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Abstract. For the unconstrained global optimization of black box functions, this paper
presents a new stochastic algorithm called VSBBO. In practice, VSBBO matches the quality
of other state-of-the-art algorithms for finding, with reasonable accuracy, a global minimizer
in small and large dimensions, or at least in the majority of cases a point as good as
competing algorithms.

For smooth, everywhere defined functions, it is proved that, with probability arbitrarily
close to 1, one finds with O(nǫ−2) function evaluations a point with gradient 2-norm ≤ ǫ. In

the smooth convex case, this number improves to O(nǫ−1) and in the smooth strongly convex

case to O(n log ǫ−1). This matches the recent complexity results by Bergou, Gorbunov and
Richtárik for reaching a slightly different goal, namely the expected gradient 2-norm ≤ ǫ.
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1 Introduction

We consider the unconstrained optimization problem of minimizing a function f : Rn →
R ∪ {inf, NaN} by an oracle that returns for a given x ∈ R

n the function value f(x). This
problem (see, e.g., [6, 27]) is usually called black box optimization (BBO) or derivative-free
optimization (DFO). Neither gradients nor Lipschitz constants nor structural information
about f are assumed to be available. A huge literature exists about the problem, and we
only mention a few pointers to the literature.
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The techniques for solving BBO problems fall into two classes, deterministic and stochastic
methods. We mainly discuss the stochastic case; for deterministic methods see, e.g., the
book by Conn et al. [6] and its many references.

Our goal in this paper is to describe a new, practically very efficient stochastic method for
which good complexity results can be proved. Stochastic methods for BBO go back to [29]
and were later discussed especially in the framework of evolutionary optimization [3, 16, 28].
An algorithm loosely related to our new one (but without complexity guarantees) is the
Hit-and-Run algorithm by Bélisle [4]. A multistart clustering global optimization method
called GLOBAL was presented by Csendes et al. [7] for bound constrained global BBO.
The covariance matrix adaptation evolution strategy (CMA-ES) was introduced by Auger

& Hansen [3]. Past software of our group on BBO includes the deterministic algorithms
GRID [11, 12] and MCS [17] and the stochastic algorithms SnobFit [18] and VXQR [23].

1.1 Complexity

The goal is to find an efficient algorithm that, starting from a point x0, finds with with
high probability and at most N(ε) function evaluations a point xbest satisfying 1

f(xbest) ≤ sup{f(x) ≤ f(x0) | ‖g(x)‖∗ ≤ ε}. (1)

Here we use a scaled 2-norm ‖p‖ and its dual norm ‖g‖∗ of p, g ∈ R
n, defined by

‖p‖ :=

√∑
p2

i /s2
i , ‖g‖∗ :=

√∑
s2

i g
2
i (all si > 0) (2)

in terms of a positive scaling vector s ∈ R
n.

Complexity bounds limit the size of N(ε). The appropriate asymptotic form for the ex-
pression N(ε), found by Gratton et al. [14], Bergou, Gorbunov & Richtárik [5],
and Nesterov & Spokoiny [21, 22], depends on the properties (smooth, smooth convex,
or smooth strongly convex) of f ; cf. Subsection 2.1 below. Standard assumptions for the
complexity analysis of BBO algorithms are:

(A1) The function f is continuously differentiable on R
n, and its gradient is Lipschitz

continuous with Lipschitz constant L.

(A2) On the level set
L(x0) := {x ∈ R

n | f(x) ≤ f(x0)}
of x0, the objective function f is bounded from below.

Gratton et al. [14] studied direct search with probabilistic descent. If, in each poll step,
one chooses a fixed number of directions uniformly independently distributed on the unit

1To see the meaning of the condition (1) we consider the example of a strictly convex quadratic function
f(x) = ξ + cT x + 1

2
xT Gx with symmetric, positive definite G. If x̂ denotes the minimizer then (1) is

equivalent with f(x) − f(x̂) ≤ ε/2λmin, where λmin denotes the smallest eigenvalue of G. Indeed, the
maximum is attained at x = x̂ + p, where p is an eigenvector of G of length λ−1

min

√
ε corresponding to the

smallest eigenvalue. Thus the flattest direction on a level set determines the quality of the resulting bound.
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case goal complexity

nonconvex E(‖g‖∗) ≤ ε O
(
nε−2

)

convex E(‖g‖∗) ≤ ε O
(
nε−1

)

convex E(f − f̂) ≤ ε O
(
nε−1

)

strongly convex E(‖g‖∗) ≤ ε O
(
n log ε−1

)

strongly convex E(f − f̂) ≤ ε O
(
n log ε−1

)

Table 1: Complexity results for stochastic BBO in expectation (Bergou et al. [5])

sphere, they proved that with overwhelmingly high probability a complexity bound O(nε−2)
holds. Bergou et al. [5] and Nesterov & Spokoiny [22] generalized this result to give
algorithms with complexity results for the nonconvex, convex and strongly convex case
shown in Table 1. In each case, the bounds are better by a factor of n than the best known
complexity results for deterministic algorithms (by Konečný & Richtárik [19]) given in
Table 2. Of course, being a stochastic algorithm, the performance guarantee obtained by
Bergou et al. is slightly weaker, only valid in expectation.

case goal complexity

nonconvex ‖g‖∗ ≤ ε O
(
n2ε−2

)

convex ‖g‖∗ ≤ ε O
(
n2ε−1

)

convex f − f̂ ≤ ε O
(
n2ε−1

)

σ-strongly convex ‖g‖∗ ≤ ε O
(
n2 log ε−1

)

σ-strongly convex f − f̂ ≤ ε O
(
n2 log ε−1

)

Table 2: Complexity results for deterministic BBO (Konečný & Richtárik [19])

case goal complexity

nonconvex Pr(‖g‖∗ ≤ ε) ≥ 1 − η O
(
nε−2

)

convex Pr(‖g‖∗ ≤ ε) ≥ 1 − η O
(
nε−1

)

convex Pr(f − f̂ ≤ ε) ≥ 1 − η O
(
nε−1

)

σ-strongly convex Pr(‖g‖∗ ≤ ε) ≥ 1 − η O
(
n log ε−1

)

σ-strongly convex Pr(f − f̂ ≤ ε) ≥ 1 − η O
(
n log ε−1

)

Table 3: Complexity results for stochastic BBO with probability 1 − η, for fixed 0 < η < 1
(present paper)

1.2 Algorithms and data structures

In the present paper we describe and analyze a new stochastic method, the Vienna stochastic

black box optimization algorithm (VSBBO). It gives the same order of complexity as the one
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by Bergou et al. but with a guarantee that holds with probability arbitrarily close to 1; see
Table 3. Numerical results in Section 5 show that, in practice, VSBBO matches the quality of
other state-of-the-art algorithms for BBO, including those with good heuristics but without
a complexity guarantee.

