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Abstract Recently, Neumaier and Azmi gave a comprehensive convergence theory
for a generic algorithm for bound constrained optimization problems with a continu-
ously differentiable objective function. The algorithm combines an active set strategy
with a gradient-free line search CLS along a piecewise linear search path defined by
directions chosen to reduce zigzagging.

This paper describes LMBOPT, an efficient implementation of this scheme. It em-
ploys new limited memory techniques for computing the search directions, improves
CLS by adding various safeguards relevant when finite precision arithmetic is used,
and adds many practical enhancements in other details.

The paper compares LMBOPT and many other solvers on the unconstrained and
bound constrained problems from the CUTEst collection and makes recommendations
on which solver to use and when. Depending on the problem class, the problem
dimension, and the precise goal, the best solvers are LMBOPT, ASACG, and
LMBFG-EIG-MS.
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1 Introduction

The bound constrained optimization problem (BCOPT) is the task of minimizing
a function subject to a feasible region defined by simple bounds on the variables. In
this paper we describe the implementation and numerical evaluation of a new active
set method for solving the bound constrained optimization problem

min f(x)
s.t. x ∈ Rn, x ≤ x ≤ x, (1)

where x = [x, x] is a bounded or unbounded box in Rn describing the bounds on the
variables and the objective function f : x→ R is continuously differentiable with
gradient

g(x) := ∂f(x)/∂x ∈ Rn.

Problems with naturally given bounds appear in a wide range of applications includ-
ing the optimal design problem [4], contact and friction in rigid body mechanics [50],
the obstacle problem [53], journal bearing lubrication and flow through a porous
medium [48]. Often variables of an optimization problem can only be considered
meaningful within a particular interval [31]. Some approaches [1] reduce the solution
of variational inequalities and complementarity problems to bound constrained prob-
lems. The bound constrained optimization problem also arises as an important sub-
problem in algorithms for solving general constrained optimization problems based
on augmented Lagrangians and penalty methods. Numerous research papers [17,27,
39,38,51] deal with the development of efficient numerical algorithms for solving
bound constrained optimization problems, especially when the number of variables
is large.

1.1 Past work

In the last few years, many algorithms have been developed for solving the BCOPT
problem (1).

Active set methods are among the most effective methods. They consist of two
main stages that alternate until a solution is found. In the first stage one identifies a
good approximation for the set of optimal active bound constraints, defining a face
likely to contain a stationary point of the problem. A second stage then explores this
face of the feasible region by approximately solving an unconstrained subproblem.
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A classical reference for active set methods for bound constrained problems with a
convex quadratic objective function (QBOPT) is the projected conjugate gradient
method of Polyak [55], which drops and adds only one constraint in each iteration.
That is, at each step of this active set method, the dimension of the subspace of active
variables is changed by one. This fact implies that if there are n1 constraints active at
the starting point x0 and n2 constraints active on the solution of QBOPT, we need
at least |n2−n1| iterations to reach the solution of QBOPT. This may be a serious
drawback in the case of large scale problems. Dembo & Tulowitzki [23] introduced
methods for QBOPT in 1983 that are able to add and drop many constraints at
each iteration. Their basic idea was further developed by Yang & Tolle [60] into
an algorithm guaranteed to identify the face containing a local solution of QBOPT
in finitely many iterations, even when the solution of the problem is degenerate. For
further research on QBOPT we refer the reader to [25,26,52,53].

For BCOPT with a general nonlinear objective function, Bertsekas [3] proposed
an active set algorithm that uses a gradient projection method to find the optimal
active variables. He showed that this method is able to find the face containing a local
solution very quickly. Further research on convergence and properties of projected
gradient methods can be found in [3,14,28]. The idea of using gradient projections
for identifying optimal active constraints was followed up by many researchers. Most
of them [12,16,15] combined Newton type methods with the gradient projection
method to speed up the convergence. For example, LBFGSB, developed by Byrd
et al. [12], performs the gradient projection method by computing the Cauchy point
to determine the active variables. After determining the set of active variables, the
algorithm performs line searches along the search directions obtained by a limited
memory BFGS method [13] to explore the subspace of nonactive variables. In
fact, the use of limited memory BFGS matrices and the line search strategy are the
main properties that distinguish this method from others, especially from the trust
region type method proposed by Conn et al. [16,15].

A non-monotone line search was first introduced by Grippo, Lampariello &
Lucidi (GLL) in [36] for Newton methods, to improve the ability to follow a curved
valley with steep walls. Later several works [19,22,29,37,58,61] on non-monotone
line search methods pointed out that these methods are more efficient than mono-
tone line search methods in many cases. Other papers [4,8,20,21,32,49,57] indicate
that gradient projection approaches based on a Barzilai–Borwein step size [2]
have impressive performance in a wide range of applications. Recent works [5,6,8,
9,10,56] on Barzilai–Borwein gradient projection methods (BBGP) have modified
them by incorporating them with the GLL non-monotone line search: For instance,
Raydan [56] developed the BBGP method for solving unconstrained optimization
problems, and Dai & Fletcher [20,21] proposed BBGP methods for large-scale
bound constrained quadratic programming. The idea of Raydan [56] was further
developed to generate a convex constrained solver (SPG) by Birgin et al. [8,9]
and a bound constrained solver (GENCAN) by Birgin et al. [5,6], enriched by an
active set strategy.

The GALAHAD package [34] uses as bound-constrained solver LANCELOT-B,
a trust-region algorithm using truncated Newton directions. Recently, Burdakov
et al. [11] constructed a family of limited memory quasi Newton methods for un-
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constrained optimization combined with line searches or trust regions, called the
LMBFG package.

To deal with negative curvature regions, Birgin & Mart́ınez [5] used the second-
order trust region algorithm of Zhang & Xu [62], and Birgin & Mart́ınez [6]
designed a new algorithm whose line search iteration is performed by means of back-
tracking and extrapolation. Hager & Zhang [43] developed an active set algorithm
called ASACG for large scale bound constrained problems. ASACG consists of
two main steps within a framework for branching between these two steps: a non-
monotone gradient projection step, called NGPA, which is based on their research on
the cyclic Barzilai–Borwein method [22], and an unconstrained step that utilizes their
developed conjugate gradient algorithms [40,41,42,44]. ASACG version 3.0 was up-
dated by calling CGdescent version 6.0 which uses the variable HardConstraint to
evaluate the function or gradient at a point that violates the bound constraints, so
it could improve performance by giving the code additional flexibility in the starting
step size routine. In 2017, Cristofari et al. [18] proposed a two-stage active set
algorithm for bound-constrained optimization, called ASABCP. ASABCP first
finds an active set estimation with a guarantee that the function value is reduced.
Then it uses a truncated-Newton technique in the subspace of non-active variables.

A considerable amount of literature has been published on line search algorithms,
which enforce the Wolfe conditions (Wolfe [59]) or the Goldstein conditions (Gold-
stein [33]). One problem with line search algorithms satisfying the Wolfe conditions
is the need to calculate a gradient at each trial point. On the other hand, line
search algorithms based on the Goldstein conditions are gradient-free, but they have
very poor behaviour in severely nonconvex regions. Neumaier & Azmi [54]
introduced a new active set method BOPT (Algorithm 9.1 in [54] = Algorithm
1) using an efficient gradient-free curved line search CLS (Algorithm 3.3 in [54]
= Algorithm 2). The active set strategy used in BOPT always enforces that the
gradient reduction in the components restricted by non-active variables over the re-
duced gradient reduction is at least asymptotically bounded. This property of the
active set can remove zigzagging, a possible source of inefficiency. On the other
hand, CLS has good properties in theory and achieves a reasonable reduction of the
objective function.

This paper introduces an efficient version of BOPT, called LMBOPT, for bound
constrained optimization problems with a continuously differentiable objective func-
tion. LMBOPT preserves the main structure of BOPT – the active set strategy
and CLS. To get rid of getting stuck in nearly flat regions, LMBOPT uses safe-
guards in finite precision arithmetic, resulting in an improved version of
CLS and a regularized conjugate gradient direction. In addition, many other
practical enhancements are used, including a new limited memory method. A
solver choice is based on our findings from an extensive numerical results. It de-
pends on the problem dimension, the presence or absence of constraints, the desired
robustness, and the relative costs of the function and gradient evaluations.

4



1.2 BOPT – an active set method for bound constrained optimization

Recently, Neumaier & Azmi [54] gave a comprehensive convergence theory for a
generic algorithm for the bound constrained optimization problem (1) with a con-
tinuously differentiable objective function, called BOPT. The reduced gradient
gred(x) at a point x, whose components are

gred(x)i :=


0 if xi = xi = xi,
min(0, gi) if xi = xi < xi,
max(0, gi) if xi = xi > xi,
gi otherwise,

(2)

(where gi := gi(x) is the ith component of gradient vector at x) vanishes at a local
minimizer. At each point x during the iteration, a search direction is determined in
a subspace obtained by varying the part indexed by a working set I, chosen either
as the minimal set

I−(x) := {i | xi < xi < xi} (3)

of free indices or as the maximal set

I+(x) := I−(x) ∪ {i | gred
i 6= 0}

= I−(x) ∪ {i | xi = xi < xi, gi < 0 or xi < xi = xi, gi > 0} (4)

of free or freeable indices. To ensure the absence of severe zigzagging, freeing
iterations in which

I = I+(x) 6= I−(x), (5)

are restricted to cases where the choice I = I−(x) violates the inequality

‖gI‖2
∗ ≥ ρ‖gred‖2

∗, for some ρ ∈]0, 1]. (6)

Here ‖·‖∗ is the dual norm of a monotone norm ‖·‖, defined by ‖g‖∗ := sup
p6=0

gT p/‖p‖,

and gI stands for the restriction of g to the index set I. More generally, we denote
by xI the subvector of a vector x with indices taken from the set I, by A:k the kth
column of a matrix A, and by AII the submatrix of A with row and column indices
taken from I.

