal number of function evaluations
for BLS was exceeded, eff=4, a point around the old best point is generated instead of the
point obtained by BLS. Otherwise a point around the current best point generated by BLS is
constructed.

2.4 Algorithm. (nullStep)

Purpose: Try to prevent producing the null steps
function [point, step, par, info] = nullStep(point, step, tune, par, info);
flags = (‖s‖ == 0);
if (nnull > 2 & flags)

if (eff == 4), x̂ = max(x,min(xbest(1− del), x));
else, x̂ = max(x,min(x(1− del), x));
end;
ind = {i | x̂i = 0}; x̂ind = del; s = x̂− x; x = x̂; flags = (‖s‖ == 0);

Continued on next page
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if flags, nnull = nnull + 1; else, nnull = 0; end;
f = fun(x); nf = nf + 1;
if isnan(f), f = +∞; end; % adjust f

end;

3 Working set and search directions

In this section, we give a description of the search direction used at each iteration. First we ignore
the bound constraints and assume that the problem is unconstrained.

The starting trial search direction pinit can be computed by an arbitrary local method. Then the
search direction pinit will be improved to be a direction in an adequate subspace by approximating
the solution p of the problem

min{f(x+ p) | p ∈ Span(S, pinit)}. (13)

3.1 The reduced gradient

Before computing the reduced gradient, we adjust the components of the gradient that are ∞ or
NaN.

3.1 Algorithm. (adjustGrad)

Purpose: Adjust the gradient vector g
function [point] = adjustGrad(point, tune);
ind = {i | isnan(gi)};
if ind 6= ∅, % NaN in gradient

ind1 = {i | xi − xi > xi − xi};
ind2 = (ind & ind1); gind2 = ∆g ∗ ones(length(ind2), 1);
ind3 = (ind & ∼ ind1); gind3 = −∆g ∗ ones(length(ind3), 1);

end;
ind = {i | gi = +∞}; lind = length(ind); % +∞ in gradient
if ind 6= ∅, gind = ∆g ∗ ones(lind, 1); end;
ind = {i | gi = −∞}; lind = length(ind); % −∞ in gradient
if ind 6= ∅, gind = −∆g ∗ ones(lind, 1); end;

The following algorithm shows how to compute the reduced gradient:

3.2 Algorithm. (redGrad)
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Purpose: Compute the reduced gradient gred

function [point] = redGrad(point);
gred = g; I = {i | xi ≤ xi}; (gred)I = min(0, (gred)I);
I = {i | xi ≥ xi}; (gred)I = max(0, (gred)I);

3.2 The working set

In order to determine the working set I, we use the algorithms of findFreePos and findFreeNeg. At
the first iteration, findFreePos finds I+(x), considered as the working set. Then findFreeNeg finds
the free index set I−, determines freeing, and updates nlocal. If the number of new free index
set is smaller than that of the old free index set, i.e., fixed = 1, then the free index set must
be changed; hence nlocal = 0. Otherwise, nlocal will be restarted to avoid cycling or updated
whenever iterations are unsuccessful. At the end, freeing is determined, while it holds if at least
one of the following holds:

• There is no improvement on the function value.

• The number of the new free index set is greater than the old one.

• The maximal number of local steps before freeing is exceeded.

3.3 Algorithm. (findFreeNeg)

Purpose: Find the free index set I−
function [point, par] = findFreeNeg(point, par, tune);
% find free indices I−
I− = {i | xi > x & xi < x}; nI− = length(I−); fixed = (nI− < nI);
if fixed, nlocal = 0; % free index set changed
elseif (nstuck > 0) % avoid cycling

if (nlocal > nwait + m), nlocal = nwait; else, nlocal = nlocal + 1; end;
elseif (∼ quad) % restart

if (nlocal ≥ nwait), nlocal = nwait; else, nlocal = nlocal + 1; end;
elseif (∼ fixed), nlocal = nlocal + 1; % local
end;
freeing = (∼ monotone or nI− > nI or nlocal ≥ nlf);

If I = I+(x) 6= I−(x), the iteration is called a freeing iteration. It is enforced in four different
cases:

• Corner: All components of current point are active. In this case, I−(x) is empty.

• Monotone (monotone = 1): The current point improved the function value and the norm of
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gradient restricted to I−(x) is below ε.

• Nonmonotone (monotone = 0): The current point did not improve the function value and the
norm of gradient restricted to I−(x) is below ε.

• Local: the current point is an ordinary one and the norm of gradient restricted to I−(x) is not
below ε.

In all cases, the working set I is update by I+(x).

findFreePos tries to update the working set I such that the condition (10) holds. In the first
iteration, it finds the free indices set I+(x), which is used as the working set since freeing = 0.
In the other iterations, freeing determined by findFreeNeg in the last iteration is updated by
findFreePos. If it holds, the free index set I+(x) is found and considered as the working set.
Otherwise I−(x) generated by findFreeNeg in the previous iteration is kept as the working set.

3.4 Algorithm. (findFreePos)

Purpose: Find the free index set and update working set
function [point, par, info] = findFreePos(point, par, tune, info);
% find free indices I+ if freeing holds
ρ = (1/max(1, ng− 1)); freeing = (freeing or ‖gnew‖2 < ρ‖gred‖2);
if freeing, % freeing step: corner, monotone, nonmonotone and local
I+ = {i | (xi > xi & xi < xi) or (gred)i 6= 0}; nI+ = length(I+);
if (ng == 1 or nI+ > nI), I− = I+; nlocal = 0; end;

end;
% update working set
I = I−; nI = length(I); ω = ‖gI‖2;

3.3 Subspace information

Throughout our implementation, we define the matrix S as a n ×m matrix whose columns are
(in the actual implementation a permutation of) the previous m search directions,

S := {s1, ..., sm} = {x1 − x0, ..., xm − xm−1}, (14)

and the matrix Y ∈ Rn×m the corresponding gradient differences

Y := {y1, ..., y0} = {g1 − g0, ..., gm − gm−1}. (15)

One of column of both S and Y is updated whenever a new pair of s and y satisfies the Powell
condition

|gT y| ≥ ∆pog
T g. (16)

This condition is necessary to prove the convergence of LMBOPT; for more details see Theorems
5.1 and 7.2 in [51].
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If the objective function is quadratic with (symmetric) Hessian B and gradient c and no rounding
errors are made, the matrices S, Y ∈ Rn×m satisfy the quasi-Newton condition

BS = Y. (17)

Since B is symmetric,
H := STY = STBS (18)

must be symmetric. If we calculate y = Bp at the direction p 6= 0, we have the consistency
relations

h := STBp = Y T p = ST y,

0 < γ := pTBp = yT p = f(x+ αp)− f − αgT p
α2/2 , (19)

for all α ∈ R. If the columns of S (and hence those of Y ) are linearly independent then m ≤ n,
and H is positive definite. Then the minimum of f(x+Sz) with respect to z ∈ Rm is attained at

znew := −H−1c, (20)

where c := ST g, and the associated point and gradient are

xnew = x+ Sznew, gnew := g(xnew) = g + Y znew,

and we have
ST g(xnew) = 0. (21)

We may now cheaply form the augmented matrices

Snew := (S s ) , Ynew = GSnew = (Y y ) , Hnew = STnewGSnew =
(
H h
hT γ

)
and the augmented vectors

cnew := STnewgnew =
( 0
sT gnew

)
,

znew := −H−1
newcnew. (22)

If the objective function is not quadratic, then H := STY need not be symmetric since B is not
symmetric. However, the update procedure updateSubspace always produces a symmetric H as
long as there is no null step and either the Powell condition (16) holds or the number of local
steps is greater than that of before CG is started.