To be competitive with the state of the art – which means finding, with reasonable accuracy,
a global minimizer in small and large dimensions, or at least in the majority of cases
a point as good as competing algorithms – requires our algorithm to be quite complex.
As a consequence, the algorithm manipulates many quantities, which for convenience are
grouped into a number of separate data structures to which the subalgorithms may have
access if needed. On the other hand, to be able to prove complexity results requires a
detailed description of all steps. To present the algorithms in a concise way we compiled
the variables of all data structures in Table 5, and the in-out dependence of the algorithms
(described later in full detail) on the data structure in Table 4. Flow charts for setScale,
MLS, FDS, and VSBBO can be found in Figures 7 and 6 of Appendix B.

Algorithm 2.2 function [step] = updateCum(point, step, tune)

Algorithm 2.3 function [step] = direction(point, step, par, tune)

Algorithm 2.4 function [point] = updateXF(point, tune)

Algorithm 2.6 function [point, par] = MLS(fun, point, step, par, tune)

Algorithm 3.1 function [point, step, par] = setScales (fun, point, step, par, tune)

Algorithm 3.2 function [point] = FDS(fun, point, step, par, tune)

Algorithm 3.4 function [x,f ] = VSBBO(fun, x, tune)

Table 4: List of algorithms defined in present paper. The main algorithm VSBBO solves a
BBO problem; the others are called within VSBBO.

VSBBO initally calls the algorithm setScales to estimate a good scaling of norms, step
lengths, and related control parameters. Then it uses in each iteration the fixed decrease
search algorithm FDS, aimed at repeatedly reducing the function value by an amount of at
least ∆ to update the best point. If no progress is made in a call to FDS, ∆ is reduced by a
factor of 4. Once ∆ is below a minimum threshold, the algorithm stops. Both setScales

and FDS work by making repeated calls to the multi-line search MLS. MLS polls in a number
of suitable chosen directions (defined by direction) in a line search fashion a few objective
function values each in the hope of reducing the objective by more than ∆. direction

generates 4 kinds of direction vectors: heuristic directions, subspace directions, random
directions, and cumulative directions, explained in more detail in Subsections 2.2 and 2.3.
Finally, updateXF and updateCum are auxiliary routines for updating the data needed for
calculating subspace steps and cumulative steps, respectively.

In the detailed descriptions ofVSBBO, given below, we use a pseudo-Matlab notation. In
particular, the notation .∗ denotes componentwise multiplication, == is the comparison
operator for equality, and A:k denotes the kth column of a matrix A.
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fun (function handle for the objective function f)

point (structure with information about points and function values)

m, X, F (list of the m best points so far and their function values)
b, x = X:b, f = Fb (best point and its function value)
xinit, finit (initial point and its function value)
xr, fr (newest point and its function value)
xm, fm (point xr − p and its function value)
xl, fl (point at xr − 2p and its function value)

step (structure with information about the step management)

s (scaling vector), p (random search direction), dp (scaled length of p)
δmin, δmax (minimum/maximum norm of trial steps)
δ (norm of trial steps), ∆ (threshold for good improvement)
∆min, ∆max (minimal/maximal threshold for good improvement)
q (cumulative step), r (cumulative gain)

par (structure with parameters modified during the search)

T (maximal number of directions in MLS)
nf (number of function evaluations used), λ (approximate Lipschitz constant)
good (sufficiently improved function value?), ss (are we in setScale?)
dir (direction type), state (state of cumulative step)
hs, hss (two parameters for heuristic direction)

tune (structure with fixed parameters for tuning the performance)

mmax ≥ 3 (maximum number of best points kept)
T0 ≥ mmax (maximal number of multi-line searches in setScale)
H ≥ 1 (maximal number of heuristic directions in MLS)
S ≥ 3 (maximal number of subspace directions in MLS)
R ≥ 1 (number of random direction per subspace direction in MLS)
E ≥ 1 (maximal number of extrapolations in MLS)
scSub (scale subspace direction?), scCum (scale cumulative direction?)
cum (cumulative step type, 0=none, 1, or 2)
a (bound for cumulative step size)
∆min, ∆max (minimal/initial maximal threshold for good improvement)
δinit (initial norm of trial steps)
γ1 > 0 (factor for finding δ), γ2 > 0 (factor for adjusting ∆max)
γ3 > 1 (factor for extrapolation test), γ4 (factor for finding initial λ)
γ5 (factor for subspace step), γ6 (factor for adjusting δmin)
γ7 (factor for adjusting δmax), γ8 (factor for adjusting heuristic direction)

Table 5: Global data structure for the allgorithms of the present paper

In recent years, there has been an increasing interest in finding the best tuning parameters
configuration for derivative-free solvers with respect to a benchmark problem set; see, e.g.,
[2, 24, 25]. In Table 5, there are 6 integral, 2 binary, 1 ternary, and 12 continuous tuning
parameters, giving a total of 21 parameters for tuning our algorithm. A small amount of
tuning was done by hand. Automatic tuning of VSBBO will be considered elsewhere.
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2 Line search techniques for BBO

In this section, we describe methods that try to achieve a good decrease in the function
value using line searches along specially chosen directions.

Subspace directions point into the low-dimensional affine subspace spanned by a number
of good points kept from previous iterations.

Random directions are used to exploit the fact that stochastic black box optimization
methods have a worst case complexity superior to those of deterministic algorithms.

Cumulative directions are based on a simple separable model assumption.

A line search then polls one or more points along the lines in each chosen direction starting
at the currently best point. Several such line searches are packaged together into a multi-line
search, for which strong probabilistic results can be proved.

The details are chosen in such a way that failure to achieve the desired descent implies that,
with high probability, a good bound on the gradient is obtained.

2.1 Probing a direction

First we give a theoretical test that either results in a gain of ∆ or more in function value,
or gives a small upper bound for the norm of at least one of the gradient encountered.

Assumption (A1) implies that for every x, p ∈ R
n, we have

f(x + p) − f(x) = g(x)T p +
1

2
γ‖p‖2, (3)

where γ depends on x and p and satisfies one of

|γ| ≤ L, (general case) (4)

0 ≤ γ ≤ L, (convex case) (5)

0 < σ ≤ γ ≤ L. (strongly convex case) (6)

In all three cases,

g(x)T p − 1

2
L‖p‖2 ≤ f(x + p) − f(x) ≤ g(x)T p +

1

2
L‖p‖2. (7)

Continuity and condition (A2) imply that a minimizer x̂ exists and

r0 := sup
{
‖x − x̂‖ | f(x) ≤ f(x0)

}
< ∞. (8)

(It is enough that this holds with x0 replaced by some point found during the iteration,
which is then taken as x0).