BOPT takes a starting point x0 ∈ Rn and the feasible set x as input and returns
an optimal point xbest and its function value fbest = f(xbest) as output. It uses the
tuning parameters of a line search CLS (discussed in Section 1.3) and two tuning
parameters:
0 < ∆a < 1 (parameter for the angle condition),
0 < ρ ≤ 1 (parameter for freeing iterations).

The bent line search and conditions (6)–(9) on the search direction are essential for
the convergence analysis in [54, Sections 8 and 11], where the following is proved:
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Algorithm 1 BOPT, bound constrained optimization algorithm
Initialization

1: Compute the initial gradient g0 := g(x0).
2: Compute the initial reduced gradient gred(x0).
3: Find the initial working set I0 := I+(x0). . the maximal set is chosen
4: for ` = 0, 1, 2, · · · do

Stopping test

5: if gred(x`) = 0 then
6: Set xbest = x` and fbest = f(x`). Then terminate BOPT.
7: end if

Computing search direction

8: Compute a search direction p` satisfying

. Restriction on p` to the subspace of I: p`
i = 0 for i 6∈ I`, (7)

. Angle condition:
(g`

I)T p`
I

‖g`
I‖∗‖p

`
I‖
≤ −∆a < 0, (8)

. For freeing iterations: if (5) holds, g`
ip

`
i ≤ 0 for all i. (9)

Finding the step size
9: Perform a line search CLS (discussed in Section 1.3) along the bent search path

x(α) := π[x` + α`p`], (10)

which is the projection of the ray x` + α`p` into the feasible set x with components

π[x` + α`p`]i := sup(xi, inf(xi + α`p`
i , xi)) =

{
xi if x`

i + α`p`
i ≤ xi,

xi if x`
i + α`p`

i ≥ xi,
x`

i + α`p`
i otherwise.

(11)

Set x`+1 := x(α`), compute g`+1 := g(x`+1) and gred(x`+1).
Updating the working set

10: Find I`+1 := I−(x`+1) by (3). . the working set changes to the minimal set
11: if (6) is violated then . the working set changes to the maximal set
12: Find I`+1 := I+(x`+1) by (4).
13: end if
14: end for

Theorem 1 Let f be continuously differentiable, with Lipschitz continuous gradient
g. Let x` denote the value of x in Algorithm 1 after its `th update. Then one of the
following three cases holds:
(i) The iteration stops after finitely many steps at a stationary point.
(ii) We have

lim
`→∞

f(x`) = f̂ ∈ R, inf
`≥0
‖gred(x`)‖∗ = 0.

Some limit point x̂ of the x` satisfies f(x̂) = f̂ ≤ f(x0) and gred(x̂) = 0.
(iii) sup

`≥0
‖x`‖ =∞.
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Moreover, if BOPT converges to a nondegenerate stationary point, all strongly ac-
tive variables are ultimately fixed, so that zigzagging through changes of the active
set cannot occur infinitely often.

1.3 CLS – the curved line search of BOPT

CLS (Algorithm 3.3 in [54] = Algorithm 2 below), the line search used in BOPT,
is an efficient gradient-free curved line search algorithm. It searches for a piecewise
linear search path defined by directions chosen to reduce zigzagging. It takes the `th
point x` and its function value f ` = f(x`), the gradient vector g` = g(x`), the search
direction p`, the feasible set x, and the initial step size αinit as input and returns the
(`+ 1)th point x`+1 = x(α`), its step size α`, and its function value f `+1 = f(x`+1)
as output. It uses several tuning parameters:
β ∈ ]0, 1

4 [ (parameter for efficiency),
q > 1 (extrapolation factor),
the positive integer lmax (limit on the number of iterations),
αmax (maximal value for the step size α).
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Algorithm 2 CLS, a curved line search algorithm
Initialization

1: Set α := 0. . the lower bound of the admissible step size
2: Set α :=∞. . the upper bound of the admissible step size
3: Set α0 := αinit. . the initial step size
4: for k = 0, · · · , lmax do

Compute the Goldstein quotient

5: Compute the point x(αk) on the bent search path (10), its function value f(x(αk)).
6: Compute the Goldstein quotient (Goldstein [33])

µ(αk) :=
f(x(αk))− f(x`)

α(g`)T p`
for αk > 0. (12)

Stopping test
7: if the sufficient descent condition

µ(αk)|µ(αk)− 1| ≥ β with fixed β > 0 (13)

holds then . CLS is efficient
8: Set α` = αk, x`+1 = x(α`), and f`+1 = f(x`+1), CLS stops.
9: end if

Update the interval

10: if µ(αk) ≥
1
2

then . update the interval

11: Set α := αk. . the lower bound of the interval is updated
12: else if αk reaches αmax then
13: CLS stops.
14: else
15: Set α := αk. . the upper bound of the interval is updated
16: end if

Update the step size

17: if k is zero then . try to optimally handle the quadratic case by solving µ(αk) =
1
2

18: if µ(αk) < 1 then

19: Take as step size αk+1 :=
1
2
αk/(1− µ(αk)). . interpolant is done

20: else
21: Expand the step size to αk+1 := qαk. . extrapolation is done
22: end if
23: else . update the step size
24: if α is ∞ then
25: Expand the step size to αk+1 := qαk. . extrapolation is done
26: else if α is zero then
27: Reduce the step size to αk+1 := αk/q.
28: else . the interval was found
29: Compute αk+1 :=

√
αα. . the geometric mean of α and α is computed

30: end if
31: end if
32: end for
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• Condition (13) is an improved form of the Goldstein condition

0 < µ′′ ≤ µ(α) ≤ µ′ < 1.

It forbids step sizes too large or too small by enforcing that µ(α) is sufficiently
positive and not too close to one.
• According to Theorem 3.2 of [54], a step size satisfying (13) can be found by
performing CLS if the objective function f is bounded below.
• If the objective function is quadratic and an exact line search reveals that the
secant step size is a minimizer of a convex quadratic function along the search ray
and so the quadratic case is optimally started. Otherwise the function is far from
quadratic and bounded.

1.4 LMBOPT – an efficient version of BOPT

In this paper we introduce a new limited memory method for bound-constrained
optimization called LMBOPT. It conforms to the assumptions of BOPT, hence
converges to a stationary point in exact arithmetic and fixes all strongly active vari-
ables after finitely many iterations, but also takes care of various efficiency issues
that are difficult to explain in theory but must be addressed in a robust and efficient
implementation.

Important novelties compared to the literature are
• the useful trick of moving the starting point slightly into the relative interior of
the feasible domain x,
• a useful starting direction based on the gradient signs,
• a new quadratic limited memory model for progressing in a subspace,
• a numerically stable version of the descent direction proposed by Neumaier &
Azmi [54] for removing zigzagging,
• a new regularized conjugate gradient direction,
• safeguards for the curved line search taking into account effects due to finite pre-
cision arithmetic,
• new heuristic methods for an initial step size, for a robust minimal step size, and
for handling null steps without progress in the line search,
Taken together, these enhancements make LMBOPT very efficient and robust.

We describe how to compute search directions in Section 2:
• Subspace information is defined in Subsection 2.1.
• A new quasi Newton direction and a regularized conjugate gradient step are intro-
duced in Subsections 2.2 and 2.3, respectively.
• Some implementation details of these directions are given in Subsection 2.4.

Improvements in the line search are discussed in Section 3:
• Issues with finite arithmetic are described in Subsection 3.1.
• Ingredients of an improved version of CLS are introduced in Section 3.

We introduce the master algorithm and its implementation details in Section 4:
• A useful starting point is suggested in Subsection 4.1.
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• The conditions for accepting a new point are explained in Subsection 4.2.
• Some implementation details are given in Subsection 4.3.
• The master algorithm is introduced in Subsection 4.4.

Numerical results for unconstrained and bound constrained CUTEst problems [35]
are summarized in Section 5:
• Details of test problems and a shifted starting point are discussed in Subsection
5.1.
• Default parameters for LMBOPT are given in Subsection 5.2.
• Subsection 5.3 contains a list of all compared solvers and explains how uncon-
strained solvers turn into bound constrained solvers.
• First numerical results are given in Subsection 5.4.1, resulting in the three best
solvers (LMBOPT, ASACG, and LMBFG-EIG-MS).
• Additional numerical results classified by constraints and dimensions are given in
Subsection 5.4.2, resulting in a solver choice in Subsection 5.6.
• Further numerical results for hard problems are given in Subsection 5.5.
• As a consequence, a solver choice is based on our findings depending on the prob-
lem dimension, the presence or absence of constraints, the desired robustness, and
the relative costs of the function and gradient evaluations in Subsection 5.6.

The website http://www.mat.univie.ac.at/~neum/software/LMBOPT con-
tains public Matlab source code for LMBOPT together with more detailed docu-
mentation and an extensive list of tables and figures with numerical results and
comparisons.

2 Search directions

In this section, we describe the search direction used at each iteration. In Subsection
2.1, subspace information is described. Accordingly, a new limited memory quasi
Newton direction is discussed in Subsection 2.2. Then Subsection 2.3 describes how
conjugate gradient directions are constructed and regularized. Finally, Subsection 2.4
contains the implementation details of our regularized conjugate gradient direction.

2.1 Subspace information

After each iteration we form the differences

s = x− xold, y = g − gold,

where x, g are the current point and gradient, and xold, gold are the previous point
and gradient.

For some subspace dimension m, the matrix S ∈ Rn×m has as columns (in the actual
implementation a permutation of) m previous point differences s. A second matrix
Y ∈ Rn×m has as columns the corresponding gradient differences y.
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If the objective function is quadratic with (symmetric) Hessian B and no rounding
errors are made, the matrices S, Y ∈ Rn×m satisfy the quasi-Newton condition

BS = Y. (14)

Since B is symmetric,
H := STY = STBS (15)

must be symmetric. If we calculate y = Bs at the direction s 6= 0, we have the
consistency relations

h := STBs = Y T s = ST y, (16)

0 < γ := sTBs = yT s, (17)

for all α ∈ R in exact precision arithmetic. If the columns of S (and hence those
of Y ) are linearly independent then m ≤ n, and H is positive definite. Then the
minimum of f(x+ Sz) with respect to z ∈ Rm is attained at

znew := −H−1c with c := ST g, (18)

where the associated point and gradient are

xnew := x+ Sznew, gnew := g(xnew) = g + Y znew,

and we have
ST g(xnew) = 0. (19)

If m reaches its limits, we use γ := yT s and form the augmented matrices

Snew := (S s ) , Y new := BSnew := (Y y ) ,

Hnew := (Snew)TBSnew :=
(
H h
hT γ

)
, (20)

the augmented vector cnew := (Snew)T gnew =
(

0
sT gnew

)
, and put

znew := −(Hnew)−1cnew. (21)

But when the allowed memory for S and Y is full we delete the oldest column of S
and Y and the corresponding row and column of H to make room for the new pair
of vectors, and then augment as described above.

