
LMBOPT – supplementary Material

1 Algorithms and data structures

LMBOPT solves a bound constrained optimization problem with a continuously differ-
entiable objective function, using routines for evaluating the function and the gradient. It
uses beyond the theory in [12], a new limited memory quasi Newton method and the robust
curved line search method. It is followed as follows:

Step dependencies
LMBOPT Preprocessor, Determiner, Updater, Postprocessor

Preprocessor Initializer, ImproverPoint, ProblemObject

Determiner ReducerGrad, WorkerSelector, Successor, Unsuccessor

Updater Worker, UpdaterInfo, Subspace

Successor SubspaceSelector, Director, ProblemObject

ProblemObject GeneratorFun, AdjusterGrad

Director LocalSolvers, Conjugator, GeneratorCauchy

Conjugator
RobustifierI, GeneratorGamma, Regularizer
GeneratorDirection

Unsuccessor Enforcer, GeneratorCurve, Nullifier

Nullifier Neighbourhood, ProblemObject

GeneratorCurve
RobustifierI, CurveSearch, RobustifierII
ProblemObject

Table 1: Mathematical structure of LMBOPT

The top levels. LMBOPT calls Preprocessor to initialize all necessary information,
then alternates calls to Determiner and Updater. Once the norm of reduced gradient in
the current best point is below a given threshold, it ends up. Finally, it calls Postprocessor
to prepare the output.

Preprocessor uses Initializer initializing the subspace and other necessary information,
then calls ImproverPoint improving the starting point, and calls ProblemObject com-
puting and adjusting the function value and the gradient vector.

Determiner includes ReducerGrad computing the reduced gradient, WorkerSelector
changing or keeping the free index set I−(x), Successor containing the successful iterations
and Unsuccessor containing the unsuccessful iterations.

Updater calls Worker generating the working set (the free index set), UpdaterInfo
updating all necessary information such as the best point, and Subspace updating the
subspace and quasi Newton.

The lower levels. Successor first calls SubspaceSelector to determine the type of

1

subspace and then uses Director to compute the direction. Afterwards, it uses Conjugator
producing the conjugate gradient direction.

Director calls LocalSolvers to compute the search direction such as a new limited mem-
ory quasi Newton and then uses Conjugator generating the conjugate gradient direction.
Whenever the activity is fixed, GeneratorCauchy is used to compute a scaled Cauchy
point.

ProblemObject calls possibly many times GeneratorFun to compute the function value
in each iteration and only once in each iteration to compute the gradient vector. Afterwards,
it calls AdjusterGrad to adjust the gradient vector.

Conjugator contains RobustifierI finding a good starting step size, GeneratorGamma
calculating γ – one entry of the Hessian approximation, Regularizer doing a regularization
for numerical stability, and a conjugate gradient direction.

UnSuccessor tries to enforce the angle condition by Enforcer, then calls a robust bent
line search method to update the best point, and uses Nullifier avoiding too many null
steps.

Nullifier calls Neighbourhood to generate a point around the current (previous) best
point and then ProblemObject to compute and adjust the function value and gradient
vector.

GeneratorCurve calls RobustifierI to find a good step size and performs a bent line
search along a regularized direction. Afterwards, it calls RobustifierII to obtain the ro-
bust step size and then computes and adjusts the function value and the gradient vector.

Initializer initInfo

ImproverPoint projStartPoint

Determiner getSuccess

WorkingSelector findFreePos

Worker findFreeNeg

UpdaterInfo updateInfo

Subspace updateSubspace

SubspaceSelector typeSubspace

LocalSolvers scaleDir, quasiNewtonDir, AvoidZigzagDir

GeneratorFun fun, dfun

AdjusterGrad adjustGrad

ReducerGrad redGrad

RobustifierI goodStep

GeneratorGamma getGam

Regularizer regDenom

GeneratorDirection ConjGradDir

2

GeneratorCauchy scaleCauchy

Enforcer enforceAngle

Nullifier nullStep

CurveSearch CLS

RobustifierII robustStep

Table 2: The lowest level

The subalgorithms of LMBOPT are listed in Table 3. They depend on one or more
data structures point, step, tune, par, info, and st according to the input/output list
indicated. These data structures themselves are briefly described in Table 4.