7



2.1 Proposition. Let x, p ∈ R
n and ∆ ≥ 0. Then (A1) implies that

L ≥ |f(x + p) + f(x − p) − 2f(x)|
‖p‖2

, (9)

and one of the following holds:

(i) f(x + p) < f(x) − ∆,

(ii) f(x + p) > f(x) + ∆ and f(x − p) < f(x) − ∆.

(iii) |gT p| ≤ ∆ +
1

2
L‖p‖2,

Proof. Taking the sum of (7) and the formula obtained from it by replacing p with −p gives
(9).

Assume that (iii) is violated, so that ±gT p = |gT p| > ∆ + 1
2
L‖p‖2 for an appropriate choice

of the sign. Then by (3) with ∓p in place of p,

f(x ∓ p) − f(x) ≤ ∓g(x)T p +
1

2
L‖p‖2 < −∆.

For the lower sign we conclude that (i) holds. For the upper sign we get the second half of

(ii), and the first half follows from f(x + p) − f(x) ≥ g(x)T p − 1
2
L‖p‖2 > ∆. ⊓⊔

Proposition 2.1 will play a key role in the construction of our multi-line search MLS detailed
in Subsection 2.4:

• It presents a lower bound for the Lipschitz constant L which can be used to find
reasonable estimates for L.

• If (i) holds, then the step p gives a gain of at least ∆.

• If (ii) holds, then the step −p gives a gain of at least ∆.

• If (iii) holds, possibly none of the steps ±p give a gain of ∆ or more. Instead we have
a useful upper bound for the directional derivative.

Care must be taken to ensure that the book-keeping needed for the evaluation of the lower
bound for the Lipschitz constant comes out correctly. To ensure this during a line search, we
always use x for the best point found, and rescale p such that the next evaluation is always
at x + p and a former third evaluation point is at x − p. The function values immediately
after the next evaluation are then

fl := f(x − p), fm := f(x), fr := f(x + p). (10)

At this stage we can compute the lower bound

L := |fl + fr − 2fm|/‖p‖2
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for the Lipschitz constant, valid by (9). Afterwards, whenever fr < fm, the best point is
updated by overwriting x + p over x, with the consequence that then

fl := f(x − 2p), fm := f(x − p), fr := f(x). (11)

This is used in the cumulative contributions discussed now.

2.2 A cumulative direction

We consider two possibilities to accumulate past directional information into a cumulative
search direction:

(i) The first cumulative direction is model independent, computed by p = x − xinit, where
x is the best point and xinit the initial point of the current multi-line search. Here the
idea is that many small improvement steps accumulate to a direction pointing from the
starting point into a valley, so that more progress can be expected by going further into
this cumulative direction.

(ii) The second cumulative direction assumes a separable quadratic model of the form

f
(
x +

∑

i∈I

αipi

)
≈ f(x) −

∑

i∈I

ei(αi) (12)

with quadratic univariate functions ei(α) vanishing at α = 0. Here I is the set of directions
polled at least twice, and pi is the corresponding direction as rescaled by MLS.

By construction, we have for any i ∈ I three function values at equispaced arguments. We
write the quadratic interpolant as

f(x + αp) = f − α

2
d +

α2

2
h = f − e(α),

where e(α) :=
α

2
(d − αh). If fr < fm, the last evaluated point was the best one, fr ≤

min(fl, fm). In this case, (11) holds and we have

d := 4fm − 3fr − fl, h := fr + fl − 2fm.

Otherwise the last evaluated point was not the best one, fm ≤ min(fl, fr). In this case,
(10) holds and we have

d := fr − fl, h := fr + fl − 2fm.

The minimizer of the quadratic interpolant restricted to the interval [−a, a] is

α =
{

a if d ≥ 0,
−a if d < 0

in case h ≤ 0. Otherwise, we have

α =
{

min(a, d/2h) if d ≥ 0,
max(−a, d/2h) if d < 0.
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Assuming the validity of the quadratic model (12), we find the model optimizer by additively
accumulating the estimated steps αp and gains e into a cumulative step q with anticipated
gain r, by the following algorithm:

2.2 Algorithm. (cumulative update)

Purpose: Update the cumulative direction

function [step] = updateCum(point, step, tune);

if fr < fm, d = 4fm − 3fr − fl; else d = fr − fl; end;
h = fr + fl − 2fm;
if h ≤ 0,

if d ≥ 0, α = a; else α = −a; end;
else

if d ≥ 0, α = min(a, d/2h); else α = max(−a, d/2h); end;
end;
q = q + αp; r = r + 0.5α(d − αh); % update q and r

2.3 Choice of search direction

The following algorithm generates 4 kinds of direction vectors: heuristic directions (dir =
1), subspace directions (dir = 2), random directions (dir = 3), and cumulative directions
(dir = 4).

The scaling of the search directions to norm δ may be done with the intention to approx-
imately minimize the final bound

√
cnΓ(δ) for the gradient norm in (16) below. For fixed

∆, the scale-dependent factor Γ(δ) = Lδ + 2∆/δ (see (17) below) is smallest for the choice

δ̂ =
√

2∆/L. (13)

However, in practice, L is unknown and we replace it by the approximation λ from MLS.
Moreover, we safeguard δ by enforcing sensible positive lower and upper bounds.
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2.3 Algorithm. (direction generator)

Purpose: Create subspace, random, or cumulative direction

function [step, par] = direction(point, step, par, tune);

switch dir

case 1 % heuristic direction
nmax = max(n, 100); hs = randi([1 nmax], 1); p = rand(n, 1) − 0.5;
hss = nmax/(nmaxγ8 + hs); p = hss ∗ p; scale = 1;

case 2 % subspace direction

α = rand(m, 1) − 0.5; α = αγ5/‖α‖2; p =
m∑

k=1

αk(X:k − X:b); scale=scSub;

case 3 % random direction p
p = rand(n, 1) − 0.5; scale=1;

case 4 % cumulative direction p
p = q; scale=scCum;

end;
if scale % scale to ‖p‖ = δ

if λ == 0, λ = 1; end;

δ = max
(
δmin, min

(√
γ1∆/λ, δmax

))
; p = s. ∗ p ∗ (δ/‖p‖); dp=δ;

else % evaluate ‖p‖
dp=‖p‖;

end;

The heuristic direction enhances the global search properties. It is a random direction but
with random scaling, decreasing on average with the number of function evaluations used.
The subspace direction generated by direction with par.dir = 2 requires to keep a matrix
X whose columns are the m best points and a vector F with their function values. Initially
m = 1, to be increased up to a maximum of mmax; later we overwrite each time the worst
point. The following algorithm updates both X and F :

2.4 Algorithm. subspace update

Purpose: Update subspace information

function [point] = updateXF(point, tune);

if m == mmax, [f
w

, i
w

] = max(F ); % find worst point
else m = m + 1; i

w
= m;

end
X:iw

= xr; F (i
w

) = fr;
b = i

w
; % select the index of best point

2.5 Proposition. For the random search direction generated by direction with dir = 3,

11



the output p of direction satisfies ‖p‖ = δ and, with probability ≥ 1

2
,

‖g(x)‖∗‖p‖ ≤ 2
√

cn|g(x)T p| (14)

with a positive constant c ≈ 4/7.