The implementation contains a Boolean variable updateH as a tuning parameter to
compute

h :=
{
ST y if updateH,
Y T s otherwise.

(22)

If the objective is not quadratic, (14) does not hold exactly and H := STY need not
be symmetric. However, the update (20) always produces a symmetric H, even in
finite precision arithmetic.
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2.2 A new quasi-Newton direction

We use S and Y to construct a Hessian approximation of the form

B = D +WXWT , (23)

for some symmetric matrix W ∈ Rn×m and some matrix X ∈ Rn×m. Thus, the
additional assumption is temporarily made that B deviates from a diagonal matrix
D by a matrix of rank at most m. Under these assumptions, we reconstruct the
Hessian uniquely from the data S and Y = BS, in a manifestly symmetric form
that can be used as a surrogate Hessian even when this structural assumption is not
satisfied.

This provides an efficient alternative to the traditional L-BFGS-B formula [12], which
needs twice as much storage and computation time.

Theorem 1 Let D ∈ Rn×n be diagonal, Σ ∈ Rm×m and U ∈ Rn×m. If XWTS is
invertible then (14) and (23) imply

B = D + UΣ−1UT , (24)

where
U := Y −DS (25)

and
Σ := UTS (26)

is symmetric. The solution of Bp = −g is given in terms of the symmetric matrix

M := UTD−1Y = Σ−1, (27)

by the solution p = D−1(Uz − g) of Mz = UTD−1g.

Proof The matrices U := Y − DS and Σ := UTS are computable from S and Y ,
and we have

U = Y −DS = BS −DS = (B −D)S = WXWTS,

and since B is symmetric, Σ = ST (B −D)S is symmetric, too. By assumption, the
m×m matrix Z := XWTS is invertible, hence

W = UZ−1 and Z = XZ−TUTS = XZ−TΣ.

This product relation and the invertibility of Z imply that Σ is invertible, too, and
we conclude that X = ZΣ−1ZT , hence

B = D + UZ−1XZ−TUT = D + UΣ−1UT .

ut
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To apply it to the bound constrained case, we note that the first order optimality
condition predicts the point x+p, where the nonactive part pI of p solves the equation

BIIpI = −gI .

Noting that
BII = DII + UI:Σ

−1UTI: ,

we find DIIpI + UI:Σ
−1UTI:pI = −gI , hence

pI = D−1
II (UI:z − gI),

where z := −Σ−1UTI:pI . Now −Σz = UTI:pI = UTI:D
−1
II (UI:z− gI), hence z solves the

linear system
Mz = UTI:D

−1
II gI .

Here M := Σ +UTI:D
−1
II UI: is equivalent to (27) by setting Y = U +DS in (27) and

using (26). With the symmetric matrix H defined by (15), we compute the symmetric
m×m matrix M

M = UTI:D
−1
II YI: = (YI: −DIISI:)TD−1

II YI: = Y TI: D
−1
II YI: − STI:YI:

= Y TI: D
−1
II YI: −H (28)

and find
z = M−1UTI:D

−1
II gI ; (29)

hence
pI = D−1

II (UI:z − gI). (30)

Here, for i = 1, · · · , n,

Dii :=
√∑

j∈J

YYij
/∑

j∈J

SSij (31)

with
YY = YIJ ◦ YIJ , SS = SIJ ◦ SIJ ,

where J contains the indices of newest and oldest pair (s, y) and ◦ denotes compo-
nentwise multiplication.

Enforcing the angle condition. Due to rounding errors, a computed descent
direction p need not satisfy the angle condition (8). We may add a multiple of the
gradient to enforce the angle condition (8) for the modified direction

pnew := p− tg (32)

with a suitable factor t ≥ 0; the case t = 0 corresponds to the case where p already
satisfies the bounded angle condition (8). The choice of t depends on the three
numbers

σ1 := gT g > 0, σ2 := pT p > 0, σ := gT p;

these are related by the Cauchy–Schwarz inequality

σnew := σ
√
σ1σ2

∈ [−1, 1].
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We want to choose t such that the angle condition (8) holds with pnew in the place
of p. If σnew ≤ −∆a, this holds for t = 0, and we make this choice. Otherwise we
may enforce the equality (8) by choosing

t := σ +∆a
√
w

σ1
with w := σ1σ2(1− (σnew)2)

1−∆2
a

. (33)

The following proposition is a special case of Proposition 5.2 in [54].

Proposition 1 Suppose that g 6= 0 and 0 < ∆a < 1. Then if t is chosen by (33),
the search direction (34) satisfies the angle condition (8).

Given z by (29), we could compute the nonactive part of p from (30); however,
this need not lead to a descent direction since B need not be positive definite. We
therefore compute

u := UI:z,

and choose
pI = D−1

II (u− tgI), (34)

where t is chosen analogous to (33) if this results in t < 1, and t = 1 otherwise. By
Proposition 1, the direction (34) satisfies the angle condition (8).

2.3 A conjugate gradient step

Neumaier & Azmi [54, Section 7] introduced a new nonlinear conjugate gradient
method chosen to reduce zigzagging for unconstrained optimization which, applied
to the working subspace, may be used by BOPT to generate search directions as
long as the active set does not change.

Any search direction p must satisfy gT p < 0. To avoid zigzagging, [54] generated
the search direction p as the vector with a fixed value gT p = −c < 0 closest (with
respect to the 2-norm) to the previous search direction pold. By Theorem 7.1 in [54]
(applied for B = I),

p = βpold − λ̂g, (35)
with

β > 0, λ̂ = c+ βgT pold

gT g
. (36)

The resulting method has finite termination on quadratic objective functions, where
it reduces to linear conjugate gradients.

[54, Theorem 7.3] shows that the bounded angle condition holds for sufficiently large
` if an efficient line search such as CLS is used and there are positive constants κ1

and κ2 such that either p` is parallel to the steepest descent direction −g` or the
conditions

(g`)T g` ≤ κ1(y`−1)T y`−1, (37)
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(y`−1)T p`−1 ≤ κ2(g`−1)T p`−1 (38)

hold (where y`−1 := g` − g`−1). Convergence is locally linear when the sequence x`
converges to a strong local minimizer.

As in [54, Theorem 7.5] the sequence generated by (35) and (36) can be rewritten into
the nonlinear conjugate gradient method of Fletcher & Reeves [30] equivalent
to the linear conjugate gradient method of Hestenes & Stiefel [45] when f is
quadratic with the positive definite Hessian matrix and bounded below. Therefore
it requires at most n steps to obtain a minimizer of f .

As a consequence of [54, Theorem 7.3], [54, Theorem 7.6] showed that the sequence
x` of the conjugate gradient method generated by (35) and (36) satisfies

inf
`
‖g`‖∗ = 0 or lim

`→∞
f ` = −∞

and convergence is locally linear if the sequence x` converges to a strong local mini-
mizer.

In this section, we discuss a new conjugate gradient method equivalent to the linear
conjugate gradient method of Hestenes & Stiefel [45] in the cases where f is
quadratic with the positive definite Hessian matrix and bounded. Theorems 7.3, 7.5,
7.6 in [54] are valid for our conjugate gradient method.

The conjugate gradient method chooses the direction s in the subspace generated
by typeSubspace and enforces the conjugacy relation

h = Y T s = 0; (39)

thus making H diagonal. Both conditions together determine s up to a scaling factor:
s must be a multiple of

p := Sr + pinit (40)

for some r ∈ Rm, in which pinit is a descent direction, computed by searchDir
(discussed later in Subsection 2.4).

Then (39) requires
Hr = q := −Y T pinit. (41)

hist denotes the subspace basis index set (discussed later in Subsection 2.4). By
restricting S, Y , and H to hist, we define

ch :=
∑
i∈hist

gI ◦ SI,i, qh :=
∑
i∈hist

pinit
I ◦ YI,i, Hh := Hhist,hist.

Then we solve the linear systems Hhzh := −ch and Hhrh := qh according to (21)
and (41), respectively. Afterwards, we construct the conjugate gradient direction
depending on whether the subspace is possible (m0 > 0) or not (m0 = 0) by

pI :=
{
−ζpinit

I + SI,hist(zh + ζrh) if m0 > 0,
−ζpinit

I if m0 = 0,
(42)
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with

ζ :=


gTI p

init
I + qT zh

γ − qTh rh
if m0 > 0,

gTI p
init
I

γ
if m0 = 0.

(43)

Here γ is computed by

γ := f(x+ αpinit)− f − αgTI pinit
I

α2/2

where α is found by a heuristic way (goodStep; discussed later in Section 3).

In finite precision arithmetic, a tiny denominator in (43) produces a very inaccurate
γ. This drawback is overcome by regularization. The error made in γreg is a tiny
multiple of

γreg := |f(x+ αpinit)− f |+ α|gI |T |pinit
I |

α2/2 . (44)

We therefore shift the denominator in (43) away from zero to

denom :=
{
γ − qTh rh +∆H(γreg/2 + |qh|T |rh|) if γ ≥ qTh rh,
γ − qTh rh −∆H(γreg/2 + |qh|T |rh|) otherwise, (45)

where ∆H ∈ (0, 1) is a tiny factor. Then the regularized conjugate gradient
direction is computed by

pnew
I :=

{
−ζregp

init
I + SI,hist(zh + ζregrh) if m0 > 0,

−ζregp
init
I if m0 = 0,

(46)

with

ζreg :=


gTI p

init
I + qTh zh
denom

if m0 > 0,

gTI p
init
I

γ
if m0 = 0.