But if the allowed memory for S and Y is used we replace the the oldest columns of S and Y by
the new vectors of s and y, respectively.

3.5 Algorithm. (updateSubspace)

Purpose: Update the subspace information
function [point] = updateSubspace(point, step, par, tune);

Continued on next page
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flagnull = (nnull == 0);
if flagnull,

gy = gT y; powell = |gy|/ω; flagpowell = (powell ≥ ∆po); flaglocal = (nlocal ≤ nwait);
subOk = (flaglocal & (∼ flaglocal | powell ≥ ∆po));
if subOk,

if (ch < m), ch = ch + 1 else, ch = 1; end;
S:ch = s; Y:ch = y;
if typeH, Hch: = sTY ; else, Hch: = yTS; end;
H:ch = HT

ch:; nh = nh + 1;
end;

end;

3.4 The quasi-Newton direction

We construct a Hessian approximation of the form

B = D +WXW T , (23)

for some symmetric matrix W ∈ Rn×m and some matrix X ∈ Rn×m. Thus, temporarily, the
additional assumption is made that B deviates from a diagonal matrix D by a matrix of rank
at most m. Under these assumptions, we reconstruct the Hessian uniquely from the data S and
Y = GS = BS, in a manifestly symmetric form that can be used (just like the LBFGS-B formula)
as a surrogate Hessian even when this structural assumption is not satisfied.

3.6 Theorem. Let D ∈ Rn×n be diagonal, Σ ∈ Rn×m and U ∈ Rn×m. Then (17) and (23) imply

B = D + UΣ−1UT ,

where U := Y −DS and Σ := UTS is symmetric. The solution of Bp = −g is given in terms of
the symmetric matrix

M := UTD−1Y = Σ−1,

by
p = D−1(Uz − g),

where is the solution of Mz = UTD−1g.

Proof. The matrices U := Y −DS and Σ := UTS are computable from S and Y , and we have

U = Y −DS = BS −DS = (B −D)S = WXW TS,

and since B is symmetric, Σ = ST (B − D)S is symmetric, too. Assuming that the m × m
matrix Z := XW TS is invertible, we find W = UZ−1, hence Z = XZ−TUTS = XZ−TΣ. This
product relation and the invertibility of Z imply that Σ is invertible, too, and we conclude that
X = ZΣ−1ZT , hence

B = D + UZ−1XZ−TUT = D + UΣ−1UT .
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ut

To apply it to the bound constrained case, we note that the first order optimality condition
predicts the point x+ p, where the nonactive part pI of p solves the equation

BIIpI = −gI .

Noting that
BII = DII + UI:Σ−1UTI: ,

we find DIIpI + UI:Σ−1UTI:pI = −gI , hence

pI = D−1
II (UI:z − gI),

where z := −Σ−1UTI:pI . Now −Σz = UTI:pI = UTI:D
−1
II (UI:z − gI), hence z solves the linear system

(Σ + UTI:D
−1
II UI:)z = UTI:D

−1
II gI .

Given the symmetric matrix (18), we introduce the symmetric m×m matrix

M := Σ + UTI:D
−1
II UI: = UTS + UTI:D

−1
II UI: = UTI:D

−1
II (DIISI: + UI:)

= UTI:D
−1
II YI: = (YI: −DIISI:)TD−1

II YI: = Y T
I: D

−1
II YI: − STI:YI:

= Y T
I: D

−1
II YI: −H

and find z = M−1UTI:D
−1
II gI , hence

pI = D−1
II (UI:z − gI). (24)

Enforcing the angle condition. Given z, we could compute the nonactive part of p from (24);
however, this does not always lead to a descent direction. We therefore compute

h := UI:z,

and choose
pI = D−1

II (h− tgI) (25)
with a suitable factor t ∈ [0, 1].

Due to rounding error, a computed descent direction p may not satisfy the angle condition

gT p√
gT g · pT p

≤ −∆angle. (26)

We add a multiple of the gradient to enforce the angle condition for the modified direction

pnew = p− tg (27)

with a suitable factor t ≥ 0; the case t = 0 corresponds to the case where p already satisfies the
bounded angle condition. The choice of t depends on the three numbers

σ1 := gT g > 0, σ2 := pT p > 0, σ := gT p;
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these are related by the Cauchy–Schwarz inequality

σnew := σ
√
σ1σ2

∈ [−1, 1].

We want to choose t such that the angle condition (26) holds with pnew in the place of p

gT pnew√
gT g · pTnewpnew

≤ −∆angle. (28)

holds. In terms of the σi, this reads

σ − tσ1√
σ1(σ2 − 2tσ + t2σ1)

≤ −∆angle.

If σnew ≤ −∆angle, this holds for t = 0, and we make this choice. Otherwise we enforce equality,
using Proposition 5.2 in [51]. This modifications of the direction p is done by enforceAngle:

3.7 Algorithm. (enforceAngle)

Purpose: Enforce the angle condition
function [step] = enforceAngle(point, step, par, tune);
σ = gTI pI ;
% move away from maximizer or saddle point
if (σ > 0), act = {i ∈ I | gipi > 0}; (pI)act = −(pI)act; σ = −σ; end;
σ1 = gTI gI ; σ2 = pTI pI ; σ3 = σ1σ2; σnew = σ/

√
σ3;

if (σnew ≤ −∆angle)
else
w = (σ3 max(∆w, 1− σ2

new))/(1−∆2
angle); t = (σ + ∆angle

√
w)/σ1;

if (w > 0 & t 6= ±∞), pI = pI − tgI ; else, pI = −gI ; end;
end;

The following algorithm computes (25) and calls enforceAngle to enforce the angle condition:

3.8 Algorithm. (quasiNewtonDir)

Purpose: Compute quasi Newton direction
function [point, step] = quasiNewtonDir(point, step);
YY = YI: ◦ YI:; SS = SI: ◦ SI:; d =

√
(∑m

i=1 YY:i)//(
∑m
i=1 SS:i);

Ok = {i | isnan(di) or di == 0 or di == ±∞}; dOk = 1; d = d(:);
U = YI: − d ◦ SI:; M = (Y T

I: (YI://d))−H; z = M\(UT (gI//d));
pI = (Uz − gI)//d; enforceAngle;
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3.5 Conjugate gradient step

The conjugate gradient method chooses the direction s in the subspace generated by typeSub-
space, enforcing the conjugacy relation (37); thus making H diagonal. Both conditions together
determine s up to a scaling factor: s must be a multiple of

p := Sq + pinit (29)

for some q ∈ Rm, in which pinit is a descent direction, computed by searchDir.