Proof. Define pi := pi/si and gi := sigi. Then by (2), gT p = gT p and ‖g‖∗ = ‖g‖2 and
‖p‖ = ‖p‖2; so the results of Appendix A apply with 4c = c0 ≈ 16/7. ⊓⊔

2.4 A multi-line search

The following multi-line search algorithm MLS polls in T suitable directions (defined by
direction) in a line search fashion a few objective function values each in the hope of
reducing the objective by more than ∆.

Schematically, MLS works as follows:

(i) At first, at most H iterations with heuristic directions are used.

(ii) Then, except in the final iteration, subspace directions alternate with R random
directions.

(iii) After generating T −1 directions without sufficient improvement of the function value,
a cumulative direction is used as final, T th direction in the hope of finding a model-
based gain.

(iv) For each direction generated, a line search is performed where the following happens:

• A step in the current direction is tried.

• If a large gain is found, a sequence of extrapolations is tried.

• If sufficient negative gain was found, a step in the opposite direction is tried.

• If a large gain is found in the opposite direction, a sequence of extrapolations is
tried.

(v) Once the algorithm has found an improvement of the function value of more than ∆
it ends after completion of the current line search.

MLS also updates an approximation λ for the Lipschitz constant L of the objective function.
Proposition 2.1 implies that

λ0 ≤ λ ≤ max(λ0, L) ≤ λ0 + L, (15)

where λ0 is the initial value of λ.
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2.6 Algorithm. A multi-line search (MLS)

Purpose: Improve function value along multiple directions

function [point, par] = MLS(fun, point, step, par, tune);

xm = X:b; fm = F (b); xinit = xm; finit = fm; nE = 0; r = 0; q = zeros(n, 1); t = 0;
state = −1; good = 0;
while t < T ,

switch state

case −1 % new direction
t = t + 1;
if ss, sub = (mod(t, R) == 0 & t < T ); else sub = 0; end;
if t ≤ H, dir=1; % pick heuristic step
elseif sub, dir=2; % pick subspace step
elseif t < T , dir=3; % pick random step
else % check for cumulative step

if cum == 1, q = x − xinit; % first cumulative step
elseif cum == 2 & r ≥ ∆, % second cumulative step
end;
if cum > 0 & all(q == 0),

dir=3; % pick random step
else

dir = 4; % pick cumulative step
if cum == 1, state=1; fl = finit; end; % use initial value

end;
end;
[step, par] = direction(point, step, par, tune);

case 0, % extrapolate at most T times
nE = nE + 1;
if nE == 1, fl=fm; else p = 2p; end;
xm = X:b; fm = F (b);

case 1, % opposite direction
p = −p; fl=fr;

end;
xr = xm + p; fr = fun(xr); nf = nf + 1; df = fm − fr;
if df > 0,

[point] = updateXF(point, tune); % update X and F
ext = (df > γ3∆); % large gain; extrapolate
sext = (nE < E & ext); % sequence large gain; sequence extrapolate
if sext, state = 0; continue; end;
% update λ and cumulative direction
λ = max(λ, |fl + fr − 2fm|/dp2);
if cum == 2, [step] = updateCum(point, par, tune); end;
if ∼ ext, xm = X:b; fm = F (b); end;

else

opp=(state < 0 & df < −∆); % opposite gain expected
if opp, state = 1; continue; end;
% update λ and cumulative direction
λ = max(λ, |fl + fr − 2fm|/dp2);
if cum == 2, [step] = updateCum(point, par, tune); end;

end;
gain = finit − F (b); good = (gain > ∆);
if good, return; end;
state = −1; % line search completed

end;
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We now prove that one obtains either a gain of ∆ or, with high probability, an upper bound
of ‖g‖∗ for at least one of the gradients encountered.

2.7 Theorem. Assume that (A1) holds.

(i) Algorithm 2.6 uses at most 2T + E function evaluations and does not increase f .

(ii) Suppose that 0 < η < 1 and T ≥ 1 + S + H + log2 η. If f did not decrease by more
than ∆ then, with probability ≥ 1 − η, the original point or one of the points evaluated
with better function values has a gradient g with

‖g‖∗ ≤
√

cnΓ(δ), (16)

where c is the constant in Proposition 2.5 and

Γ(δ) := Lδ +
2∆

δ
. (17)

Proof. (i) In the while loop of MLS, a direction p is generated and at most two function
values are computed, unless an extrapolation step is performed. In this case, at most E
additional function values are computed during the extrapolation stage, and the loop is
ended. As a result, MLS uses at most 2T + E function evaluations. Clearly, the function
value of the best point does not increase.

(ii) Assume that f did not decrease by more ∆. For t = 1, . . . , T , let pt be the tth
search direction generated by MLS, and let xt be the best point obtained before searching
in direction pt. Then Proposition 2.1 gives

|g(xt)
T pt| ≤ ∆ +

L

2
‖pt‖2 = ∆ +

L

2
δ2 =

δ

2
Γ(δ)

for t = 1, . . . , T . Let R := {H < t < T | sub(t) = 0}, where sub(t) is the value of sub

in iteration t. For t ∈ R, the search direction was generated by direction as a random
direction, hence Proposition 2.5 implies that for t ∈ R,

‖g(xt)‖∗ = ‖g(xt)‖∗‖pt‖/δ ≤ 2
√

cn|g(xt)
T pt| ≤

√
cnΓ(δ)

holds with probability 1
2

or more. Therefore ‖g(xt)‖∗ ≤ √
cnΓ(δ) fails with a probability

pt ≤ 1
2

for any fixed t ∈ R. Therefore the probability p that (16) holds for at least one of

the gradients g = g(xt) (t ∈ R) is p = 1 −
T −1∏

t=1

pt ≥ 1 − 21+S+H−T . ⊓⊔

3 A stochastic descent algorithm for BBO

3.1 Setting the scales

Our stochastic algorithm is sensitive to the choice of the maximal desired gain ∆max and
the initial choice of the approximate Lipschitz constant λ. The following algorithm gives
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practically useful heuristics for choosing maximal desired gain ∆max and for initializing λ.
At the same time, it is used to estimate a sensible scaling vector s. The algorithm performs
T0 iterations of MLS, updating both X and F by updateXF. It estimates the scaling vector
s from information stored in X and ∆max and λ by from information stored in F .