function [step] = goodStep(point, step, tune);
Try to find the starting good step size
function [point, step] = robustStep(point, step, tune);
Try to find a point with smallest robust change
function [point, step, info] = CLS(fun, point, step, par, tune, info);
Find a step size α satisfying a sufficient descent condition
function [point, step, par, info] = nullStep(fun, point, step, par, tune, info);
Try to prevent producing the null steps
function [point] = adjustGrad(point, tune);
Adjust the gradient vector
function [point] = redGrad(point);
Compute the reduced gradient
function [point, par, info] = findFreePos(point, par, info);
Update the working set
function [point, par, info] = findFreeNeg(point, par, tune, info);
Find the free index set
function [point] = updateSubspace(point, step, par, tune);
Update the subspace information
function [step] = enforceAngle(point, step, par, tune, info);
Enforce the angle condition
function [point, step, par] = quasiNewtonDir(point, step, par, tune);
Compute quasi Newton direction
function [point, par] = typeSubspace(tune, par, tune, info);
Determine the type of subspace
function [step, par] = scaleDir(point, step, par);
Choose components of sensible sign and scale
function [step] = AvoidZigzagDir(point, step, par, tune);
Modify the direction to avoid zigzagging
function [point, step, par] = searchDir(point, step, par, tune, info);

3

Construct starting trial search direction
function [point, step, par, info] = getGam(fun, point, step, tune, par, info);
Compute γ
function [par] = regDenom(point, step, par, tune);
Construct regularize denominator
function [point, step, par, info]= ConjGradDir(fun, point, step, par, tune, info);
Construct the conjugate gradient direction
function [point, step, par]= scaleCauchy(point, step, par, tune, info);
Construct a scaled Cauchy point
function [point] = projStartPoint(point, tune);
Improve the starting point
function [point, step, par, info] = getSuccess(fun, point, step, par, tune, info);
Determine whether subspace iteration is successful or not
function [point] = initInfo(point, tune);
Initialize best point and factor for adjusting acceptable increase in f

function [point, par] = updateInfo(point, par, tune, info);
Update best point and factor for adjusting acceptable increase in f

function [x, f , info] = LMBOPT(fun, x, x, x, tune, st);
Minimize smooth f(x) subject to x ∈ x = [x, x]

Table 3: List of algorithms defined in present paper. The main algorithm LMBOPT solves
a bound constrained problem; the others are called within LMBOPT.

fun and dfun (structure with information about function handle)
point (structure with information about points and function values)
x, f , g (old point, its function value and gradient vector)
xnew, fnew, gnew (newest point, its function value and gradient vector)
xbest, fbest (best point and its function value)
xinit, finit (starting point and its function value)
x, x (lower and upper bound)
y (the difference of current gradient with its old one; gnew − g)
I (working set), I+ (the set of free or freeable indices), I− (the set of new free indices)
m (subspace dimension), mf (memory for Df), ch (counter for m)
m0 (the length of subspace), Df (list of mf acceptable increase in f)
S (a list of m previous search directions), Y (a list of m vectors y1, · · · , ym)
H (Hessian matrix), q (extrapolation factor)
df (acceptable increase in f), ∆f (factor for adjusting df)
step (structure with information about the step management)
pinit (starting search direction in each iteration), p (Krylov search direction), gp (gT p)
αgood (the starting step-size generated by goodStep), s (search direction; xnew − x)
tune (structure with fixed parameters for tuning the performance)
ε (accuracy for reduced gradient), m (subspace dimension), mf (memory for Df)
∆x (tiny factor for interior move), ∆u (factor for adjusting x)