(47)

If

cosine :=
{
−ζregg

T
I p

init
I + cTh zh if m0 > 0,

−ζregg
T
I p

init
I if m0 = 0

(48)

is negative, (46) is a descent direction.

2.4 Some implementation details

In this section, we first discusses how to determine the ingredients of the subspace.
e.g., the subspace dimension, the subspace basis index set, the subspace type, and
pinit. Then we describe how to implement our regularized conjugate gradient direc-
tion.
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Regardless of whether the activity changes or not, the subspace cannot be updated
whenever very little progress is made, y ≈ 0, while the gradient is still large, i.e., a
new pair (s, y) violates the condition

|gT y| ≥ ∆pog
T g, (49)

where ∆po ∈ (0, 1) is a tiny tuning parameter. Initially m = 0 and whenever a new
pair (s, y) satisfies (49), m is increased by one by appending these vectors to S and
Y , respectively. But once m reaches its limit, it is kept to be fixed and the oldest
column of S and Y is replaced by s and y, respectively.

When the activity does not change, the step is called a local step. For the construc-
tion of our regularized conjugate gradient direction, it is important which subspace
basis index set is present and what is subspace dimension. We denote by nlocal the
number of local steps and by nwait the number of local steps before starting the
regularized conjugate gradient direction, which will be a tuning parameter. We use
nlocal and nwait to determine the subspace dimension.

To encode which subspace should be used, typeSubspace updates three variables
m0 (subspace dimension), hist (subspace basis index set), and CG (subspace type).

Given the number of updated subspace nh, typeSubspace defines m̂ := min(m, nh)
and identifies CG, m0, and hist as follows:

• If nlocal < nwait, the ordinary subspace step is used since the full subspace
direction may be contaminated by nonactive components and so lead to premature
freeing if used directly. In this case, CG := 0, m0 := min(ng − 1, m̂), and hist :=
{1, · · · ,m0}.

• If nlocal = nwait, the quasi-Newton step generated by quasiNewtonDir is
used if (34) holds, and the subspace basis index set is permuted by

perm := {ch + 1, · · · , m̂, 1, · · · , ch}

so that the oldest columns are shifted with the newest, i.e.,

S := S:perm, Y := Y:perm, and H := Hperm,perm;

here ch is a counter for m. Then set ch := 0. In this case, CG := 1, m0 := 0, and
hist := ∅. Since m0 = 0, there is a premature replacement of s (y) by the first
column of the subspace matrix S (Y ) before ch exceeds m.

• If nlocal < nwait+m̂, the conjugacy relation (39) is preserved by restricting the
subspace. In such a case, CG := 2, m0 := nlocal− nwait, and hist := {1, · · · ,m0}.

• Otherwise, the full subspace step preserves the conjugacy. In this case, CG := 3,
m0 := m̂, and hist := {1, · · · , m̂}.

The value of γ depends on the search direction. Here searchDir is used to com-
pute pinit including scaleDir, quasiNewtonDir, and AvoidZigzagDir. It works
as follows:
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• In the first iteration the starting search direction makes use of the gradient signs
only, and has nonzero entries in some components that can vary. Each starting
search direction is computed by scaleDir. In this case, scaleDir, for i = 1, · · · , n,
computes

sc := min(1, xi − xi) and pinit
i :=

{
sc if gi < 0,
−sc otherwise

if xi = 0; otherwise, it sets sc = |xi| and computes

pinit
i :=


sc if xi = xi,
−sc elseif xi = xi,
sc elseif gi < 0,
−sc otherwise.

• If nlocal 6= nwait, a modified direction is used to avoid zigzagging. pinit is com-
puted by (35) using (36). Since gTI pinit

I = −c, the direction will be a descent direction.
This direction is implemented by AvoidZigzagDir and enriched by a new heuris-
tic choice of

β := θ max
i=1:n

{∣∣∣ gi
pinit
i

∣∣∣}, (50)

with tuning parameters 0 < θ < 1 and c > 0.
• Otherwise, quasiNewtonDir is used in subspace. If Dii ∈ [∆−1

D , ∆D] is violated,
Dii = 1, where ∆D > 1 is a tuning parameter.

Afterwards, enforceAngle is used if the angle condition (8) does not hold:
• If gTI pinit

I > 0, pinit
I is chosen to be its opposite to move away from maximizer or

saddle point.
• By changing the sign of g, it may enforce gTI pinit

I ≤ 0. Even though g 6= 0, can-
cellation may lead to a tiny gTI p

init
I (and even with the wrong sign). Given a tiny

parameter ∆pg, to overcome this weakness, the subtract ∆pg|gI |T |pinit
I | can be a

bound on the rounding error to get the theoretically correct sign. A regularized
directional derivative is done if the condition

|gTI pinit
I | ≤ ∆pg|gI |T |pinit

I | (51)

holds, enforcing gTI pinit
I < 0. In this case, if (51) holds, pinit

I is either −gI or −λbgI .
Here λb := max

i∈I
{Dii}.

• If at least one of the conditions w > 0 and 0 ≤ |t| < ∞ does not hold, pinit
I is

chosen to be −λbgI .

In summary, the implementation of our regularized conjugate gradient direction,
called ConjGradDir, for computing p in (46) is given as follows: (i) γreg is com-
puted by getGam according to (44), (ii) if the subspace dimension is nonzero, our
conjugate gradient direction is used; otherwise, it reduces to pnew = −ζregp

init and
the subspace basis index set is restarted, (iii) a regularization for the denominator of
(47) is made according to (45) by regDenom, (iv) the condition (48) is computed
to know whether the regularized conjugate gradient direction is descent or not, (v)
the new trial point, x+ pnew, is projected into x, resulting in xnew and the direction
is recomputed by pnew := xnew − x.
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3 Improvements in the line search

In this section, we introduce an improved version of CLS, called CLS-new, with
enhancements for numerical stability (finding a starting good step size, a
target step size and a minimum step size with safeguards in finite precision
arithmetic). The variable eff indicates the status of the step in CLS-new – taking
the values 1 (efficient step), 2 (non-monotone step), 3 (inefficient decrease), and 4
(inefficient step).

3.1 Issues with finite precision arithmetic

Rounding errors prevent descent for step sizes that are too small.

Example 1 We consider the function

f(x) = x5 − 15x4 + 85x3 − 225x2 + 274x− 120.

For x = 5 + 3 × 10−10 and p = −1, the plot f(x + αp) versus α in Figure 1 shows
that one needs to find a sensible minimal step size.

In practice if the step size is too small, rounding errors will often prevent that
the function value is strictly decreasing. Due to cancellation of leading digits, the
Goldstein quotient can become very inaccurate, which may lead to a wrong bracket
and then to failure of the line search. The danger is particularly likely when the
search direction is almost orthogonal to the gradient. Hence, before each line search
method, we need to produce a starting step size by a method, called goodStep,
to find the starting good step size αgood, the target step size αtarget, and the
minimum step size αmin with safeguards in finite precision arithmetic. goodStep
computes the first and second breakpoint, respectively, by

αbreak := min{(xi − xi)/pi | i ∈ ind}, αbreak := min{(xi − xi)/pi | i ∈ ind}.

Here ind := {i | pi < 0 & xi > xi} is the indices of the first breakpoint and
ind = {i | pi > 0 & xi < xi} is the indices of the second breakpoint. Then it computes
the breakpoint by αbreak := min(αbreak, αbreak) in finite precision arithmetic and
adjusts it by αbreak := αbreak(1+∆b), where ∆b ∈ (0, 1) is a tiny factor for adjusting a
target step size. In the cases where ind and ind are empty, we set αbreak := +∞ and
αbreak := +∞. Given a tiny factor ∆α ∈ (0, 1) and an index set indp := {i | pi 6= 0},
the minimal step size is computed by a heuristic formula

αmin :=


min

(
1, ∆α

∣∣∣ f
gT p

∣∣∣) if x = 0 and indp 6= ∅,

min
(

1, ∆α min
(∣∣∣ f
gT p

∣∣∣, min
i∈ind

{∣∣∣xi
pi

∣∣∣})) elseif indp 6= ∅,
1 otherwise,
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Fig. 1: In the Example 1 points with step sizes α < 0.5 × 10−13 have a high probability for
having f(x+ αp) ≥ f(x).

and the target step size is chosen by αtarget := max(αmin, df/|gT p|). We discuss
how df is computed in the next subsection. If an exact line search on quadratic is
requested, αtarget is restricted by

αtarget := min(αtarget, αbreak).

In the special case, if αmin = 1, αgood := 1 and goodStep ends due to being the
zeros direction; otherwise, it computes the good step size by

αgood :=
{
αtarget if qαtarget ≤ αbreak,
max(αmin, αbreak) otherwise;

when it equals αmin, adverse finite precision effects are avoided. Here q > 1 is an input
parameter for goodStep which is used to expand (reduce) step sizes by CLS-new.

The number of stuck iterations is the number nstuck of times that LMBOPT
cannot update the best point. Its limits are nstuckmax (maximum number of all
stuck iterations) and nsmin (how many stucks are allowed before a trial point is
accepted), both of which will be tuning parameters. In the final step of goodStep,
if nstuck ≥ nsmin, αgood is increased by the factor 2 ∗ nstuck to avoid remaining
stuck.
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3.2 CLS-new – an improved version of CLS

Before CLS-new tries to enforce the sufficient descent condition (13), the following
steps must be taken:
• LMBOPT calls enforceAngle to enforce the angle condition (8).
• Once LMBOPT calls initInfo to initialize the best function value fbest := f0

and to compute the factor for adjusting increases in f (discussed below)

δf :=
{

facf ∗ |f0| if f0 ∈ (0,∞),
1 otherwise, (52)

where facf > 0 is a relative accuracy of f0. We denote the list of acceptable increases
in f by Df and its size by mf and the number of gradient evaluations by ng. Moreover,
initInfo chooses, for i = 1, · · · , mf − 1, Dfi := −∞ and Dfmf := δf . After the first
call to CLS-new, LMBOPT always calls updateInfo to update
(1) the number of times that the best point is not updated by

nstuck :=
{

0 if fnew < fbest,
nstuck + 1 otherwise;

(2) the best point information by fbest := fnew and xbest := xnew if nstuck = 0;
(3) δf and Df. In this case, if fnew < f , then δf := f − fnew and nm := mod(ng, mf)
are computed. Otherwise since the function value is not decreased, δf is expanded
by δf := max(∆fδf , ∆m(|f | + |fnew|)) and nm := mod(ng, mf) is updated. Here
∆m ∈ (0, 1) is a tiny factor for adjusting δf and ∆f > 1 is a tuning parameter for
expanding δf . If nm is zero, the last component of Df is replaced by δf ; otherwise,
the nmth component of Df is replaced by δf ;
(4) f by fnew if fnew < f holds.