Then (37) requires
Hq = r := −Y T pinit,

and we must have
q = H−1r. (30)

Afterwards, if there exists the subspace, m0 > 0, the conjugate gradient direction is constructed
by

p = −ζpinit + S(znew + ζr), (31)
for which

ζ := gT pinit + qT znew
γ − qr

. (32)

Otherwise, both (31) and (32) can be reduced and reformulated by

p = −ζpinit, ζ := gT pinit
γ

.

In (32), if the denominator of ζ, γ − qr, is near zero, then ζ cannot be computed; hence we use a
regularized computation. To do so, let us regularize γ by

γnew = |f(x+ αpinit)− f |+ α|g|T |pinit|
α2/2 .

and then compute

γ − qr =
{
γ − qr + ∆H(γnew/2 + |q|T |r|) if γ − qr ≥ 0,
γ − qr −∆H(γnew/2 + |q|T |r|) if γ − qr < 0,

so that
ζnew := gT pinit + qT znew

γ − qr
, pnew = −ζpinit + S(znew + ζnewr). (33)

The implementation of conjugate gradient direction. The value of γ depends on the search
direction. Here the searchDir algorithm is used for computing γ including scaleDir, quasiNew-
tonDir and AvoidZigzagDir. It works as follows:

• If ng = 1, the starting search direction makes use of the gradient signs only, and has nonzero
entries in some components that can vary. Each starting search direction is computed by
scaleDir, which is as follows:

3.9 Algorithm. (scaleDir)
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Purpose: Choose components of sensible sign and scale
function [step, par] = scaleDir(point, step, par);
for i = 1 : n,

if (xi == 0),
sc = min(1, xi − xi); % width defines a scale
if (gi < 0), pi = sc; else, pi = −sc; end;

else
sc = |xi|; % xi defines a scale
if (xi == xi), pi = sc;
elseif (xi == xi), pi = −sc;
elseif (gi < 0), pi = sc;
else, pi = −sc;

end;
end;

• If nlocal 6= nwait, a modified direction is used to avoid zigzagging by AvoidZigzagDir. It
is easily obtained that such a direction will be a descent direction and then a line search along
with the direction pinit can be performed. Zigzagging is the main source of inefficiency of simple
methods such as steepest descent. Any search direction p must satisfy gT p < 0. In order to avoid
zigzagging we choose the search direction p as the vector with a fixed value gT p = −γ < 0 closest
(with respect to the 2-norm) to the previous search direction. By Theorem 7.1 in [51],

p = pold − λ̂g, (34)

where
λ̂ = γ + gT pold

gT g
. (35)

Rescaling pold by a factor β > 0, the improved direction is expressed by

p := βpold − λg, (36)

in which
λ := γ + βgT pold

gT g
.

Since gT p = −γ, the direction will be a descent direction. This direction is computed by
AvoidZigzagDir, using a heuristic choice of

β := 1/(a`+ b)θ,

with tuning parameters satisfying 0 < θ < 1, a, b > 0.

3.10 Algorithm. (AvoidZigzagDir)
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Purpose: Modify the direction to avoid zigzagging
function [step] = AvoidZigzagDir(point, step, tune, info);
γ = max(gy, 1); β = 1/(1 + nf + 3ng)θ; λ = (γ + βgp)/ω; pI = βp− λgI ;

• If ng > 1 and nlocal = nwait, quasiNewtonDir is used in subspace. Finally, by changing the
sign of g, we may enforce gT pinit ≤ 0. Even though g 6= 0, cancellation may lead to a tiny gT pinit
(and even of the wrong sign). Given the tiny parameter ∆pg, to overcome this weakness, subtract
∆pg|g|T |pinit| can be a bound on the rounding error to have the theoretically correct sign.

We now compute pinit by the following algorithm:

3.11 Algorithm. (searchDir)

Purpose: Construct the search direction pinit

function [point, step, par] = searchDir(point, step, par, tune, info);
if (ng == 1), scaleDir; CG = 1; % scaling direction
elseif (nlocal == nwait) % quasi-Newton direction

quasiNewtonDir ;
else % try to avoid zigzagging

AvoidZigzagDir ;
end;
gp = gTI pI ;
if (gp ≥ 0), J = {i ∈ I | pigi > 0}; (pI)J = −(pI)J ; gp = gTI pI ; end;
ok = (gp ≤ ∆pg|gI |T |pI |);
if ok, pI = −gI ; gp = pTI gI ; end;
pinit = zeros(n, 1); pinit = pI ;

Using pinit computed by searchDir, γ is generated by the following algorithm:

3.12 Algorithm. (getGam)

Purpose: Compute γ (19)
function [point, step, par, info] = getGam(point, step, par, tune, info);
df = ∆f ; % goodStep needs to it for getting αtarget

goodStep; % get αgood

xnew = max(x,min(x+ αgoodpinit, x)); fnew = fun(xnew); nf = nf + 1;
Continued on next page
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if isnan(fnew), fnew = +∞; end; % adjust f
d2f = |fnew − f − αgood ∗ gp|+ eps; γ = 2 ∗ d2f/α2

good;

The mentioned regularized computation is implemented by the following algorithm:

3.13 Algorithm. (regDenom)

Purpose: Construct regularize denominator
function [par] = regDenom(point, step, par, tune);
e2f = |fnew − f |+ αgood(|g|T |pinit|)); denom = γ − qT r; dcor = ∆H(e2f/α2

good + |q|T |r|);
if (denom ≥ 0), denom = denom + dcor; else, denom = denom− dcor; end;

Finally, the implementation of ConjGradDir for computing p in (31) is given next. The subprogram
ConjGradDir

• computes γ by calling getGam and then the krylov direction,

• computes the subspace direction if there exists the subspace, m0 > 0,

• constructs the regularize denominator of (33) by calling regDenom,

• projects the new point into the box x.