3.1 Algorithm. Setting the scales (setScales)

Purpose: Estimate ∆max, initial λ and s

function [point, step, par] = setScales (fun, point, step, par, tune);

% get point
n = length(x); f = fun(x); X = x; F = f ; b = 1; m = 1;
% get step
∆ = ∆max; δmax = δinit; δ = δmax; δmin = δmax;
% get par
λ = 0; T = H + (S − 1)(R + 1) + 2;
ss = 0; % ignore subspace direction in direction

% stage 1: select only heuristic/random/cumulative directions in MLS

for t = 1 : T0,
[point, par] = MLS(fun, point, step, par, tune);
if m == 1, [point] = updateXF(point, tune); end;

end;
ss = 1; % add subspace direction to direction

% stage 2: estimate s, ∆max and initial λ
for i = 1 : m, dX:i = X:i − X:b; end;
s = sup

i=1:m
(dX:i); s(s == 0) = 1;

% get maximal desired gain ∆max

dF = median
i=1:m

|Fi − Fb|;
if dF == 0,

mdX = mean
i=1:m

‖dX:i‖;

if mdX 6= 0,

∆max = γ2

√
mdX; ∆ = ∆max; λ = γ4

√
mdX/n;

else
if ∆max == 0, λ = 1/

√
n; else λ = ∆max/

√
n; end

end
else

∆max = γ2dF; ∆ = ∆max; λ = γ4dF/
√

n;
end
δmin = γ6hss; δmax = γ7hss; δ = δmax;

3.2 Probing for fixed decrease

Based on the preceding results we present a fixed decrease search algorithm whose goal is
to use repeated calls to the multi-line search MLS in order to improve the function value
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each time by a fixed amount ∆.

3.2 Algorithm. Fixed Decrease Search (FDS)

Purpose: Repeatedly improve function value by > ∆

function [point] = FDS(fun, point, step, par, tune);

while 1,
[point, par] = MLS(fun, point, step, par, tune);
if ∼ good, break; end;

end;

3.3 Theorem. Assume that (A1) and (A2) hold. Then:

(i) The number of function evaluations of FDS is bounded by (2T + E)
f0 − f̂

∆
, where f0 is

the initial value of f and f̂ is the minimal function value.

(ii) Let η1 := 2−(T −S−H−1). Then, with probability ≥ 1 − η1,

‖g‖∗ ≤
√

cn
(
Lδmin +

√
L′∆ +

2∆

δmax

)
(18)

for at least one of the gradients g encountered. Here c is the constant from Proposition 2.5
and, if λ0 denotes the value of λ before the first execution of FDS,

L′ :=
L2γ1

λ0

+ 4L + 4
λ0 + L

γ1

. (19)

Proof. Because of (A2), f̂ is finite. Denote by fk the result of the kth execution of MLS. By
the definition of good, fk ≤ fk−1 −∆ for all but the last value of k. If a total of N iterations

were performed, we conclude that f̂ ≤ fN ≤ f0 − N∆, so that N ≤ f0 − f̂

∆
. Since each

iteration uses at most 2T + E function evaluations, (i) follows.

(ii) By Theorem 2.7, ‖g‖∗ ≤ √
cnΓ(δ) holds with probability ≥ 1 − η1. Thus it is sufficient

to show that

Γ(δ) ≤ Lδmin +
√

L′∆ +
2∆

δmax

. (20)

By definition of δ in direction, we have one of the following three cases:

Case 1: δ =

√
γ1∆

λ
. In this case,

Γ(δ) = Lδ +
2∆

δ
= L

√
γ1∆

λ
+ 2

√
λ∆

γ1

= Λ
√

∆,
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where

Λ := L

√
γ1

λ
+ 2

√
λ

γ1

. (21)

Case 2: δ = δmin ≥
√

γ1∆

λ
. In this case,

Γ(δ) = Lδmin +
2∆

δmin

≤ Lδmin + 2

√
λ∆

γ1

≤ Lδmin + Λ
√

∆.

Case 3: δ = δmax ≤
√

γ1∆

λ
. In this case,

Γ(δ) = Lδmax +
2∆

δmax

≤ L

√
γ1∆

λ
+

2∆

δmax

≤ Λ
√

∆ +
2∆

δmax

.

Thus in each case,

Γ(δ) ≤ Lδmin + Λ
√

∆ +
2∆

δmax

.

Now (20) follows since by (15) and (21), Λ2 =
L2γ1

λ
+ 4L +

4λ

γ1

≤ L′. ⊓⊔

3.3 The VSBBO algorithm

We now have all ingredients to formulate VSBBO, the Vienna stochastic black box optimiza-

tion algorithm. It uses in each iteration the fixed decrease search algorithm to update the
best point. If no progress is made in the corresponding FDS call, ∆ is reduced by a factor
of 4. Once ∆ is below a minimum threshold, the algorithm stops.

3.4 Algorithm. Vienna stochastic black box optimization (VSBBO)

Purpose: Solve stochastic black box optimization

function [x,f ] = VSBBO(fun, x, tune)

[point, step, par] = setScales (fun, point, step, par, tune);
while 1,

[point] = FDS(fun, point, step, par, tune);
% gain of ∆ unlikely with step of length δ
if ∆ ≤ ∆min, break; end;
% reduce ∆
∆ = ∆/4;

end;
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In Section 4, upper bounds are obtained for the total number of function evaluations of
VSBBO for the nonconvex, convex, and strictly convex case.

Appendix 5 provides numerical results, comparing VSBBO with the best previous black
box algorithms on a large benchmark of problems in low and high dimensions.

4 Complexity analysis of VSBBO

4.1 The general (nonconvex) case

4.1 Proposition. Assume that (A1) and (A2) hold. Let f0 be the initial and f̂ the optimal
function value. If ∆min > 0 then the number of function evaluations needed up to iteration
k by VSBBO, started at x0, is

nk < (2T + E)
(
T0 +

f0 − f̂

3∆min

)
.

Proof. In setScale, we need n0 ≤ (2T +E)T0 function evalutions. By construction, the kth

call to FDS uses ∆ = 41−k∆max, hence uses by Theorem 3.3(i) at most (2T + E)
f0 − f̂

41−k∆max

function evalutions. Therefore, the total number of function evaluations up to iteration k
is

nk ≤ (2T + E)T0 +
k∑

j=1

(2T + E)
f0 − f̂

41−k∆max

= (2T + E)T0 + (2T + E)(f0 − f̂)
4k − 1

3∆max

< (2T + E)
(
T0 +

f0 − f̂

3∆min

)

since ∆max ≥ 4k∆min. ⊓⊔

4.2 Theorem. Assume that (A1) and (A2) hold. With c from Proposition 2.5, let ζ ≥ 9c,
0 < η < 1, and let K be a positive integer. Then, for any ε > 0, if

T ≥ H + S + 1 + log2

K + 1

η
, (22)

max
(
4−K∆max,

ε2

ζL′n

)
≤ ∆min ≤ ε2

9cL′n
, (23)