• If αgood ≥ 1, q is updated by q = max
(
qmin, q/∆q

)
, where 1 < qmin < q and

0 < ∆q < 1 are the tuning parameters. Whenever the term qαgood is moderately
large, this choice may helps CLS-new to prevent a failure. To get target step sizes
which should not become too small, an acceptable increase in f (denoted by df)
must be estimated in a heuristic way such that it becomes slowly small. Accordingly,
at first, df is δf computed by (52). Next, it is a multiple of the old δf value if the
tuning parameter mdf divides ng. Otherwise it is the maximum of the mf old δf

valuesİn this case, target step sizes do not become too small.
• goodStep is used to find an initial step size. CLS-new tries to find a step size
α > 0 satisfying the sufficient descent condition (13).
• CLS-new ends once the sufficient descent condition holds, resulting in the line
search being efficient and eff = 1.
• In the first iteration if the Goldstein quotient satisfies µ(α) < 1 an exact line
search uses the secant step 1

2α/(1 − µ(α)) for the quadratic objective function.
In fact this ensures finite termination of our conjugate gradient method for the
quadratic functions. Otherwise extrapolation is done by the factor q > 1. In the
next iteration, if the sufficient descent condition (13) does not hold, then the function
is far from quadratic and bounded. In such a case, either interpolate is performed
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if the lower bound on the step size is zero or extrapolation is done by the factor
q > 1 until a bracket [α, α] is found. Then, a geometric mean of α and α is used.
• A limit on the number of iterations is used.
• At the end, if CLS-new ends up providing no improvement in the function values,
LMBOPT calls robustStep to find a step size with corresponding lowest function
value. Such a step size is called robust. Using a list of differences between the current
best function value and the function values at trial points as gains, robustStep tries
to find a point with smallest robust change if the minimum of gains is smaller
than or equal to the acceptable increase in f (df). Otherwise, if the function is almost
flat or flat a step with largest gain is chosen. Otherwise, a point with nonrobust
change might be chosen provided that the minimum of gains ≤ ∆rdf, where ∆r > 0
is a tuning parameter.

After LMBOPT accepts a new point xnew and its step size α by CLS-new, the
new step is defined by s := xnew − x = α‖p‖. Due to the inefficiency of CLS-new,
α may be too small, so that ‖s‖ goes to zeros. s with zero size is called a null step.
If there have been too many null steps, LMBOPT cannot update the subspace
information too many iterations, resulting a failure. To get rid of this weakness,
nullStep is used, depending on whether CLS-new is inefficient or not. If CLS-
new is inefficient (eff = 4), the new point xnew is a multiple of the current best
point. Otherwise, it is a multiple of the current point generated by CLS-new.
Given a tiny tuning parameter del, xnew is adjusted by a factor of 1 − del and all
its zero components (if any) are replaced by del in both cases. Then it is projected
into the feasible set x.

4 Starting point and master algorithm

4.1 projStartPoint – the starting point

A poor choice of the starting point can lead to inefficiencies. For example, consider
minimizing the quadratic function

f(x) := (x1 − 1)2 +
n∑
i=2

(xi − xi−1)2

that starts with x0 = 0. If a diagonal preconditioner is used, it is easy to see by
induction that, for any method that chooses its search directions as linear combina-
tions of the preconditioned gradients computed earlier, the ith iteration point has
zero in all coordinates k > i and its gradient has zero in all coordinates k > i + 1.
Since the solution is the all-one vector, this implies that at least n iterations are
needed to reduce the maximal error in the components of x to below one.

Situations like this are likely to occur when both the Hessian and the starting
point are sparse. To avoid this, projStartPoint moves a user-given starting point
x slightly into the relative interior of the feasible domain.
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4.2 getSuccess – successful iteration

The goal of getSuccess is to test whether the sufficient descent condition (13) holds
or not; the only difference being that the tuning parameter β is replaced by the other
tuning parameter βCG. The Goldstein quotient (12) is computed provided that all of
the following hold:
• The regularized conjugate gradient direction is descent, i.e., (48) is negative, but
it is not zero.
• nlocal ≥ nwait or nstuck ≥ nsmin.

After computing the Goldstein quotient (12), the iteration will be successful if either
line search is efficient, meaning the sufficient descent condition (13) with β = βCG

holds, or there exists an improvement in the function value by at least δf and
nstuck ≥ nsmin. In this case, the Boolean variable success is evaluated as true;
otherwise, it is evaluated as false.

4.3 Some implementation details

To determine the working set I, it is checked if one of the following holds:
(1) The function value cannot be decreased.
(2) The size of the new free index set is smaller than that of the old free index set
(i.e., the activity is not fixed).
(3) The maximal number of local steps before finding the freeing iteration (which is
a tuning parameter) is exceeded.
(4) Condition (6) is violated.

We use the algorithms findFreePos and findFreeNeg to get the working set. At
the first iteration, BOPT calls findFreePos to find I+(x) by (4) and initializes
the working set with I(x) := I+(x). Then if the statements (1)-(3) are true, find-
FreeNeg finds I−(x) by (3) and findFreePos checks whether the statement (4) is
true or not. If this statement is not true, the working set is I(x) := I−(x); otherwise,
findFreePos finds I+(x) by (4) and chooses it as the new working set I(x) := I+(x).

If at least one of the statements (1)-(4) holds, a scaled Cauchy point is tried. It is
computed in the same way as [46] but with the difference that the scaling matrix is
computed by

Dii :=

√√√√ m∑
j=1

YYij
/ m∑

j=1

SSij , for i = 1, · · · , n

with
YY = Y ◦ Y, SS = S ◦ S,

where ◦ denotes componentwise multiplication, if at least once S and Y are updated.
Otherwise, it is computed by

Dii :=
∣∣∣ gi
pinit
i

∣∣∣, for i = 1, · · · , n,
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where pinit is computed as discussed above.

4.4 The master algorithm

We now recall the main ingredients of LMBOPT, the new limited memory
bound constrained optimization method. The mathematical structure of LM-
BOPT is described in Section 1 of suppMat.pdf. LMBOPT first calls projStart-
Point described in Subsection 4.1 to improve the starting point. Then the function
value and gradient vector for such a point are computed and adjusted by adjust-
Grad; the same computation happens later for other points. In practice, if the
gradient is contaminated by NaN or ±∞, adjustGrad replaces these values by a
tuning parameter. In the main loop,
• LMBOPT first computes the reduced gradient by redGrad in each iteration and
then the working set is determined and updated by findFreePos.
• As long as the reduced gradient is not below a minimum threshold, it generates
the direction pinit by searchDir to construct the subspace, and then constructs the
regularized conjugate gradient direction p by ConjGradDir to achieve a success-
ful iteration, provided the activity is changed; otherwise the scaled Cauchy point is
computed by scaleCauchy if at least one of the statements (1)-(4) holds, discussed
earlier in Subsection 2.4. Such a successful iteration is determined by getSuccess
and then the best point is updated.
• Otherwise it performs a gradient-free line search CLS-new along a regularized
direction (enforceAngle) since the function is not near the quadratic case.
• Then if at least nnullmax null steps are repeated in a sequence, the point leading
to such steps is replaced by nullStep with a point around the previous best point if
CLS-new is not efficient; otherwise by the current point generated by CLS-new.
This is repeated until no null step is found.
• Afterwards, the gradient at the new point is computed and adjusted by adjust-
Grad. In addition, the new free index set is found by findFreeNeg. At the end of
every iteration, the subspace is updated provided that (i) there is no more null step,
(ii) either the condition (49) holds or the number of local steps exceeds its limit.

LMBOPT minimizes the bound constrained optimization problem (1). It takes the
initial point x0, the feasible set x and the tuning parameters – detailed in Table 4 in
suppMat.pdf – as input and returns an optimum point xbest and its function value
fbest as output. For the convergence analysis of Algorithm 3 we refer to Theorem 1.

LMBOPT was implemented in Matlab; the source code is obtainable from

http://www.mat.univie.ac.at/~neum/software/LMBOPT.

5 Numerical results

In this section we compare our new solver LMBOPT with many other state-of-the-
art solvers from the literature (see Subsection 5.3) on a large public benchmark. Only
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Algorithm 3 LMBOPT, limited memory bound-constrained optimization
Initialization

1: Initialize the subspace information and other necessary information.
2: Improve the starting point x0 by projStartPoint.
3: Compute initial function value f0 := f(x0) and its gradient g0 := g(x0).
4: Check whether g0 needs to be adjusted by adjustGrad or not.
5: Initialize the necessary information by initInfo.
6: for ` = 0, 1, 2, · · · do . main loop
7: Compute the reduced gradient by redGrad.