3.14 Algorithm. (ConjGradDir)

Purpose: Construct the conjugate gradient direction
function [point, step, par, info] = ConjGradDir(fun, point, step, par, tune, info);
getGam; % compute γ
% construct r, q and znew

if (m0 > 0) % subspace step possible
c =

∑
i∈hist

g ◦ S:i; q =
∑

i∈hist
pinit ◦ Y:i; rhs = [−c, q]; Hoh = Hhist,hist;

sol = Hoh\rhs; nsub = {i | isnan(sol) or sol == ±∞};
if nsub 6= ∅ % no subspace step possible
ζ = gp/γ;
if isnan(ζ), ζ = ζmax; end;
ζ = min(ζmax,max(ζ, ζmin)); cosine = −gp ∗ ζ; p = −pinitζ;

else
znew = sol:1; r = sol:2;

Continued on next page
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regDenom; % construct regularize denominator
ζ = (gp + qT znew)/denom;
if isnan(ζ), ζ = ζmax; end;
ζ = min(ζmax,max(ζ, ζmin)); znew = znew + ζr;
cosine = −gp ∗ ζ + cT znew; p = −pinitζ + S:histznew;

end;
else % no subspace step possible

% here doing instead an exact line search saves function values
ζ = gp/γ;
if isnan(ζ), ζ = ζmax; end;
ζ = min(ζmax,max(ζ, ζmin)); cosine = −gp ∗ ζ; p = −pinitζ;

end;
xnew = max(x,min(x+ p, x)); p = xnew − x;

4 Starting point and master algorithm

4.1 The starting point (projStartPoint)

In order that the gradient contains significant information about all components, the starting point
should be chosen not too special. This is especially important in the bound constrained case, where
the signs of gradient components determine which variables may be freed. For example, consider
minimizing the quadratic function

f(x) := (x1 − 1)2 +
n∑
i=2

(xi − xi−1)2

started from x0 = 0. If a diagonal preconditioner is used, it is easy to see by induction that, for
any method that chooses its search directions as linear combinations of the previously computed
preconditioned gradients, the ith iteration point has zero in all coordinates k > i and its gradient
has zero in all coordinates k > i + 1. Since the solution is the all-one vector, this implies that
at least n iterations are needed to reduce the maximal error in components of x to below one.
Situations like this are likely to occur when both the Hessian and the starting point are sparse.

The following algorithm moves a user-given starting point x slightly into the relative interior of
the feasible domain. ∆x is a number in ]0, 1

2 [; choosing it instead as 0 just projects the starting
point into the feasible box.

4.1 Algorithm. (projStartPoint)

Purpose: Improve the starting point
function [point] = projStartPoint(point, tune);

Continued on next page
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if ∆x == 0, x = max(x,min(x, x));
else

ind = {i | xi ≤ xi, i = 1, · · · , n}; xind = xind + ∆x min(∆u|xind|, xind − xind);
ind = {i | xi ≥ xi, i = 1, · · · , n}; xind = xind −∆x min(∆u|xind|, xind − xind);

end;
ind = {i | xi = ±∞}; xind = max(xind,min(0, xind));

4.2 Successful iteration (getSuccess)

The goal of getSuccess is to test whether the sufficient descent condition holds or not. The
Goldstein quotient is computed provided that all of the following hold:

• The direction is descent, but not zero; in this case the direction was generated by ConjGradDir.

• Either the direction is not the ordinary subspace step or the number of stuck iterations reaches.

After computing the Goldstein quotient, iteration will be successful if either line search is efficient,
meaning the sufficient descent condition holds, or there exists an improvement on the function
value by at least ∆f .

4.2 Algorithm. (getSuccess)

Purpose: Determine whether iteration is successful or not
function [point, step, par, info] = getSuccess(fun, point, step, par, tune, info);
quad = 0; estuck = 0; Ip = {i | pi 6= 0};
defQuad=(cosine < 0 & Ip 6= ∅ & (CG > 0 or nstuck ≥ nsmin));
if defQuad

% data are consistent with a definite quadratic function
fnew = fun(xnew); nf = nf + 1;
if isnan(fnew), fnew = +∞; end; % adjust f
gp = gT p; µ = (fnew − f)/gp;
if (fnew == f or µ|µ− 1| ≥ βCG), quad = CG; end; % check s.d. condition
estuck = (nstuck ≥ nsmin & fnew ≤ f + ∆f );

end;
success = (quad or estuck);

4.3 Initializing information (initInfo)

initInfo initializes the best point and its function value.
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4.3 Algorithm. (initInfo)

Purpose: Initialize best point and ∆f

function [point] = initInfo(point, tune);
if (f 6= ±∞ & f 6= 0), ∆f = facf ∗ |f |; else, ∆f = 1; end;
Df1:mf−1 = −∞; Dfmf = ∆f ;
fbest = f ;

4.4 Updating information (updateInfo)

The goal of updateInfo is first to update the best point and its function value. Second, it deter-
mines whether there exists an improvement on the function value or not; in such cases ∆f and
the list of its mf previous values are updated. It is tried that the amount of ∆f is updated by
using its mf previous values, preventing very tiny value; especially when the function value is very
small.

4.4 Algorithm. (updateInfo)

Purpose: Update best point and ∆f

function [point, par] = updateInfo(point, par, tune, info);
% update fbest

if (fnew < fbest), nstuck = 0; fbest = fnew; xbest = xnew; else, nstuck = nstuck + 1; end;
dec = (fnew < f);
if dec % improvement

monotone = 1; ∆f = f − fnew; nm = mod(ng, mf);
if (nm == 0), Dfmf = ∆f ; else, Dfnm = ∆f ; end

elseif (fnew == f), monotone = 0; % stalled
else % no descent

monotone = 0; ∆f = max(2∆f ,∆m(|f |+ |fnew|)); nm = mod(ng, mf);
if (nm == 0), Dfmf = ∆f ; else, Dfnm = ∆f ; end;

end;
f = fnew; % update f

4.5 The type of a subspace step (typeSubspace)

We need to determine what to be the subspace. typeSubspace uses three variables m0 (length of
subspace), hist (list of subspace basis) and CG (type of subspace) to determine the subspace. The
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conjugacy relation is defined by
h = Y T s = 0. (37)

It works as follow:

• If nlocal < nwait, the ordinary subspace step is used since the full subspace direction may
be contaminated by nonactive components and so lead to premature freeing if used directly.

• If nlocal = nwait, the quasi-Newton step generated by quasiNewtonDir is used if (25) holds,
the subspace basis is permuted so that the oldest columns are shifted with newest ones.

• If nlocal < nwait + m̂, the conjugacy relation (37) is preserved by restricting the subspace.

• Otherwise, the full subspace step is preserved the conjugacy.

4.5 Algorithm. (typeSubspace)

Purpose: Determine the type of subspace
function [point, par] = typeSubspace(point, tune, par);
m̂ = min(m, nh);
if (nlocal < nwait) % ordinary subspace step
m0 = min(ng− 1, m̂); hist = [1 : m0]; CG = 0;

elseif (nlocal == nwait) % restart: steepest descent direction
m0 = 0; hist = ∅; perm = [ch + 1 : m̂, 1 : ch]; ch = 0;
S = S:perm; Y = Y:perm; H = Hperm,perm; CG = 1;

elseif (nlocal < nwait + m̂) % preserve conjugacy by restricting the subspace
m0 = nlocal− nwait; hist = [1 : m0]; CG = 2;

else % full subspace step preserves conjugacy
m0 = m̂; hist = [1 : m̂]; CG = 3;

end;

In typeSubspace whenever nlocal = nwait, there is no subspace since m0 = 0. In this case, a
premature replacement of s (y) with the first column of subspace matrix S (Y ) is made before ch
exceeds m.