4

∆g (factor for adjusting gradient), ∆angle (regularization angle)
∆w (for guaranteeing w > 0), ∆r (factor for finding almost flat step)
∆pg (tiny factor for regularizing gT p in ConjGradDir)
∆reg (tiny factor for regularizing gT p in CLS)
∆α (tiny factor for starting step), ∆b (tiny factor for breakpoint)
∆H (tiny regularization factor for subspace Hessian)
∆m (tiny factor for regularizing ∆f if not monotone)
∆po (gradient tolerance for skipping update)
typeH (choose update formula for Hessian (0 or 1))
gfac (parameter for scaling direction), θ (parameter for adjusting the direction)
β > 0 (threshold for determining efficiency), del (parameter for null step)
exact (enforce exact line search on quadratics), nnulmax (iteration limit in null step)
βCG (threshold for efficiency of CG), lmax (iteration limit in efficient line search)
nlf (number of local steps before freeing is allowed)
rfac (restart after rfac∗nI local steps), facf (relative accuracy of f in first step)
nsmin (how many stucks before taking special action?)
nwait (number of local steps before CG is started), mdf (parameters for updating df)
ζmin and ζmax (Safeguarded parameters for ζ in ConjGradDir)
nstuckmax (iteration limit in number of stuck)
∆D (parameter for controlling entries of scaling diagonal matrix D)
par (structure with parameters modified during the search)
estuck (a robust increase is counted as success if stuck enough)
freeing (parameter for finding appropriate free variables)
flags (null step ?), cosine (descent direction ?),
monotone (parameter for improvement on function values)
CG (parameter for determining the type of subspace)
success (successful/unsuccessful subspace iterations, 0 or 1)
fixed (parameter for changing activity), nlocal (number of local steps)
nstuck (number of stuck iterations), nnull (number of null steps)
quad (determine whether f is close to quadratic or not)
hist (list of at most m subspace basis)
perm (permute subspace basis so that oldest column is first)
firstAngle (calling enforceAngle (1: first call, 0: second call))
sub (point generated by the subspace changes the activity?)
probcase (problem is bound constrained?)
info (structure with information about the info management)
nf (number of function evaluations), ng (number of gradient evaluations)
nsub (number of successful iterations), nfmax (maximal number of function evaluations)
ngmax (number of gradient evaluations), nf2gmax (nfmax + 2ngmax)
eff (efficiency status for CLS), nstuck (number of stuck iterations)
st (= initial info) (structure with stop and print criteria)
nf (number of function evaluations), ng (number of gradient evaluations)
nfmax (maximal number of function evaluations)
ngmax (number of gradient evaluations), nf2gmax (nfmax + 2ngmax)
prt (print level: -1: nothing, 0: little, ≥ 1: more and more)

5

Table 4: Global data structures for the algorithms of the present paper

2 Codes compared

We compare LMBOPT with the following solvers for unconstrained and bound constrained opti-
mization. For some of the solvers we chose options different from the default to make them more
competitive.

Bound constrained solvers:

• ASACG (asa), obtained from
http://users.clas.ufl.edu/hager/papers/CG/Archive/ASA_CG-3.0.tar.gz,
is an active set algorithm for solving a bound constrained optimization problem by Hager &
Zhang [8]. The default parameters have been used. Only memory = 12 and other parameters
have been chosen as default.

• LBFGSB (lbf), obtained from
http://users.iems.northwestern.edu/~nocedal/Software/Lbfgsb.3.0.tar.
gz,
is a limited-memory quasi-Newton code for bound-constrained optimization by Byrd et al.
[4]. Only m = 12 and other parameters have been chosen as default.

• ASABCP (asb), obtained from
https://sites.google.com/a/dis.uniroma1.it/asa-bcp/download,
is a two-stage active-set algorithm for bound-constrained optimization by Cristofari et al.
[5]. The default parameters have been used.

• SPG (spg), obtained from
https://www.ime.usp.br/~egbirgin/tango/codes.php,
is a spectral projected gradient algorithm for solving a bound constrained optimization prob-
lem by Birgin et al. [1, 2]. The default parameters have been used.

Unconstrained solvers:

• CGdescent (cdg), obtained from
http://users.clas.ufl.edu/hager/papers/CG/Archive/CG_DESCENT-C-6.8.tar.
gz,
is a conjugate gradient algorithm for solving an unconstrained minimization problem by
Hager & Zhang [6, 7, 9, 10]. Only memory = 12 and other parameters have been cho-
sen as default.

• LMBFG, obtained from
http://gratton.perso.enseeiht.fr/LBFGS/index.html,
is a limited memory quasi Newton package by Burdakov et al. [3]:

(a) LMBFG-MT (ll1) is a limited memory line-search algorithm L-BFGS based on the
More-Thuente line search. Only m = 12 and other parameters have been chosen as
default.