For ` > 0 check whether the condition (6) is violated or not

8: Find the free indices by findFreePos. . I` = I−(x`) or I` = I+(x`)?
Stopping test

9: if ‖gred(x`)‖∞ ≤ ε or number of stuck iterations exceeds its limit then
10: Set xbest = x` and fbest = f(x`) and LMBOPT stops.
11: end if

Construct the regularized conjugate gradient direction
12: Identify kind of the subspace by typeSubspace. . spanned by the columns of S
13: Compute (pinit)` by searchDir. . needed to construct a bigger subspace
14: Compute p` by ConjGradDir. . the regularized conjugate gradient direction

Try to decrease in function value by a scaled Cauchy point
15: if at least one of the statements (1)-(4) is true (discussed in Subsection 4.3) then
16: A scaled Cauchy point by scaleCauchy is tried.
17: end if

Determine whether the iteration is successful (success = 1) or not (success = 0)
18: Perform getSuccess to determine the Boolean variable success.
19: if success is true then . the iteration is successful
20: Set x`+1 = x` + p`.
21: else . the iteration is unsuccessful
22: Regularize the direction p` by enforceAngle.
23: Perform CLS-new. . along the regularized direction resulting in x`+1

24: Compute the step s`+1 := x`+1 − x`.
25: if ‖s`‖ is zero then . a null step is found
26: Perform nullStep. . to check whether a null step is removed or not
27: end if
28: if ‖s`‖ is zero then . nullStep cannot remove the null step
29: Increase the number of null steps.
30: if the maximum number of null steps is reached then
31: LMBOPT ends.
32: end if
33: end if
34: end if

Update the subspace spanned by the columns of S and the working set

35: if ‖s`‖ 6= 0 then
36: Compute the gradient g`+1 := g(x`+1).
37: Check whether g`+1 needs to be adjusted by adjustGrad or not.
38: Set y`+1 := g`+1 − g` and update the information by updateInfo.
39: Find the new free indices set I`+1 := I−(x`+1) by findFreeNeg.
40: Update the subspace by updateSubspace.
41: end if
42: end for
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summary results are given; supplementary information with much more detailed test
results can be found in suppMat.pdf from the LMBOPT web site.

5.1 Test problems used

As test problems we used all 1088 unconstrained and bound constrained problems
with up to 100001 variables from the CUTEst collection of optimization problems by
Gould et al. [35], in case of variable dimension problems for all allowed dimensions
in this range; see Section 5 of suppMat.pdf.

nf, ng, and sec denote the number of function evaluations, the number of gradient
evaluations, and the time in seconds, respectively. Since the cost of computing the
gradient is typically about twice the cost of the function value (see Section 3 of
suppMat.pdf), we also use the cost measure nf2g := nf + 2ng. These measures are
used as the cost measures to do performance profiles [24] shown in Figures 2-5.

We limited the budget available for each solver by requiring

nf2g ≤
{ 20n+ 10000 in the first and second runs,

50n+ 200000 in the third run

function evaluations plus two times gradient evaluations for a problem with n vari-
ables and allowing at most { 300 in the first run,

1800 in the second run,
7200 in the third run

sec of run time. A problem is considered solved if ‖gk‖ ≤ 10−6.

To identify the best solver under appropriate conditions on test problems and bud-
gets, we made three different runs:

• In the first and second runs, the initial point is x0 := 0, but we shift the arguments
by

ξi := (−1)i−1 2
2 + i

, for all i = 1, . . . , n (53)

to avoid a solver guessing the solution of toy problems with a simple solution (such
as all zero or all one) – there are quite a few of these in the CUTEst library. This
means that the initial point is chosen by x0 := ξ and the initial function value is
f0 := f(x0) while the other function values are computed by f ` := f(x` + ξ) for
all ` ≥ 0. Compared to the standard starting point, this shift usually preserves the
difficulty of the problem. In the second run, the three best solvers from the first run
try to solve all test problems with an increased time limit of 1800 sec.

• In the third run, the initial point x0 is the standard starting point. The three best
solvers from the first run try to solve the 98 test problems unsolved in the first run
without the shift (53). Maximal time in sec increased from 300 sec to 7200 sec and
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maximum number of nf2g increased from 20n+ 10000 to 50n+ 200000. In this case,
the three best solvers from the first run succeeded to solve many of these unsolved
problems. Test problems unsolved in third run could not be solved by any solver,
even with a huge budget.

5.2 Default parameters for LMBOPT

For our tests we used for LMBOPT the following tuning parameters

nsmin = 1; nwait = 1; rfac = 2.5; nlf = 2; ∆m = 10−13; ∆pg = εm;
∆H = εm; ∆α = 5εm; lmax = 4; β = 0.02; βCG = 0.001; ∆a = 10−12;
∆reg = 10−12; ∆w = εm; facf = 10−8; ∆x = 10−20; m = 12; mf = 2;
typeH = 0; nnulmax = 3; del = 10−10; ∆r = 20; ∆g = 100; ∆b = 10εm;
∆u = 1000; θ = 10−8; exact = 0; ∆po = εm nstuckmax = +∞; ζmin = −1050;
ζmax = −10−50; ∆D = 1010; qmin = 2.5; ∆q = 10; ∆f = 2; q = 25;
mdf = 20.

They are based on a limited tuning by hand. In a further release we plan to find
optimal tuning parameters [47], as the quality of LMBOPT depends on it.

5.3 Codes compared

We compare LMBOPT with competitive solvers for unconstrained and bound con-
strained optimization. These solvers are

ASACG [40,41,42,44], CGdescent [40,41,44], ASABCP [18],
SPG [8,9], LBFGSB [12], LMBFG-DDOGL [11],
LMBFG-EIG-MS-2-2 [11], LMBFG-BWX-MS [11], LMBFG-EIG-inf-2 [11],
LMBFGS-TR [11], LMBFG-MTBT [11], LMBFG-MT [11],
LMBFG-EIG-MS [11], LMBFG-EIG-curve-inf [11].

Details about the solvers and options used can be found in Section 1 of suppMat.pdf.
For some solvers, we have chosen options other than the default ones to make them
more competitive.

We only compare public software with an available Matlab interface. LANCELOT-
B combines a trust region approach with projected gradient directions. But since
there was no mex-file to run LANCELOT-B in Matlab, we could not call and run
it in our Matlab environment. Similarly, we could not find a version of GENCAN,
the bound constrained version of ALGENCAN [7], which could be handled in
Matlab. GENCAN is a combination of spectral projected gradient and an active
set strategy. It is unlikely to introduce significant bias in the comparison. Hence, we
compare LMBOPT to many known solvers using various active set strategies and
either projected conjugate gradient methods, projected truncated Newton methods,
or projected quasi Newton methods.

Unconstrained solvers were turned into bound-constrained solvers by pretending that
the reduced gradient at the point π[x] is the requested gradient at x. Therefore no
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theoretical analysis is available, but the results show that this is a simple and
surprisingly effective strategy.

5.4 The results for stringent resources

5.4.1 Unconstrained and bound constrained optimization problems

We tested all 15 solvers for problems in dimension 1 to 100001. A list of problems
unsolved by all solvers can be found in Section 4 of suppMat.pdf.

For more refined statistics, we use our test environment (Kimiaei & Neumaier [47])
for comparing optimization routines on the CUTEst test problem collection.

For a given collection S of solvers and a collection P of problems, the efficiency of
the solver so for solving the problem j ∈ P with respect to the cost measure cs is
the strength of the solver so ∈ S – relative to an ideal solver that matches on each
problem the best solver. It is measured by

ejso :=

{
min
s∈S

cs/cso, if the solver so solved the problem j ∈ P,
0, otherwise.

The total mean efficiency of the solver so with respect to cs is defined by

eso = mean
j∈P

(ejso).

Tmean is the mean of the time in seconds needed by a solver to solve the test problems
chosen from the list of test problems P, ignoring the times for unsolved problems.
#100 is the total number of problems for which the solver so was best with respect
to nf2g (ejso = 1 = 100%). !100 is the total number of problems solved for which the
solver so was better than all other solvers with respect to nf2g.

In the tables, efficiencies are given in percent. Larger efficiencies in the table imply
a better average behaviour; a zero efficiency indicates failure. All values are rounded
(towards zero) to whole integers. Mean efficiencies are taken over the 990 problems
tried by all solvers and solved by at least one of them, out of a total of 1088 problems.
The columns titled “# of anomalies” report statistic on failure reasons:
• n indicates that nf2g ≥ 20n+ 10000 was reached.
• t indicates that sec ≥ 300 was reached.
• f indicates that the algorithm failed for other reasons.
As can be seen from Table 1 and Figure 2, LMBOPT stands out as the most robust
solver for unconstrained and bound constrained optimization problems; it is the best
in terms of number of solved problems and the ng efficiency. Other best solvers
in terms of the number of solved problems and the nf2g efficiency are ASACG
and LMBFG-EIG-MS, respectively. LBFGSB is the best in terms of number of
function evaluations #100 and !100, but it is not comparable to other algorithms in
terms of the number of solved problems.
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Table 1: The summary results for all problems
stopping test: ‖g‖∞ ≤ 1e-06, sec ≤ 300, nf2g ≤ 20 ∗ n + 10000
990 of 1088 problems solved mean efficiency in %
dim∈[1,100001] # of anomalies for cost measure
solver solved #100 !100 Tmean #n #t #f nf2g ng nf sec
LMBOPT lmb 952 179 153 4310 87 49 0 59 70 43 13
ASACG asa 935 164 28 1416 98 21 34 58 60 51 62
LMBFG-EIG-MS lt6 924 103 45 2970 119 26 19 60 57 60 34
LMBFG-EIG-curve-inf lt4 918 94 35 3330 118 25 27 60 56 59 34
ASABCP asb 900 75 52 2404 142 25 21 41 36 44 46
LMBFG-DDOGL lt2 896 112 49 2937 61 21 110 60 56 59 33
CGdescent cgd 895 144 16 2559 77 17 99 54 56 47 55
LMBFG-EIG-MS-2-2 lt7 895 38 0 3390 112 21 60 50 45 57 34
LMBFG-BWX-MS lt1 888 39 1 2694 56 21 123 51 45 58 32
SPG spg 840 94 60 5901 182 58 8 34 34 31 9
LBFGSB lbf 803 233 186 713 0 0 285 57 51 61 32
LMBFG-EIG-inf-2 lt5 753 81 23 3275 76 26 233 50 47 49 28
LMBFGS-TR ll3 733 100 41 2904 242 92 21 48 44 48 36
LMBFG-MTBT ll2 669 76 23 2257 55 14 350 45 41 46 26
LMBFG-MT ll1 657 104 50 2677 57 14 360 45 39 48 32