4.6 The master algorithm

We now recall the main ingredients for LMBOPT, the new limited memory bound constrained
optimization method. It first calls the algorithm projStartPoint described in Subsection 4.1 to
improve the starting point. Then the function value and gradient vector for such a point are
computed and adjusted; the same is done later in every such calculation. In the main loop,
LMBOPT first computes the reduced gradient by redGrad in per iteration and then the working
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set is determined and updated by findFreePos. As long as the reduced gradient is not below a
minimum threshold, it generates the starting direction pinit by searchDir and then constructs the
subspace conjugate gradient direction p by ConjGradDir in the hope of achieving an successful
iteration. Such an iteration is determined by getSuccess and then the best point is updated.
Otherwise it performs a gradient-free line search BLS along a regularized direction (enforceAngle)
since the function is not near the quadratic case. Then if the null steps are repeated at least
nnullmax in a sequence, the point leading to such steps is replaced by nullStep with a point
around the previous best point if BLS is not efficient; otherwise with the current point generated
by BLS. This is repeated until no null step is found. Afterwards, the gradient is computed and
adjusted by adjustGrad. In addition, the new free index set is found by findFreeNeg. At the end
of every iteration, the subspace is updated provided that (i) there is no null step, (ii) either the
Powell condition holds or the number of local steps exceeds its threshold.

For the convergence analysis of Algorithm 4.7 we refer to Section 11 of [51]. It can be seen
that the conditions (7)–(9) on the search direction and the bent line search are essential for the
convergence.

4.6 Theorem. Let f be continuously differentiable, with Lipschitz continuous gradient g. Let x`
denote the value of x in Algorithm 1.1 after its `th update. Then one of the following three cases
holds:

(i) The iteration stops after finitely many steps at a stationary point.

(ii) We have
lim
`→∞

f(x`) = f̂ ∈ R, inf
`≥0
‖gred(x`)‖∗ = 0.

Some limit point x̂ of the x` satisfies f(x̂) = f̂ ≤ f(x0) and gred(x̂) = 0.

(iii) sup`≥0 ‖x`‖ =∞.

4.7 Algorithm. (LMBOPT, limited memory bound constrained optimization)

Purpose: Minimize smooth f(x) subject to x ∈ x = [x, x]
function [x, f , info] = LMBOPT(fun, dfun, x, x, x, tune, info);
% get point
m = max(1,min(m,n)); S = zeros(n,m); Y = zeros(n,m);
H = zeros(m); ch = 0; nh = 0; q = 0.5/β;
% get par
monotone = 0; nlocal = −1; fixed = 0; nstuck = 0;
success = 0; nnull = 0; freeing = 1;
projStartPoint; % improve the starting point
% compute starting function value and its gradient
[f, g] = fun(x); nf = 1; ng = 1;
if isnan(f), f = +∞; end; % adjust f
adjustGrad; initInfo;
while 1,

Continued on next page
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redGrad; findFreePos;
% check stopping tests (gradient accuracy, work limit, stuck)
if (‖gred‖∞ < ε or nstuck > nstuckmax), break; end;
if (nlocal > max(nwait, rfac ∗ nI)), nlocal = nwait; end; % test for local restart
typeSubspace; searchDir ; ConjGradDir ; getSuccess;
if success, x = xnew; % iteration is successful; update best point
else % perform a line search along a regularized direction

enforceAngle; BLS ;
x0 = x; s = x; x = max(x,min(x+ αnewp, x)); s = x− s; % update best point
nullStep;
if flags, nnull = nnull + 1;

if (nnull > nnullmax), break; end
end

end;
if (nnull ≤ nnullmax) % significant step; get new gradient
g0 = g; g = dfun(x); ng = ng + 1; adjustGrad; y = g − g0;

end;
updateInfo; findFreeNeg; updateSubspace;

end;

5 Numerical results

In this section we compare our new solver with other state-of-the-art solvers on a large public
benchmark. More detailed tables are available in the file results*.pdf of the online package
LMBOPT of our Matlab implementation, publicly available at the address given in Section 5.2.

5.1 Test problems used

LMBOPT is compared with many other codes from the literature (see Subsection 5.3) on all 1088
unconstrained and bound constrained problems from the CUTEst [32] collection of test problems
for optimization with up to 100001 variables, in case of variable dimension problems for all allowed
dimensions in this range.

nf, ng and msec denote the number of function evaluations, the number of gradient evaluations,
and the time in milliseconds, respectively; nf2g = nf + 2ng. There will be two runs. In the first
and second runs, to avoid guessing the solution of toy problems with a simple solution (such as
all zero or all one), we shifted the arguments, for all i = 1, . . . , n, by

xi = (−1)i−1 m

m+ i
, (38)
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Figure 1: The number of problems with variables in a given range solved by at least one
solver: 989 problems with dimensions 1 up 100001

35



where m = 2. In the third run, the standard starting point is used for unsolved test problems in
the first run. We limited the budget available for each solver by allowing at most{

20n+ 10000 in the first and second runs,
50n+ 200000 in the third run

function evaluations plus two times gradient evaluations for a problem with n variables and at
most 

180 in the first run,
1800 in the second run,
3600 in the third run

seconds of run time. A problem is considered solved if

‖gk‖ ≤ 10−6.

5.2 Default parameters for LMBOPT

LMBOPT was implemented in Matlab; the source code is obtainable from

http://www.mat.univie.ac.at/~neum/software/LMBOPT.

For our tests we used in tune the following parameters:

m = 12; mf = 2; ∆x = 10−12; ∆u = 1000; ∆g = 100, ∆angle = 10−12; ∆w = εM;
∆r = 20; ∆pg = εM; ∆reg = 10−12; ∆α = 5εM; ∆b = 10εM; ∆H = εM; ∆m = 10−13;
∆po = εM, mdf = 20; typeH = 0; θ = 0.85; β = 0.02; del = 10−10; exact = 0;
bis = 1; nwait = 1; βCG = 0.001; lmax = 3; nlf = 2; rfac = 2.5; facf = 10−8;
nsmin = 1; nstuckmax = +∞; q = 25; nnulmax = 5; ζmin = −1010; ζmax = −ζmin;

They are based on limited tuning by hand. How to find optimal tuning parameters [43] would be
interesting and very important since the quality of LMBOPT depends on it.

5.3 Codes compared

We compare LMBOPT with the following solvers for unconstrained and bound constrained opti-
mization. For some of the solvers we chose options different from the default to make them more
competitive.