6

(b) LMBFG-MTBT (ll2) is a limited memory line-search algorithm L-BFGS based on
the More-Thuente line search and the starting step is obtained using backtrack by
Burdakov et al. [3]. Only m = 12 and other parameters have been chosen as default.

(c) LMBFGS-TR (ll3), is a limited memory line-search algorithm L-BFGS that takes a
trial step along the quasi-Newton direction inside the trust region. Only m = 12 and
the other parameters have been chosen as default.

(d) LMBFG-BWX-MS (lt1) is a limited memory trust-region algorithm BWX-MS. It
applies the Moré & Sorensen approach for solving the TR subproblem defined in the
Euclidean norm. Only m = 12 and the other parameters have been chosen as default.

(e) LMBFG-DDOGL (lt2) is a limited memory trust-region algorithm D-DOGL. Only
m = 12 and the other parameters have been chosen as default.

(f) LMBFG-EIG-curve-inf (lt4) is a limited memory trust-region algorithm EIG(∞, 2).
Only m = 12 and the other parameters have been chosen as default.

(g) LMBFG-EIG-inf-2 (lt5) is a limited memory trust-region algorithm EIG(∞, 2) based
on the eigenvalue-based norm, with the exact solution to the TR subproblem in closed
form. Only m = 12 and other parameters have been chosen as default.

(h) LMBFG-EIG-MS (lt6) is a limited memory trust-region algorithm EIG-MS. Only
m = 12 and other parameters have been chosen as default.

(i) LMBFG-EIG-MS-2-2 (ll7) is a limited memory trust-region algorithm EIG− MS(2, 2)
based on the eigenvalue-based norm, with the Moré & Sorensen approach for solving
a low-dimensional TR subproblem. Only m = 12 and other parameters have been chosen
as default.

3 Why nf2g is reasonable for the performance profile?

In [11], getfg have been introduced to compute the function value and gradient of function handle
fun at x, collect statistics and enforce stopping tests. In CUTEst, both function value and gradient
are computed by cutest obj without returning any information about statistics.

Subfigures (a) and (b) of Figure 1 show that the time for computing the gradient by cutest obj
and getfg are more than that of the function value, respectively. Hence, nf2g is a reasonable cost
measure for the performance profile. In addition, Subfigure (c) of Figure 1 shows that getfg is
expansive than cutest obj due to collect statistics and enforce stopping tests.

1 2 5 10 20 50 100 5001000 5000 20000 100001

 n

10
0

10
1

 q
c

u
te

s
t

1 2 5 10 20 50 100 5001000 5000 20000 100001

 n

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

 q
g

e
tf

g

1 2 5 10 20 50 100 5001000 5000 20000 100001

 n

2

4

6

8

10

12

 q
o

v
e
r

a) b) c)

Figure 1: Comparison of qcutest := tg(cutest)
tf (cutest) , qgetfg := tg(getfg)

tf (getfg) and qover := tf2g(getfg)
tf2g(cutest)

versus dimensions, respectively, where tf and tg are considered the time to compute f and
g by cutest or getfg and tf2g := tf + 2tg.

7

4 Problems unsolved by all solvers

A list of problems unsolved by all solvers is given in Table 5.