δmin ≤ ε

3L
√

cn
, δmax ≥ 2ε

3L′
√

cn
, (24)

Algorithm 3.4 finds after at most O(nε−2) function evaluations with probability ≥ 1 − η a
point x with

‖g(x)‖∗ ≤ ε. (25)
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Proof. By the rule of updating ∆ in VSBBO, ∆k = 4−k∆max ≤ ∆min for k ≥ K. Hence at

most K steps of FDS are performed. By (22), we have η1 = 2−(T −H−S−1) ≤ η/(K +1). Thus
by Theorem 3.3(ii), we have, with probability ≥ 1 − (K + 1)η1 ≥ 1 − η, for at least one of
the gradients g encountered,

‖g‖∗ ≤ min
j=0:K

Γ(δj) ≤
√

cn
(
Lδmin +

√
L′∆min +

2∆min

δmax

)
≤ ε

3
+

ε

3
+

ε

3
= ε. (26)

Here we used (23) and (24). Moreover, by Proposition 4.1 and (23),

nK ≤ (2T + E)
(
T0 +

f0 − f̂

3∆min

)
≤ (2T + E)

(
T0 +

ζL′n

3ε2
(f0 − f̂)

)
= O

(
nε−2

)
.

⊓⊔

In the limiting case ∆min = δmin = 0, we obtain the following convergence result:

4.3 Corollary. Suppose that (A1) holds. Let fk be the function value at the end of the
kth iteration of VSBBO with ∆min = δmin = 0. Then

fk → −∞ or inf
k

‖gk‖∗ = 0.

Proof. Let S and U be the set of the successful and unsuccessful iterations generated by
Algorithm 3.4, respectively. We may assume that fk is bounded below, and have to show
that lim

k→∞

∆k = 0.

If the number of iterations is finite then S is finite. Let k0 ∈ S be maximal. Then the
updating rule for ∆k implies that ∆k = ∆k0

/4k−k0 → 0 as k → ∞. If the number of
iterations is not finite then S and U are infinite, and again ∆k → 0 as k → ∞. Theorem
3.3(ii) now implies that inf

k
‖gk‖∗ = 0. ⊓⊔

4.2 The convex case

4.4 Theorem. Let f be convex on L(x0) and assume that (A1) and (A2) hold. With c
from Proposition 2.5, let ζ ≥ 9c, 0 < η < 1, and let K be a positive integer. For any ε > 0,

if (22)–(24) hold then Algorithm 3.4 finds after at most O
(
nε−1

)
function evaluations with

probability ≥ 1 − η a point x with

‖g‖∗ ≤ ε, f − f̂ ≤ εr0, (27)

where r0 is given by (8).

19



Proof. By (A2), f has a minimizer x̂ and r0 < ∞. By Theorem 4.2, at most K steps of
FDS are performed. Let fk−1 be the results of the (k − 1)th execution of VSBBO satisfying
(25); hence k − 1 ≤ K. The convex case is characterized by (5), so that

f̂ ≥ fk−1 + gT
k−1(x̂ − xk−1).

We know from Theorem 4.2 that, with probability ≥ 1 − η, (25) holds and hence

fk−1 − f̂ ≤ gT
k−1(xk−1 − x̂) ≤ ‖gk−1‖∗‖xk−1 − x̂‖ ≤ εr0 (28)

by (8). (27) now follows from (25) and (28). Let f j
k (j = 0, . . . , Nk + 1) be the finite

sequence of function values generated by performing Nk + 1 steps of MLS at kth execution
of FDS, so that

fk ≤ fNk

k − ∆k ≤ fNk−1
k − 2∆k ≤ ... ≤ fk−1 − Nk∆k, (29)

where fk−1 := f 0
k and fk := fNk+1

k . From (28), (29) and the rule of updating ∆ in VSBBO,
we find

0 ≤ fk − f̂ ≤ fk−1 − f̂ − Nk∆k ≤ εr0 − Nk∆k = εr0 − Nk4k∆min,

leading to

Nk ≤ 4−k εr0

∆min

≤ 4−k 9r0cL′n

ε
(30)

by (23). The bound for the number of function evaluations is now obtained from Theorem
4.2 and (30):

nK ≤ (2T + E)
(
T0 +

K∑

j=1

Nj

)
≤ (2T + E)

(
T0 +

9r0cL′n

ε

K∑

j=1

4−j
)

≤ (2T + E)
(
T0 +

3r0cL′n

ε

)
= O

(
nε−1

)
.

⊓⊔

4.3 The strongly convex case

4.5 Theorem. Let f be convex on L(x0) and assume that (A1) and (A2) hold. Under

the assumptions of Theorem 4.2, Algorithm 3.4 finds after at most O
(
n log2 ε−1

)
function

evaluations with probability ≥ 1 − η a point x with

‖g‖∗ ≤ ε, f − f̂ ≤ ε2

2σ
, ‖x − x̂‖ ≤ ε

σ2
. (31)

Proof. By Theorem 4.3, at most K steps of FDS are performed. Let fk−1 be the results of
the (k − 1)th execution of VSBBO satisfying (25); hence k − 1 ≤ K. The strongly convex
case is characterized by (6), so that f has a minimizer x̂ and

f(y) ≥ f(x) + g(x)T (y − x) +
1

2
σ‖y − x‖2
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for any x and y in L(x0). For fixed x, the right-hand side of this inequality is a convex
quadratic function of y, minimal when its gradient vanishes. By (2), this is the case iff yi

takes the value xi − si

σ
gi(x), and we conclude that f(y) ≥ f(x) − 1

2σ
‖g(x)‖2

∗
for y ∈ L(x0).

Therefore

f̂ ≥ f(x) − 1

2σ
‖g(x)‖2

∗
. (32)

The replacement of x by xk−1 in (32) and (25) gives, with probability ≥ 1 − η,

fk−1 − f̂ ≤ ‖gk−1‖2
∗

2σ
≤ ε2

2σ
. (33)

Since the gradient vanishes at the optimal point, we get from Theorem 4.2 and (33)

‖x̂ − xk−1‖2 ≤ 2

σ
(fk−1 − f̂) ≤ ε

σ2
(34)

with probability ≥ 1 − η. By the rule of updating ∆ in VSBBO, we may use (29), where
Nk + 1 is the number of steps performed by MLS at the kth execution of FDS. By (33),

0 ≤ fk − f̂ ≤ fk−1 − f̂ − Nk∆ ≤ ε2

2σ
− Nk∆ ≤ ε2

2σ
− Nk∆min,

so that

Nk ≤ ε2

2σ∆min

≤ 9cL′n

2σ
(35)

by (23). Now Theorem 4.2 implies

nK ≤ (2T + E)
(
T0 +

K∑

j=1

Nj

)
≤ (2T + E)

(
T0 +

9cL′n

2σ
K

)

= (2T + E)
(
T0 +

9cL′n

σ
log2

(∆max

∆min

) 1

2

)

= (2T + E)
(
T0 +

9cL′n

σ
log2

3(cL′n∆max)
1

2

ε

)
= O

(
n log2 ε−1

)
.