Bound constrained solvers:

• ASACG (asa), obtained from
http://users.clas.ufl.edu/hager/papers/CG/Archive/ASA_CG-3.0.tar.gz,
is an active set algorithm for solving a bound constrained optimization problem by Hager
& Zhang [40]. The default parameters have been used. Only memory = 12 and other
parameters have been chosen as default.
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• LBFGSB (lbf), obtained from
http://users.iems.northwestern.edu/~nocedal/Software/Lbfgsb.3.0.tar.
gz,
is a limited-memory quasi-Newton code for bound-constrained optimization by Zhu et al.
[11, 48, 60]. Only m = 12 and other parameters have been chosen as default.

• ASABCP (asb), obtained from
https://sites.google.com/a/dis.uniroma1.it/asa-bcp/download,
is a two-stage active-set algorithm for bound-constrained optimization by Cristofari et
al. [17]. The default parameters have been used.

• SPG (spg), obtained from
https://www.ime.usp.br/~egbirgin/tango/codes.php,
is a spectral projected gradient algorithm for solving a bound constrained optimization
problem by Birgin et al. [8, 9]. The default parameters have been used.

Unconstrained solvers:

• CGdescent (cdg), obtained from
http://users.clas.ufl.edu/hager/papers/CG/Archive/CG_DESCENT-C-6.8.
tar.gz,
is a conjugate gradient algorithm for solving an unconstrained minimization problem by
Hager & Zhang [38, 39, 41, 42]. Only memory = 12 and other parameters have been
chosen as default.

• LMBFG-MT (l l1), obtained from
http://gratton.perso.enseeiht.fr/LBFGS/index.html,
is a limited memory line-search algorithm L-BFGS based on the More-Thuente line search
by Burdakov et al. [10]. Only m = 12 and other parameters have been chosen as default.

• LMBFG-MTBT (l l2), obtained from
http://gratton.perso.enseeiht.fr/LBFGS/index.html,
is a limited memory line-search algorithm L-BFGS based on the More-Thuente line search
and the starting step is obtained using backtrack by Burdakov et al. [10]. Only m = 12
and other parameters have been chosen as default.

• LMBFGS-TR (l l3), obtained from
http://gratton.perso.enseeiht.fr/LBFGS/index.html,
is a limited memory line-search algorithm L-BFGS that takes a trial step along the quasi-
Newton direction inside the trust region by Burdakov et al. [10]. Only m = 12 and the
other parameters have been chosen as default.

• LMBFG-BWX-MS (lt1), obtained from
http://gratton.perso.enseeiht.fr/LBFGS/index.html,
is a limited memory trust-region algorithm BWX-MS by Burdakov et al. [10]. It applies
the Moré & Sorensen approach for solving the TR subproblem defined in the Euclidean
norm. Only m = 12 and the other parameters have been chosen as default.
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• LMBFG-DDOGL (lt2) is a limited memory trust-region algorithm D-DOGL by Burdakov
et al. [10]. Only m = 12 and the other parameters have been chosen as default.

• LMBFG-EIG-curve-inf (lt4) is a limited memory trust-region algorithm EIG(∞, 2) by Bur-
dakov et al. [10]. Only m = 12 and the other parameters have been chosen as default.

• LMBFG-EIG-inf-2 (lt5),obtained from
http://gratton.perso.enseeiht.fr/LBFGS/index.html,
is a limited memory trust-region algorithm EIG(∞, 2) based on the eigenvalue-based norm,
with the exact solution to the TR subproblem in closed form by Burdakov et al. [10].
Only m = 12 and other parameters have been chosen as default.

• LMBFG-EIG-MS (lt6) is a limited memory trust-region algorithm EIG-MS by Burdakov
et al. [10]. Only m = 12 and other parameters have been chosen as default.

• LMBFG-EIG-MS-2-2 (l l7), obtained from
http://gratton.perso.enseeiht.fr/LBFGS/index.html,
is a limited memory trust-region algorithm EIG− MS(2, 2) based on the eigenvalue-based
norm, with the Moré & Sorensen approach for solving a low-dimensional TR subproblem
by Burdakov et al. [10]. Only m = 12 and other parameters have been chosen as default.

Unconstrained solvers were turned into bound-constrained solvers by pretending that the reduced
gradient at the point π[x] is the requested gradient at x. Therefore no theoretical analysis is
available, the results show that this is a simple and surprisingly effective strategy.

5.4 The results for stringent resources

5.4.1 Unconstrained and bound constrained optimization problems

We tasted all 15 solvers for problems in dimension 1 up to 100001. The problems unsolved by all
solvers are given in Table 11.

Performance plots [23] for four cost measures nf (number of function evaluations needed to reach
the target), ng (number of gradient evaluations needed to reach the target), nf2g (nf+2ng) and
msec (time used in milliseconds) are shown in Figure 2.

For a more refined statistics, we use our test environment (Kimiaei & Neumaier [43]) for com-
paring optimization routines on the CUTEst test problem collection by Gould et al. [32]. For
a given collection S of solvers, the strength of a solver so ∈ S – relative to an ideal solver that
matches on each problem the best solver – is measured, for any given cost measure cs by the
number, qso defined by

qso :=

 (min
s∈S

cs)/cso, if so solved the problem,

0, otherwise,
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Table 11: The problems unsolved by all solvers

BROWNBS PALMER7A PALMER5E PALMER5B
OSCIGRAD:10 OSCIPATH:10 STRATEC SBRYBND:10
SCOSINE:10 SCURLY10:10 SCOND1LS OSCIGRAD:15
OSCIGRAD:25 ANTWERP NONMSQRT:49 HS110:50
SBRYBND:50 RAYBENDS RAYBENDL:66 RAYBENDS:66
HYDC20LS FLETCHBV:100 HS110:100 NONMSQRT:100
OSCIGRAD:100 SBRYBND:100 SCOSINE:100 SCURLY10:100
SCOND1LS:102 RAYBENDL:130 RAYBENDS:130 QR3DLS
GRIDGENA:170 DRCAV1LQ HS110:200 SPMSRTLS:499
PENALTY2:500 SBRYBND:500 SCOND1LS:502 MSQRTALS:529
MSQRTBLS:529 NONMSQRT:529 GRIDGENA QR3DLS:610
LINVERSE:999 CURLY20 CHENHARK FLETCHBV:1000
PENALTY2:1000 SBRYBND SCOSINE SCURLY10
SSCOSINE SPMSRTLS:1000 SCOND1LS:1002 MSQRTALS:1024
MSQRTBLS:1024 NONMSQRT:1024 RAYBENDL:1026 RAYBENDS:1026
DRCAV1LQ:1225 DRCAV2LQ:1225 DRCAV3LQ:1225 GRIDGENA:1226
RAYBENDL:2050 GRIDGENA:2114 EIGENALS:2550 GRIDGENA:3242
DRCAV3LQ:4489 GRIDGENA:4610 MSQRTALS:4900 MSQRTBLS:4900
SPMSRTLS:4999 FLETCBV3:5000 FLETCHBV:5000 SBRYBND:5000
SCOSINE:5000 SPARSINE:5000 SSCOSINE:5000 SCOND1LS:5002
BRATU1D:5003 GRIDGENA:6218 CURLY10:10000 CURLY20:10000
CURLY30:10000 FLETCBV3:10000 FLETCHBV:10000 NONCVXUN:10000
SCOSINE:10000 SCURLY10:10000 SPARSINE:10000 SPMSRTLS:10000
SSCOSINE:10000 DRCAV3LQ:10816 ODNAMUR GRIDGENA:12482
SSCOSINE:100000
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Figure 2: (a)-(e): Performance plots for ng/(best ng), nf/(best nf), nf2g/(best nf2g)
and msec/(best msec), respectively. ρ designates the percentage of problems solved within
a factor τ of the best solver. Problem solved by no solver are ignored.
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called the efficiency of the solver so with respect to this cost measure. In the tables, efficiencies
are given in percent. Larger efficiencies in the table imply a better average behaviour; a zero
efficiency indicates failure. All values are rounded (towards zero) to integers. Mean efficiencies
are taken over the 991 problems tried by all solvers and solved by at least one of them, from a
total of 1088 problems. In the following tables, #100 and !100 count the number of times we have
nf2g efficiency 100% or unique nf2g efficiency 100%. Tmean is defined by