Table 5: Problems unsolved by all solvers

BROWNBS PALMER5E PALMER5B OSCIGRAD:10
OSCIPATH:10 STRATEC SBRYBND:10 SCOSINE:10
SCURLY10:10 SCOND1LS OSCIGRAD:15 OSCIGRAD:25
ANTWERP NONMSQRT:49 HS110:50 SBRYBND:50
RAYBENDS RAYBENDL:66 RAYBENDS:66 HYDC20LS
FLETCHBV:100 HS110:100 NONMSQRT:100 OSCIGRAD:100
SBRYBND:100 SCOSINE:100 SCURLY10:100 SSCOSINE:100
SCOND1LS:102 RAYBENDL:130 RAYBENDS:130 QR3DLS
GRIDGENA:170 DRCAV1LQ HS110:200 SPMSRTLS:499
PENALTY2:500 SBRYBND:500 SCOND1LS:502 MSQRTALS:529
MSQRTBLS:529 NONMSQRT:529 GRIDGENA QR3DLS:610
LINVERSE:999 CURLY20 CHENHARK FLETCHBV:1000
PENALTY2:1000 SBRYBND SCOSINE SCURLY10
SSCOSINE SPMSRTLS:1000 SCOND1LS:1002 MSQRTALS:1024
MSQRTBLS:1024 NONMSQRT:1024 RAYBENDL:1026 RAYBENDS:1026
DRCAV1LQ:1225 DRCAV2LQ:1225 DRCAV3LQ:1225 GRIDGENA:1226
LINVERSE:1999 RAYBENDL:2050 RAYBENDS:2050 GRIDGENA:2114
EIGENALS:2550 GRIDGENA:3242 DRCAV3LQ:4489 GRIDGENA:4610
MSQRTALS:4900 MSQRTBLS:4900 SPMSRTLS:4999 FLETCBV3:5000
FLETCHBV:5000 SBRYBND:5000 SCOSINE:5000 SPARSINE:5000
SSCOSINE:5000 SCOND1LS:5002 BRATU1D:5003 GRIDGENA:6218
CURLY10:10000 CURLY20:10000 CURLY30:10000 FLETCBV3:10000
FLETCHBV:10000 SCOSINE:10000 SCURLY10:10000 SPARSINE:10000
SPMSRTLS:10000 SSCOSINE:10000 DRCAV3LQ:10816 ODNAMUR
GRIDGENA:12482 SSCOSINE:100000

8

5 Test problem selection

It is seen from Figure 2 that the number of unconstrainrd, bound constrained, and unconstrained
and bound constrained optimization problems – solved at least by one of solvers – are 517, 375, and
990 respectively.

1 2 5 10 20 50 100 300 1000 10000 100001

d

0

200

400

600

800

1000

1200

#
 p

ro
b

le
m

s
 o

f
d

im

 d

990

375

517

all

bound constrained

unconstrained

Figure 2: The number of problems with variables in a given range solved by at least one
solver: 990 problems with dimensions 1 up to 100001

9

References

[1] E. G. Birgin, J. M. Mart́ınez, and M. Raydan. Nonmonotone spectral projected gradient
methods on convex sets. SIAM J. Optim. 10 (1999), 1196–1211.

[2] E. G. Birgin, J. M. Mart́ınez, and M. Raydan. Algorithm 813: Spg-software for convex-
constrained optimization. ACM Trans. Math. Softw. 27 (2001), 340–349.

[3] O. Burdakov, L. Gong, S. Zikrin, and Y. Yuan. On efficiently combining limited-memory and
trust-region techniques. Math. Program. Comput. 9 (2017), 101–134.

[4] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu. A limited memory algorithm for bound constrained
optimization. SIAM J. Sci. Comput. 16 (1995), 1190.

[5] A. Cristofari, M. De Santis, S. Lucidi, and F. Rinaldi. A two-stage active-set algorithm for
bound-constrained optimization. J. Optim. Theory Appl. 172 (2017), 369–401.

[6] W. W. Hager and H. Zhang. A new conjugate gradient method with guaranteed descent and
an efficient line search. SIAM J. Optim. 16 (2005), 170–192.

[7] W. W. Hager and H. Zhang. Algorithm 851: CG DESCENT, a conjugate gradient method
with guaranteed descent. ACM Trans. Math. Softw. 32 (2006), 113–137.

[8] W. W. Hager and H. Zhang. A new active set algorithm for box constrained optimization.
SIAM J. Optim. 17 (2006), 526–557.

[9] W. W. Hager and H. Zhang. A survey of nonlinear conjugate gradient methods. Pac. J. Optim.
2 (2006), 35–58.

[10] W. W. Hager and H. Zhang. The limited memory conjugate gradient method. SIAM J. Optim.
23 (2013), 2150–2168.

[11] M. Kimiaei and A. Neumaier. Testing and tuning optimization algorithm. Preprint, Vienna
University, Fakultät für Mathematik, Universität Wien, Oskar-Morgenstern-Platz 1, A-1090
Wien, Austria (2019).

[12] A. Neumaier and B. Azmi. Line search and convergence in bound-constrained optimization.
Technical report, University of Vienna (2019).

10