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

( , ) for ng

lmb

asa

lt6

lt4

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

( , ) for nf

lmb

asa

lt6

lt4

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

( , ) for nf2g

lmb

asa

lt6

lt4

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

( , ) for sec

lmb

asa

lt6

lt4

Ua) Ub) Uc) Ud)

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

( , ) for ng

lmb

asa

lt6

lt4

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

( , ) for nf

lmb

asa

lt6

lt4

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

( , ) for nf2g

lmb

asa

lt6

lt4

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

( , ) for sec

lmb

asa

lt6

lt4

Ba) Bb) Bc) Bd)

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

( , ) for ng

lmb

asa

lt6

lt4

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

( , ) for nf

lmb

asa

lt6

lt4

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

( , ) for nf2g

lmb

asa

lt6

lt4

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

( , ) for sec

lmb

asa

lt6

lt4

a) b) c) d)

Fig. 2: (Ua)-(Ud): Performance profiles for unconstrained problems (1 ≤ n ≤ 100001) in terms
of the ng/(best ng), nf/(best nf), nf2g/(best nf2g), and sec/(best sec) efficiencies, respec-
tively. (Ba)-(Bd): Performance profiles for bound constrained problems (1 ≤ n ≤ 100001) in
terms of the ng/(best ng), nf/(best nf), nf2g/(best nf2g), and sec/(best sec) efficiencies,
respectively. (a)-(d): Performance profiles for both unconstrained and bound constrained prob-
lems (1 ≤ n ≤ 100001) in terms of the ng/(best ng), nf/(best nf), nf2g/(best nf2g), and
sec/(best sec) efficiencies, respectively. ρ designates the percentage of problems solved within
a factor τ of the best solver. Problem solved by no solver are ignored.
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5.4.2 Classified by constraints and dimensions

Results for the three best solvers for all problems classified by dimension and con-
straint are given in Table 2, Figure 3, and Box plot 4. These results show that,

• for low-dimensional problems (1 ≤ n ≤ 30), (1) LMBOPT is the best solver
in terms of the ng and nf2g efficiencies and the number of solved problems, (2)
LMBFG-EIG-MS is the best solver in terms of the nf efficiency (for both un-
constrained and bound constrained problems), and (3) ASACG is the second best
solver in terms of the number of solved problems (for both unconstrained and bound
constrained problems);

• for medium-dimensional problems (31 ≤ n ≤ 500), (1) LMBOPT is the
best in terms of the ng efficiency and the number of solved problems in the both
unconstrained and bound constrained problems. It is the best is the best in terms of
the nf2g efficiency for the unconstrained problems, (2) LMBFG-EIG-MS is the
best in terms of nf for the both unconstrained and bound constrained problems and
nf2g for the bound constrained problems only, (3) ASACG is the best solver in
terms of the nf2g efficiency for the bound constrained problems;

• for large-dimensional problems (501 ≤ n ≤ 100001), (1) LMBOPT is the best
solver in terms of the ng efficiency for both unconstrained and bound constrained
problems, (2) LMBFG-EIG-MS is the best solver in terms of the nf and nf2g
efficiencies and the number of solved problems (for all problems) and is the best
solver in terms of the number of solved problems (for bound constrained problems),
(3) ASACG is the best solver in terms of the number of solved problems for the
unconstrained problems only.

• for all problems (1 ≤ n ≤ 100001), (1) LMBOPT is the best in terms of the
number of solved problems and the ng efficiency in both unconstrained and bound
constrained problems, (2) LMBFG-EIG-MS is the best solver in terms of the nf
and nf2g efficiencies for both unconstrained and bound constrained problems.
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Fig. 3: (1Ua)-(1Ud)/(1Ba)-(1Bd): Performance profiles for low-dimensional uncon-
strained/bound constrained problems (1 ≤ n ≤ 30) in terms of the ng/(best ng), nf/(best
nf), nf2g/(best nf2g), and sec/(best sec) efficiencies, respectively. (2Ua)-(2Ud)/(2Ba)-
(2Bd): Performance profiles for medium-dimensional unconstrained/bound constrained prob-
lems (31 ≤ n ≤ 500) in terms of the ng/(best ng), nf/(best nf), nf2g/(best nf2g), and
sec/(best sec) efficiencies, respectively. (3Ua)-(3Ud)/(3Ba)-(3Bd): Performance profiles for
high-dimensional unconstrained/bound constrained problems (501 ≤ n ≤ 100001) in terms of
the ng/(best ng), nf/(best nf), nf2g/(best nf2g), and sec/(best sec) efficiencies, respec-
tively. ρ designates the percentage of problems solved within a factor τ of the best solver.
Problem solved by no solver are ignored.
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Table 2: The summary results classified by dimension and constraint for all problems
stopping test: ‖g‖∞ ≤ 1e-06, sec ≤ 1800, nf2g ≤ 20 ∗ n + 10000
304 of 319 problems solved mean efficiency in %
dim∈[1,30] # of anomalies for cost measure
solver solved #100 !100 Tmean #n #t #f nf2g ng nf sec
LMBOPT lmb 303 104 85 198 16 0 0 74 82 60 21
ASACG asa 285 116 90 28 20 0 14 72 70 66 81
LMBFG-EIG-MS lt6 274 120 102 185 43 0 2 66 58 70 55
182 of 192 problems without bounds solved mean efficiency in %
solver solved #100 !100 Tmean #n #t #f nf2g ng nf sec
LMBOPT lmb 181 51 50 214 11 0 0 75 83 59 16
ASACG asa 175 57 50 31 9 0 8 74 73 67 84
LMBFG-EIG-MS lt6 166 81 75 259 26 0 0 72 62 77 57
122 of 127 problems with bounds solved mean efficiency in %
solver solved #100 !100 Tmean #n #t #f nf2g ng nf sec
LMBOPT lmb 122 53 35 173 5 0 0 73 79 62 28
ASACG asa 110 59 40 23 11 0 6 68 64 66 78
LMBFG-EIG-MS lt6 108 39 27 71 17 0 2 57 53 59 53
304 of 331 problems solved mean efficiency in %
dim∈[31,500] # of anomalies for cost measure
solver solved #100 !100 Tmean #n #t #f nf2g ng nf sec
LMBOPT lmb 299 93 88 482 32 0 0 70 79 55 18
ASACG asa 293 89 80 154 28 0 10 69 68 64 83
LMBFG-EIG-MS lt6 293 136 127 227 31 0 7 71 64 75 52
189 of 203 problems without bounds solved mean efficiency in %
solver solved #100 !100 Tmean #n #t #f nf2g ng nf sec
LMBOPT lmb 187 62 62 581 16 0 0 74 82 57 20
ASACG asa 183 45 42 177 16 0 4 69 69 63 86
LMBFG-EIG-MS lt6 183 85 82 266 18 0 2 73 63 78 56
115 of 128 problems with bounds solved mean efficiency in %
solver solved #100 !100 Tmean #n #t #f nf2g ng nf sec
LMBOPT lmb 112 31 26 317 16 0 0 65 75 51 16
ASACG asa 110 44 38 114 12 0 6 68 67 67 79
LMBFG-EIG-MS lt6 110 51 45 163 13 0 5 68 66 70 47
375 of 438 problems solved mean efficiency in %
dim∈[501,100001] # of anomalies for cost measure
solver solved #100 !100 Tmean #n #t #f nf2g ng nf sec
LMBFG-EIG-MS lt6 365 240 227 15202 60 2 11 73 65 76 38
ASACG asa 358 76 63 5434 68 1 11 60 59 57 80
LMBOPT lmb 354 81 71 17386 69 15 0 61 71 46 19
181 of 220 problems without bounds solved mean efficiency in %
solver solved #100 !100 Tmean #n #t #f nf2g ng nf sec
ASACG asa 175 40 37 4021 42 1 2 62 62 57 78
LMBFG-EIG-MS lt6 173 100 96 10696 43 2 2 65 57 69 32
LMBOPT lmb 169 45 44 15044 40 11 0 58 65 44 15
194 of 218 problems with bounds solved mean efficiency in %
solver solved #100 !100 Tmean #n #t #f nf2g ng nf sec
LMBFG-EIG-MS lt6 192 140 131 19261 17 0 9 80 73 82 45
LMBOPT lmb 185 36 27 19525 29 4 0 65 76 48 23
ASACG asa 183 36 26 6786 26 0 9 58 55 57 82
983 of 1088 problems solved mean efficiency in %
dim∈[1,100001] # of anomalies for cost measure
solver solved #100 !100 Tmean #n #t #f nf2g ng nf sec
LMBOPT lmb 956 278 244 6651 117 15 0 68 76 53 19
ASACG asa 936 281 233 2135 116 1 35 66 65 62 81
LMBFG-EIG-MS lt6 932 496 456 6079 134 2 20 70 63 74 48
552 of 615 problems without bounds solved mean efficiency in %
solver solved #100 !100 Tmean #n #t #f nf2g ng nf sec
LMBOPT lmb 537 158 156 5009 67 11 0 68 75 53 17
ASACG asa 533 142 129 1391 67 1 14 68 67 62 82
LMBFG-EIG-MS lt6 522 266 253 3721 87 2 4 70 60 74 47
431 of 473 problems with bounds solved mean efficiency in %
solver solved #100 !100 Tmean #n #t #f nf2g ng nf sec
LMBOPT lmb 419 120 88 8756 50 4 0 67 76 52 23
LMBFG-EIG-MS lt6 410 230 203 9082 47 0 16 71 64 73 48
ASACG asa 403 139 104 3119 49 0 21 64 60 62 80

5.5 Results for hard problems

All solvers have been run again on the hard problems defined as the 98 test problems
unsolved in the first run. In this case, the standard starting point was used instead
of (53) and both nfmax and secmax were increased. 41 test problems were not solved
by all solvers for dimensions 1 up to 100001, given in Table 3.