Tmean :=
∑ solved
# solved .

Failure reasons were reported in the anomaly columns:

• n indicates that nf2g ≥ 20n+ 10000 was reached.

• t indicates that sec ≥ 300 was reached.

• f indicates that the algorithm failed for other reasons.

In the times, the (for some problems significant) setup time for CUTEst is not included. Although
running times are reported, the comparison of times is not very reliable for several reasons:
(i) The times were obtained under different conditions (solver source code Fortran, C and Matlab).
(ii) In unsuccessful runs, the actual running time depends a lot on when and why the solver was
stopped.
(iii) Function and gradient evaluation includes times for computing various statistics and the
interface to CUTEst; cf. Figure 3. In [43], getfg have been introduced to compute the function
value and gradient of function handle fun at x, collect statistics and enforce stopping tests. In
CUTEst, both function value and gradient are computed by cutest obj without returning any
information about statistics.
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Figure 3: Comparison of qcutest := tg(cutest)
tf (cutest) , qgetfg := tg(getfg)

tf (getfg) and qover := tf2g(getfg)
tf2g(cutest) versus

dimensions, respectively, where tf and tg are considered the time to compute f and g by
cutest or getfg and tf2g := tf + 2tg.

As can be seen from Table 13, LMBOPT is stood out as the most robust solver for unconstrained
and bound constrained optimization problems; it is the best in terms of number of solved problems
and gradient evaluations. Other best solvers in that the number of solved problems and nf2g are
ASACG and LMBFG-EIG-MS, respectively. LBFGSB is the best in terms of number of function
evaluations #100 and !100, but is not comparable in that the number of solved problems with
other algorithms.
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Table 13: The summary results for all problems

stopping test: ‖g‖∞ ≤ 1e-06, sec ≤ 300, nf + 2 ∗ ng ≤ 20 ∗ n + 10000

991 of 1088 problems solved mean efficiency in %
dim∈[1,100001] # of anomalies for cost measure
solver solved #100 !100 Tmean #n #t #f nf2g ng nf msec
LMBOPT lmb 948 170 143 4544 92 48 0 58 69 42 11
ASACG asa 935 155 26 1416 98 21 34 58 59 51 63
LMBFG-EIG-MS lt6 924 108 48 2970 119 26 19 60 57 60 34
LMBFG-EIG-curve-inf lt4 918 94 33 3330 118 25 27 60 56 59 34
ASABCP asb 900 75 52 2404 142 25 21 41 36 44 46
LMBFG-DDOGL lt2 896 113 52 2937 61 21 110 60 56 59 33
CGdescent cgd 895 135 14 2559 77 17 99 54 56 47 55
LMBFG-EIG-MS-2-2 lt7 895 38 0 3390 112 21 60 50 45 57 34
LMBFG-BWX-MS lt1 888 39 1 2694 56 21 123 51 45 58 32
SPG spg 840 103 69 5901 182 58 8 34 34 31 9
LBFGSB lbf 803 238 192 713 0 0 285 57 51 61 32
LMBFG-EIG-inf-2 lt5 753 85 25 3275 76 26 233 50 47 49 28
LMBFGS-TR ll3 733 101 43 2904 242 92 21 48 44 48 36
LMBFG-MTBT ll2 669 75 22 2257 55 14 350 45 41 46 26
LMBFG-MT ll1 657 101 49 2677 57 14 360 45 39 48 32
984 of 1088 problems solved, sec ≤ 1800 mean efficiency in %
LMBOPT lmb 953 257 227 6969 115 20 0 67 75 52 17
ASACG asa 936 286 243 2135 116 1 35 67 65 63 82
LMBFG-EIG-MS lt6 932 508 469 6079 134 2 20 71 64 75 48
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Table 14: The summary results for unconstrained and bound constrained problems

stopping test: ‖g‖∞ ≤ 1e-06, sec ≤ 300, nf + 2 ∗ ng ≤ 20 ∗ n + 10000

552 of 615 problems without bounds solved mean efficiency in %
dim∈[1,100001] # of anomalies for cost measure
solver solved #100 !100 Tmean #n #t #f nf2g ng nf msec
ASACG asa 533 132 121 1331 53 16 13 67 66 61 82
LMBOPT lmb 531 162 160 3962 50 34 0 68 75 53 16
LMBFG-EIG-MS lt6 522 271 258 3055 68 21 4 69 59 73 47
425 of 473 problems with bounds solved mean efficiency in %
LMBOPT lmb 417 106 78 5283 42 14 0 66 74 51 20
ASACG asa 402 148 116 1530 43 5 21 65 61 64 79
LMBFG-EIG-MS lt6 402 225 199 2859 51 5 15 71 64 73 48

stopping test: ‖g‖∞ ≤ 1e-06, sec ≤ 1800, nf + 2 ∗ ng ≤ 20 ∗ n + 10000

552 of 615 problems without bounds solved mean efficiency in %
ASACG asa 533 137 126 1391 67 1 14 68 67 62 82
LMBOPT lmb 533 155 153 5677 67 15 0 68 75 53 15
LMBFG-EIG-MS lt6 522 273 260 3721 87 2 4 69 59 74 47
432 of 473 problems with bounds solved mean efficiency in %
LMBOPT lmb 420 102 74 8608 48 5 0 66 74 50 20
LMBFG-EIG-MS lt6 410 235 209 9082 47 0 16 73 66 76 48
ASACG asa 403 149 117 3119 49 0 21 66 61 64 81

5.4.2 Classified by constraints

Summarise of separate results for unconstrained and bound constrained problems are given in
Table 14. For both unconstrained and bound constrained problems, LMBOPT is most robust
algorithm in terms of number of solved problems and gradient evaluations. It has same efficiency
in terms of nf2g with ASACG, however, LMBFG-EIG-MS is the best in terms of nf and nf2g.