⊓⊔

5 Numerical results

In this section we compare our new solver with other state-of-the-art solvers on a large
public benchmark.
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5.1 Test problems used

VSBBO was compared with other codes from the literature on all 549 unconstrained problems
from the CUTEst [13] collection of test problems for optimization with up to 1000 variables,
in case of variable dimension problems for all allowed dimensions in this range. To avoid
guessing the solution of toy problems with a simple solution (such as all zero or all one),
we shifted the arguments, for all i = 1, . . . , n, by

xi = (−1)i−1 m

m + i
,

where m = 2.
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Figure 1: The number of problems with at most d variables solved by at least one solver.
There were a total of 452 such problems; of these, 177 had dimension ≤ 20.

nf and msec denote the number of function evaluations and the time in milliseconds, respec-
tively. We limited the budget available for each solver by allowing at most 500 seconds of
run time and at most 2n2 +200n+5000 function evaluations for a problem with n variables.
A problem is considered solved if it reaches the target accuracy

qf := (f − fbest)/(finit − fbest) ≤ 0.05,

where finit is the function value of the starting point (common to all solvers) and fbest is
the best point known to us.

Note that this amounts to testing for finding the global minimizer to some reasonable
accuracy. We did not check which of the test problems were multimodal, so that descent
algorithms might end up in a local minimum only.
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The quadratic growth formula was used to ensure that most of the original problems could
be solved by some solver within the budget alloted. We excluded problem CHNRSNBM:25

of dimension 25 since it was not solved within the alloted budget by any of the solver
compared, leaving 452 problems. Figure 1 plots the number of problems with at most ≤ d
variables versus d.

5.2 Default parameters for VSBBO

VSBBO was implemented in Matlab; the source code is obtainable from

http://www.mat.univie.ac.at/~neum/software/VSBBO.

For our tests we used in tune the following parameter choices:

mmax = 3; T0 = 15; H = 10; S = 2; R = 10; E = 50;
scSub = 0; scCum = 0; cum = 2;
a = 1; ∆min = 0; ∆max = 0; δinit = 0.001;
γ1 = 1; γ2 = 0.01; γ3 = 2; γ4 = 0.001;
γ5 = 1; γ6 = 1; γ7 = 10; γ8 = 5000;

5.3 Codes compared

We compare VSBBO with the following solvers for unconstrained black box optimization.
For some of the solvers we had to choose options different from the default to make them
competitive.

• RDSfs, RDSvs and PRDS, obtained from the authors of Bergou et al. [5], are three
versions of a stochastic direct search method with good complexity guarantees.

• BFO, obtained from

https://sites.google.com/site/bfocode/file,

is a trainable stochastic derivative-free solver for mixed integer bound-constrained
optimization by Porcelli & Toint [25].

• CMA-ES, obtained from

http://cma.gforge.inria.fr/count-cmaes-m.php?Down=cmaes.m,

is the stochastic covariance matrix adaptation evolution strategy by Auger & Hansen

[3]. We used CMA-ES with the following parameters:

oCMAES.MaxFunEvals = nfmax; oCMAES.DispFinal = 0;

oCMAES.DispModulo = 0; oCMAES.LogModulo = 0;

oCMAES.SaveVariables = 0; oCMAES.MaxIter = Inf;
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• GLOBAL, obtained from

http://www.mat.univie.ac.at/~neum/glopt/contrib/global.f90,

is a stochastic multistart clustering global optimization method by Csendes et al.
[7]. We used GLOBAL with the following parameters:

oGLOBAL.MAXFNALL = nfmax; oGLOBAL.MAXFN = nfmax/10;
oGLOBAL.N100 = min(10n, nfmax/10); oGLOBAL.DISPLAY =’off’;
oGLOBAL.METHOD =‘unirandi’.

• MCS, obtained from

https://www.mat.univie.ac.at/~neum/software/mcs/,

is the deterministic global optimization by multilevel coordinate search by Huyer &

Neumaier [17]. We used MCS with the following parameters:

iinit = 1; nfMCS = nfmax; smax = 5n + 10; stop = 3n; local = 50;
gamma = eps; hess = ones(n, n); prt = 0.

• BC-DFO, obtained from Anke Troeltzsch (personal communication), is a deterministic
model-based trust-region algorithm for derivative-free bound-constrained minimiza-
tion by Gratton et al. [15].

• PSM, obtained from

http://ferrari.dmat.fct.unl.pt/personal/alcustodio,

is a deterministic pattern search method guided by simplex derivatives for use in
derivative-free optimization proposed by Custódio & Vicente [8, 9].

• fminseach, obtained from the Matlab Optimization Toolbox at

https://ch.mathworks.com/help/matlab/ref/fminsearch.html,

is the deterministic Nelder-Mead simplex algorithm by Lagarias et al. [20]. We use
fminseach with the options set by optimoptions as follows:

opts = optimset(‘Display’,‘Iter’, ‘MaxIter’, Inf,‘MaxFunEvals’, ...
limits.nfmax,‘TolX’, 0, ‘TolFun’,0,‘ObjectiveLimit’,-1e-50);

VSBBO and the other stochastic algorithms use random numbers, hence give slightly different
results when run repeatedly. Each solver was run only once for each problem. However, we
checked in preliminary tests that the summarized results reported were quite similar when
another run was done.

Some of the other solvers have additional capabilities that were not used in our tests; e.g.,
allowing for bound constraints or integer constraints, or for noisy function values). Hence
our conclusions are silent about the performance of these solvers outside the task of global

unconstrained black box optimization with noiseless function values (apart from rounding
errors).
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5.4 Results for small dimensions (n ≤ 20)

Perfomance plots [10] for two cost measures nf (number of function evaluations needed to
reach the target) and msec (time used in milliseconds) are shown in Figure 2.
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Figure 2: Small dimensions: Performance plots for (a) nf/(best nf) and (b) msec/(best

msec). ρ denotes the percentage of problems solved within a factor τ of the best solver.

For a more refined statistics, we adapted the test environment described in [1], Azmi et al.
to work with derivative-free solvers. For a given collection S of solvers, the strength of a
solver so ∈ S – relative to an ideal solver that matches on each problem the best solver –
is measured, for any given cost measure cs by the number, qso defined by

qso :=

{
(min

s∈S
cs)/cso, if so solved by the problem,

0, otherwise,

called the efficiency of the solver so with respect to this cost measure. In the tables,
efficiencies are given in percent. Larger efficiencies in the table imply a better average be-
havior; a zero efficiency indicates failure. All values are rounded (towards zero) to integers.
Mean efficiencies are taken over the 452 problems tried by all solvers and solved by at least
one of them, from a total of 453 problems. In the following tables, #100 and !100 count the
number of times we have nf efficiency 100% or unique nf efficiency 100%. Tmean is defined
by

Tmean :=

∑
solved

# solved
.

Failure reasons were reported in the anomaly columns:

• n indicates that nf ≥ 2n2 + 200n + 5000 was reached.