From Table 4 and Figure 5, we conclude
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Fig. 4: We show box plots for the data summarized in Table 2. Here ρ stands for ng/ngmax,
nf/nfmax, nf2g/nf2gmax, sec/secmax and s stands for the name of solvers. (1Ua)-(1Ud)/(1Ba)-
(1Bd): Box plots for low-dimensional unconstrained/bound constrained problems (1 ≤ n ≤
30) in terms of ng/ngmax, nf/nfmax, nf2g/nf2gmax, and sec/secmax, respectively. (2Ua)-
(2Ud)/(2Ba)-(2Bd): Box plots for medium-dimensional unconstrained/bound constrained
problems (31 ≤ n ≤ 500) in terms of ng/ngmax, nf/nfmax, nf2g/nf2gmax, and sec/secmax,
respectively. (3Ua)-(3Ud)/(3Ba)-(3Bd): Box plots for high-dimensional unconstrained/bound
constrained problems (501 ≤ n ≤ 100001) in terms of ng/ngmax, nf/nfmax, nf2g/nf2gmax, and
sec/secmax, respectively. Here nfmax, ngmax, nf2gmax, and secmax stand for maximal number
of function evaluations, maximal number of gradient evaluations, maximal number of function
evaluations plus two times gradient evaluations, and maximal time in seconds, respectively.
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• LMBOPT is the best in terms of the number of solved problems and the ng and
nf2g efficiencies for the hard bound constrained problems

• ASACG is the best in terms of the number of solved problems and the ng and
nf2g efficiencies for the hard unconstrained problems.

• LMBFG-EIG-MS is the best in terms of the ng and nf2g efficiencies for the
hard unconstrained problems.

Table 3: The hard problems unsolved by all solvers
OSCIPATH:10 SCOSINE:10 SCOND1LS ANTWERP
NONMSQRT:49 SBRYBND:50 HYDC20LS FLETCHBV:100
NONMSQRT:100 SBRYBND:100 SCOSINE:100 SCURLY10:100
SCOND1LS:102 PENALTY2:500 SBRYBND:500 SCOND1LS:502
NONMSQRT:529 FLETCHBV:1000 PENALTY2:1000 SBRYBND
SCOSINE SCURLY10 SSCOSINE SCOND1LS:1002
NONMSQRT:1024 DRCAV1LQ:1225 DRCAV2LQ:1225 DRCAV3LQ:1225
DRCAV3LQ:4489 FLETCBV3:5000 FLETCHBV:5000 SBRYBND:5000
SCOSINE:5000 SCOND1LS:5002 BRATU1D:5003 FLETCBV3:10000
FLETCHBV:10000 SCOSINE:10000 SCURLY10:10000 DRCAV3LQ:10816
SSCOSINE:100000

Table 4: The summary results for hard problems
stopping test: ‖g‖∞ ≤ 1e-06, sec ≤ 7200, nf2g ≤ 50 ∗ n + 200000
57 of 98 problems solved mean efficiency in %
dim∈[1,100001] # of anomalies for cost measure
solver solved #100 !100 Tmean #n #t #f nf2g ng nf sec
LMBOPT lmb 50 13 13 224127 44 4 0 36 41 28 15
ASACG asa 50 20 20 104569 31 0 17 42 42 39 50
LMBFG-EIG-MS lt6 46 24 24 157855 41 1 10 39 35 41 25
28 of 57 problems without bounds solved mean efficiency in %
solver solved #100 !100 Tmean #n #t #f nf2g ng nf sec
ASACG asa 26 7 7 170316 22 0 9 38 35 35 44
LMBFG-EIG-MS lt6 24 15 15 247233 26 1 6 38 35 39 21
LMBOPT lmb 21 6 6 247561 33 3 0 27 31 20 11
stopping test: ‖g‖∞ ≤ 1e-06, sec ≤ 7200, nf2g ≤ 50 ∗ n + 200000
29 of 41 problems with bounds solved mean efficiency in %
dim∈[1,100001] # of anomalies for cost measure
solver solved #100 !100 Tmean #n #t #f nf2g ng nf sec
LMBOPT lmb 29 7 7 207158 11 1 0 48 54 38 21
ASACG asa 24 13 13 33344 9 0 8 47 46 45 58
LMBFG-EIG-MS lt6 22 9 9 60353 15 0 4 40 36 45 31
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Fig. 5: (Ua)-(Ud): Performance profiles for unconstrained hard problems (1 ≤ n ≤ 100001)
in terms of the ng/(best ng), nf/(best nf), nf2g/(best nf2g), and sec/(best sec) effi-
ciencies, respectively. (Ba)-(Bd): Performance profiles for bound constrained hard problems
(1 ≤ n ≤ 100001) in terms of the ng/(best ng), nf/(best nf), nf2g/(best nf2g), and
sec/(best sec) efficiencies, respectively. (a)-(d): Performance profiles for both unconstrained
and bound constrained hard problems (1 ≤ n ≤ 100001) in terms of the ng/(best ng), nf/(best
nf), nf2g/(best nf2g), and sec/(best sec) efficiencies, respectively. ρ designates the percent-
age of problems solved within a factor τ of the best solver. Problem solved by no solver are
ignored.

5.6 Recommendations

In this section, we recommend a solver choice based on our findings. The choice
depends on the problem dimension, the presence or absence of constrains, the desired
robustness, and the relative costs of the function and gradient evaluations shown in
Subfigures (a)-(c) of Figure 6.
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Fig. 6: (a) Flow chart for unconstrained problems classified by problems, (b) Flow chart for
bound constrained problems classified by the problem dimension, (c) Flow chart for hard
problems classified by constraint. Here L-E-M stands for LMBFG-EIG-MS.
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24. E.D. Dolan and J.J. Moré. Benchmarking optimization software with performance profiles.
Math. Program. 91 (2001), 13.

25. Z. Dostál. Box constrained quadratic programming with proportioning and projections.
SIAM J. Optim 7 (1997), 871–887.

26. Z. Dostál. A proportioning based algorithm with rate of convergence for bound constrained
quadratic programming. Numer. Algorithms 34 (2003), 293–302.

27. Z. Dostál, A. Friedlander, and S. A. Santos. Solution of coercive and semicoercive contact
problems by feti domain decomposition. Contemp. Math. 218 (1998), 82–93.

37



28. J. C. Dunn. On the convergence of projected gradient processes to singular critical points.
J. Optim. Theory Appl. 55 (1987), 203–216.

29. R. Fletcher. On the Barzilai-Borwein method. Optimization and Control with Applications
(2005), 235–256.

30. R. Fletcher and C. M. Reeves. Function minimization by conjugate gradients. The Com-
puter J, 7 (February 1964), 149–154.

31. P. E. Gill, W. Murray, and M. H. Wright. Practical Optimization. Academic Press, London
(1981).

32. W. Glunt, T. L. Hayden, and M. Raydan. Molecular conformations from distance matrices.
J. Comput. Chem. 14 (1993), 114–120.

33. A. Goldstein and J. Price. An effective algorithm for minimization. Numer. Math. 10
(1967), 184–189.

34. N. I. M. Gould, D. Orban, and Ph. L. Toint. GALAHAD, a library of thread-safe fortran
90 packages for large-scale nonlinear optimization. ACM Trans. Math. Softw. (TOMS)
29 (December 2003), 353–372.

35. N. I. M. Gould, D. Orban, and Ph. L. Toint. CUTEst: a constrained and unconstrained
testing environment with safe threads for mathematical optimization. Comput. Optim.
Appl. 60 (2015), 545–557.

36. L. Grippo, F. Lampariello, and S. Lucidi. A nonmonotone line search technique for new-
ton’s method. SIAM J. Numer. Anal. 23 (1986), 707–716.

37. L. Grippo and M. Sciandrone. Nonmonotone globalization techniques for the Barzilai-
Borwein gradient method. Comput. Optim. Appl. 23 (2002), 143–169.

38. W. W. Hager. Dual techniques for constrained optimization. J. Optim. Theory Appl. 55
(1987), 37–71.

39. W. W. Hager. Analysis and implementation of a dual algorithm for constrained optimiza-
tion. J. Optim. Theory Appl. 79 (1993), 427–462.

40. W. W. Hager and H. Zhang. CG DESCENT user’s guide. Technical report, Department
of Mathematics, University of Florida, Gainesville, FL (2004).

41. W. W. Hager and H. Zhang. A new conjugate gradient method with guaranteed descent
and an efficient line search. SIAM J. Optim. 16 (2005), 170–192.

42. W. W. Hager and H. Zhang. Algorithm 851: CG DESCENT, a conjugate gradient method
with guaranteed descent. ACM Trans. Math. Softw. 32 (2006), 113–137.

43. W. W. Hager and H. Zhang. A new active set algorithm for box constrained optimization.
SIAM J. Optim. 17 (2006), 526–557.

44. W. W. Hager and H. Zhang. A survey of nonlinear conjugate gradient methods. Pac. J.
Optim. 2 (2006), 35–58.

45. M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems.
J. Res. Nat. Bur. Stand. 49 (1952), 409–436.

46. W. Huyer and A. Neumaier. MINQ8: general definite and bound constrained indefinite
quadratic programming. Comput. Optim. Appl. 69 (October 2017), 351–381.

47. M. Kimiaei and A. Neumaier. Testing and tuning optimization algorithm. Preprint,
Vienna University, Fakultät für Mathematik, Universität Wien, Oskar-Morgenstern-Platz
1, A-1090 Wien, Austria (2019).

48. Y. Lin and C. W. Cryer. An alternating direction implicit algorithm for the solution
of linear complementarity problems arising from free boundary problems. Appl. Math.
Optimization 13 (1987), 1–17.

49. W. Liu and Y. H. Dai. Minimization algorithms based on supervisor and searcher coop-
eration. J. Optim. Theory Appl. 111 (2001), 359–379.

50. P Lötstedt. Solving the minimal least squares problem subject to bounds on the variables.
BIT 24 (1984), 206–224.

51. J. M. Mart́ınez. BOX-QUACAN and the implementation of augmented lagrangian al-
gorithms for minimization with inequality constraints. Comput. Appl. Math. 19 (2000),
31–36.
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