5.4.3 Classified by dimension

Results for the three best solvers for all problems classified by dimension are given in Table 15.
Table 15 shows that

• LMBOPT is the best in terms of ng for n < 50001 and it is the best in terms of the number of
solved problems for n ≤ 100 and n ∈ [1001, 3000].

• LMBFG-EIG-MS is the best in terms of nf and nf2g in most dimension ranges.

• For very large scale problems, n ∈ [50001, 100001], ASACG is the best in terms of the number
of solved problems, nf, ng, nf2g, !100 and #100. Moreover, ASACG is the best in terms of msec
in all dimension ranges.
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Table 15: The summary results classified by dimension for all problems

stopping test: ‖g‖∞ ≤ 1e-06, sec ≤ 1800, nf + 2 ∗ ng ≤ 20 ∗ n + 10000

116 of 118 problems solved mean efficiency in %
dim∈[1,5] # of anomalies for cost measure
solver solved #100 !100 Tmean #n #t #f nf2g ng nf msec
LMBOPT lmb 115 29 22 199 3 0 0 73 84 58 18
ASACG asa 110 40 32 25 6 0 2 76 77 69 85
LMBFG-EIG-MS lt6 106 61 53 36 12 0 0 77 69 82 58
n ∈[6,10], 112 of 121 problems solved # of anomalies for cost measure
LMBOPT lmb 112 34 30 321 9 0 0 69 74 58 17
ASACG asa 107 47 42 37 6 0 8 74 70 71 83
LMBFG-EIG-MS lt6 94 40 35 110 26 0 1 58 53 62 46
n ∈[11,30], 75 of 80 problems solved # of anomalies for cost measure
LMBOPT lmb 74 27 22 291 6 0 0 75 82 59 16
LMBFG-EIG-MS lt6 74 28 24 494 5 0 1 70 60 75 69
ASACG asa 68 29 20 17 8 0 4 70 67 65 78
n ∈[31,100], 194 of 209 problems solved # of anomalies for cost measure
LMBOPT lmb 188 49 46 449 21 0 0 67 76 53 16
ASACG asa 184 60 55 117 19 0 6 68 68 63 82
LMBFG-EIG-MS lt6 184 93 88 133 23 0 2 71 65 75 59
n ∈[101,300], 51 of 58 problems solved # of anomalies for cost measure
LMBFG-EIG-MS lt6 50 24 22 264 5 0 3 72 64 73 56
ASACG asa 49 21 19 333 6 0 3 72 72 65 78
LMBOPT lmb 48 9 8 1055 10 0 0 64 72 47 15
n ∈[301,1000], 141 of 163 problems solved # of anomalies for cost measure
LMBFG-EIG-MS lt6 137 71 67 2004 21 0 5 68 62 72 25
ASACG asa 136 42 38 422 24 0 3 65 63 65 83
LMBOPT lmb 135 35 32 2549 28 0 0 62 71 47 12
n ∈[1001,3000], 81 of 94 problems solved # of anomalies for cost measure
LMBOPT lmb 79 7 7 11536 15 0 0 63 74 44 12
LMBFG-EIG-MS lt6 79 67 65 5708 13 0 2 79 72 80 31
ASACG asa 76 9 7 1458 15 0 3 58 59 51 79
n ∈[3001,10000], 173 of 201 problems solved # of anomalies for cost measure
ASACG asa 168 31 25 4790 28 0 5 60 57 59 82
LMBFG-EIG-MS lt6 168 104 97 13170 28 0 5 72 64 76 44
LMBOPT lmb 166 49 44 21178 23 12 0 64 72 49 22
n ∈[10001,50000], 35 of 37 problems solved # of anomalies for cost measure
LMBFG-EIG-MS lt6 35 18 18 60050 1 0 1 86 70 91 65
ASACG asa 32 3 3 10902 4 0 1 57 52 54 81
LMBOPT lmb 32 14 14 31617 0 5 0 79 84 57 37
n ∈[50001,100001], 6 of 7 problems solved # of anomalies for cost measure
ASACG asa 6 4 2 105117 0 1 0 67 64 72 79
LMBFG-EIG-MS lt6 5 2 0 107508 0 2 0 49 44 54 39
LMBOPT lmb 4 4 2 160765 0 3 0 57 57 53 44
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Table 16: The summary results for hard problems

stopping test: ‖g‖∞ ≤ 1e-06, sec ≤ 3600, nf + 2 ∗ ng ≤ 50 ∗ n + 200000

62 of 93 problems solved mean efficiency in %
dim∈[1,100001] # of anomalies for cost measure
solver solved #100 !100 Tmean #n #t #f nf2g ng nf msec
LMBFG-EIG-MS lt6 49 31 31 152667 28 6 10 47 42 48 33
LMBOPT lmb 46 15 14 179457 35 12 0 38 42 30 17
ASACG asa 45 17 16 120625 32 0 16 40 40 36 47
31 of 56 problems without bounds solved mean efficiency in %
ASACG asa 25 7 7 182304 23 0 8 37 35 34 43
LMBFG-EIG-MS lt6 23 15 15 265649 21 6 6 37 34 38 21
LMBOPT lmb 22 9 9 208808 23 11 0 31 34 25 16
31 of 37 problems with bounds solved mean efficiency in %
LMBFG-EIG-MS lt6 23 17 17 1148 2 0 3 73 67 75 61
LMBOPT lmb 22 3 3 1641 5 1 0 55 64 42 21
ASACG asa 20 8 8 262 5 0 3 57 60 49 69

Table 17: The hard problems unsolved by all solvers

OSCIPATH:10 SCOND1LS ANTWERP HYDC20LS
FLETCHBV:100 NONMSQRT:100 SBRYBND:100 SCOSINE:100
SCURLY10:100 PENALTY2:500 SCOND1LS:502 NONMSQRT:529
FLETCHBV:1000 PENALTY2:1000 SCOSINE SCURLY10
SSCOSINE SCOND1LS:1002 NONMSQRT:1024 FLETCBV3:5000
FLETCHBV:5000 SBRYBND:5000 SCOSINE:5000 SCOND1LS:5002
BRATU1D:5003 FLETCBV3:10000 FLETCHBV:10000 NONCVXUN:10000
SCOSINE:10000 SCURLY10:10000 SSCOSINE:100000

5.5 Results for hard problems

All solvers have been run again on the hard problems defined as, the 100 test problems unsolved
in the first run. In this case, the standard starting point has been used instead of (38) and
both nfmax and secmax have been increased. 31 test problems were not solved by all solvers for
dimensions 1 up 100001, given in Table 17.

From Table 16, we conclude

• LMBOPT is the second best solver in terms of the number of solved problems.

• LMBOPT and LMBFG-EIG-MS are the best solvers in terms of ng.

• LMBFG-EIG-MS is the best solver in terms of nf2g and nf.
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