• t indicates that sec ≥ 500 was reached.

• f indicates that the algorithm failed for other reasons.
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The resulting statistics table is

stopping test: qf ≤ 0.05, sec ≤ 500, nf ≤ 2n2 + 200n + 5000

177 of 177 problems solved mean efficiency
dim∈[1,20] # of anomalies for cost measure

solver solved #100 !100 Tmean #n #t #f nf msec

MCS mcs 171 35 31 187 0 0 6 50 28
PSM psm 170 41 37 480 3 0 4 55 29
BFO bfo 166 14 13 70 0 0 11 36 51
BCDFO bcd 166 58 50 1779 0 0 11 59 15
VSBBO vsbb 161 11 11 295 16 0 0 27 24
CMAES cma 155 5 1 201 2 0 20 13 17
GLOBAL glo 132 3 2 105 19 0 26 13 24
fminsearch fmin 131 0 0 250 28 0 18 8 12
PRDS prd 92 7 7 145 85 0 0 12 22
RDSfs rfs 85 7 5 76 92 0 0 13 28
RDSvs rvs 82 14 9 75 95 0 0 16 27

In the times, the (for some problems significant) setup time for CUTEST is not included.
Although running times are reported, the comparison of times is not very reliable for several
reasons:
(i) The times were obtained under different conditions (solver source code Fortran, C and
Matlab).
(ii) In unsuccessful runs, the actual running time depends a lot on when and why the solver
was stopped. Table entries use the maximal allowed time (500 sec) for each unsuccessful run.
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Figure 3: Large dimensions: Performance plots for (a) nf/(best nf) and (b) msec/(best

msec). ρ designates the percentage of problems solved within a factor τ of the best solver.
Problems solved by no solver are ignored.
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5.5 Results for large dimensions (n ≤ 1000)

We collected the same statistics for all problems of dimension ≤ 1000 (including the small
dimensions). Perfomance plots [10] are shown in Figure 3.

The statistics table is now

stopping test: qf ≤ 0.05, sec ≤ 500, nf ≤ 2n2 + 200n + 5000

452 of 453 problems solved mean efficiency
dim∈[1,1000] # of anomalies for cost measure

solver solved #100 !100 Tmean #n #t #f nf msec

MCS mcs 427 144 136 8303 0 0 26 54 39
VSBBO vsbb 414 118 115 4834 35 0 4 49 36
BFO bfo 380 53 50 5173 0 0 73 34 45
CMAES cma 314 12 7 10184 44 0 95 12 11
GLOBAL glo 218 10 8 976 65 0 170 10 17
PSM psm 170 41 37 480 3 0 280 21 11
BCDFO bcd 166 58 50 1779 0 0 287 23 5
PRDS prd 151 17 16 1346 244 0 58 11 16
RDSfs rfs 143 9 6 895 252 0 58 10 20
RDSvs rvs 141 18 12 949 254 0 58 12 20
fminsearch fmin 131 0 0 250 28 0 294 3 5

5.6 Results for the best two solvers (MCS, VSBBO)

In large dimensions, VSBBO stands out as the most robust stochastic solver, and MCS as the
most robust deterministic solver.
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Figure 4: Large dimensions: Performance plots for (a) nf/(best nf) and (b) msec/(best

msec). ρ designates the percentage of problems solved within a factor τ of the best solver.
Problems solved by no solver are ignored.
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The high quality of our new solver VSBBO is clearly visible. Its performance is close to
the most robust solver MCS and almost complementary to it. Note that MCS was designed
specifically for global optimization whereas VSBBO has a very simple globalization strategy
only. Thus we may expect further improvements by a suitable combination of the techniques
used in the design of these solvers, especially in small dimensions.

On the complete test set, the two most robust solvers MCS and VSBBO together solved within
the given budget almost all 452 problemsolved by some solver. The 7 exceptions were
the problems INDEF:10, STRATEC, CHNROSNB:25, CHNROSNB:50, CHNRSNBM:50,
INDEF:50, FLETCHBV:100 (numbers after the colon indicate dimensions for variable-
dimensional problems).

stopping test: qf ≤ 0.05, sec ≤ 500, nf ≤ 2n2 + 200n + 5000

445 of 453 problems solved mean efficiency
dim∈[1,1000] # of anomalies for cost measure

solver solved #100 !100 Tmean #n #t #f nf msec

MCS mcs 427 278 274 8303 0 0 26 74 73
VSBBO vsbb 414 171 167 4834 35 0 4 62 67
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A Appendix: Estimation of c

The following theorem was recently proved by Pinelis [26].

A.1 Theorem. There is a universal constant c0 such that for any fixed nonzero real vector
q of any dimension n and any random vector p of the same dimension n with independent
components uniformly distributed in [−1, 1], we have

(pT p)(qT q) ≤ c0n(pT q)2 (36)

with probability ≥ 1/2.

More specifically, Pinelis proved the bounds 0.73 < c0 < 50 for the optimal value of the
constant c0. The true optimal value seems to be approximately 16/7. This is suggested by
numerical simulation. To estimate c0, we executed three times the Matlab commands

% run PinConst

N=10000;

nlist=[2:10,20,50,100,200,500,1000,2000,5000,10000,20000,50000,100000];

c0=PinConst(N,nlist);

using the algorithm PinConst below. All three outputs,

c0 = 2.2582, c0 = 2.2444, c0 = 2.2714

are slightly smaller than 16/7 = 2.2857....
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Figure 5: The plot of cn versus the dimension n suggests that c0 ≈ 16/7.

A.2 Algorithm. (Estimating the Pinelis constant)

Purpose: Estimate c0 satisfying (36) with probability ≥ 1/2

Input: N (the total number of gradient evaluations)
D (vector of dimensions used)

Output: c0

[c0]=PinConst(N ,D);

M = |D|;
for i = 1, · · · , M ,

for k = 1, · · · , N ,
generate random gk and pk with length Di;

gain(k) =
‖gk‖2‖pk‖2

|gT
k pk| ;

end;
medgain(i) = median(gain); % obtain median of gain

c(i) = medgain(i))2/Di;
end;
c0 = max(c);
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B Appendix: Flow charts

Here we give flow charts for the algorithms setScale, MLS, FDS, and VSBBO.
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Figure 6: Flow charts for (a) FDS, and (b) VSBBO.
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Figure 7: Flow charts for (a) setScale, (b) MLS.
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