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Abstract. We propose a new interpretation of the generalized overdetermined
eigenvalue problem (A− λB)v ≈ 0 for two m × n (m > n) matrices A and B, its
stability analysis, and an efficient algorithm for solving it. Usually, the matrix pencil
{A− λB} does not have any rank deficient member. Therefore we aim to compute λ
for which A − λB is as close as possible to rank deficient; i.e., we search for λ that
locally minimize the smallest singular value over the matrix pencil {A − λB}. The
proposed algorithm requires O(mn2) operations for computing all the eigenpairs. We
also describe a method to compute practical starting eigenpairs. The effectiveness of
the new approach is demonstrated with numerical experiments. A MATLAB based
implementation of the proposed algorithm can be found at:
http://www.mat.univie.ac.at/~neum/software/oeig/
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1. Introduction.

1.1. Motivation. There are several applications where the overdetermined eigen-
value problem (A− λB)v ≈ 0,v 6= 0 arise naturally; typically when the matrices A
and B are constructed row wise where more rows can be obtained by additional
measurements or simulations. For practical applications that benefit from the solu-
tion of an overdetermined eigenvalue problem, see Sarkar and Pereira 2002 [22],
Ouibrahim 2002 [20], Neugebauer 2008 [19], Alharbi 2010 [1]. Specific applica-
tions include the blind detection of signals, see Lau et al. 2002 [16], and the harmonic
inversion problem, see Roy and Kailath 1989 [21], Hua and Sarkar 2002 [15].

In such practical problems, the entries of the matrices A and B comes from noisy
measurements of a certain process. Generally for such applications, the physical
process that generated the data suggests in theory the existence of a solution or a
set of solutions. However, because of the noise in the measured matrices A and B,
the matrix pencil {A− λB} might not admit any rank deficient member. By solving
the proposed overdetermined eigenvalue problem, and thereby utilizing the additional
information, one expects to reach a more stable result, which accurately reconstructs
the parameters of the process.

Below we provide two applications that can benefit from the proposed formulation
and algorithm of the overdetermined eigenvalue problem.

Harmonic inversion: Several problems related to communication systems, ob-
ject tracking and many other applications require harmonic inversion. In the frame-
work of the harmonic inversion problem [14], the model for the data collected at
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equi-spaced discrete time point is given by:

yk = xk + ηk =
M
∑

m=1

bmzkm + ηk, k = 0, . . . K − 1, (1.1)

here xk and ηk denote the noise-free and noise components of the observation yk,
respectively, M denotes the order of the model, and K is the total number of samples.
The parameters bm are linear, and easy to estimate once an estimate of the nonlinear
parameters zm are available. In the noiseless case (yk = xk), the zm can be computed
as an eigenvalue of the following overdetermined eigenvalues problem:

Av = λBv. (1.2)

whereA andB are two Hankel matrices constructed from the xk. For details regarding
how such Hankel matrices are constructed, see [14]. However in the presence of noise,
i.e., when the Hankel matrices A and B are constructed from the measured yk, the
matrix pencil {A − λB} might not admit any rank deficient member. There is a
large literature on this problem, where the problem is treated in different ad hoc
approaches. We believe that the noisy case benefits from the proposed formulation
and algorithm for the overdetermined eigenvalue problem. Further details will be
provided elsewhere.

Distance to uncontrollability: An accurate method for solving overdetermined
eigenvalue problems is also beneficial for estimating the distance to uncontrollability
of a linear control system. It is shown by Eising [6] that for a linear control system

ẋ = A1x+A2u, (1.3)

the distance to uncontrollability is given by

ρ = min
λ

σmin ([A1 − λI,A2]) ; (1.4)

here, x ∈ C
n1×1 is the state variable, u ∈ C

n2×1 is the control variable, A1 ∈ C
n1×n1 ,

A2 ∈ C
n1×n2 are the system matrices, and σmin(G) denotes the smallest singular

value of the matrix G. Equivalently, the distance to uncontrollability is measured by
solving an overdetermined eigenvalue problem with the following pair of matrices:

A =

[

A∗
1

A∗
2

]

and B =

[

In1×n1

0n2×n2

]

. (1.5)

However, it should be noted that distance to uncontrollability is given by global
minimum of equation (1.4). On the other hand, in the framework of overdetermined
eigenvalue problems, the objective is to locate all the local minima. In fact, the
proposed algorithm computes much more spectral information, which is discarded
when only the distance to uncontrollability is required.

1.2. Previous Work. The generalized eigenvalue problem for square matrices
is well studied over last five decades. In 1973, Moler and Stewart [18] proposed
the well known QZ decomposition, also referred to as the generalized Schur decom-
position, for computing generalized eigenpairs. In 1971, Dell et al. [4] proposed
a method to compute generalized eigenpairs of rectangular matrices. This algo-
rithm is applicable to matrix pairs (A,B) which admits a non-trivial solution for
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(A− λB)v = 0,v 6= 0, and therefore applicable only in very special noiseless cases.
On the other hand, the generalized eigenvalue problem for overdetermined matrices
which might not admit any non-trivial solution, is a matter of current interest.

Most of the work related to the generalized eigenvalue problem for overdetermined
matrices concentrates on theoretical analysis. In [2, 23, 5, 7] the distance to the closest
matrix pair which admit a non-trivial eigenpairs is studied. Wright and Trefethen

[26] studied the pseudospectra of overdetermined matrix pencils.
To our knowledge, the only algorithm available so far for the overdetermined

eigenvalue problem with noisy measurements is by Boutry et al. 2006, [3]. Their
method is based on minimal perturbation approach (MPA), where the objective is to
estimate the closest matrix pair (A0,B0) to the given matrix pair (A,B) in Frobenius
norm, such that (A0,B0) admits a non-trivial eigenpair. Finally, the eigenpairs corre-
sponding to (A0,B0) are considered as the estimated eigenpairs for the given matrix
pair (A,B). Throughout the remainder of this paper, we refer to this approach as
the MPA. Further extensions of the MPA for matrices with a special structure are
studied in [17].

In [3] it is proved that the MPA approach is equivalent to solving the following
optimization problem:

{λ̂, v̂} = argmin
{λ,v}

g(λ,v) = argmin
{λ,v}

‖ (A− λB)v‖2
1 + |λ|2 ; subject to: ‖v‖ = 1. (1.6)

We note that, ignoring the eigenvector v, the optimization problem (1.6) is equivalent
to:

λ̂ = argmin
λ

g0(λ) = argmin
λ

σmin (A− λB)
√

1 + |λ|2
, (1.7)

where the function σmin returns the smallest singular value of its matrix argument.
In the context of linear control problems, the first polynomial time algorithm for

computing the distance to uncontrollability was proposed by Gu 2000 [10]. Later, Gu

published a faster method in 2007 [11]. These methods by Gu are based on bisection.
Other methods for computing the distance to uncontrollability includes [8], [12]. For
a detailed discussion of the sensitivity of computational control problems see Higham

et al. 2004 [13].

1.3. Contributions. In this paper, we propose a new interpretation, for overde-
termined generalized eigenvalue problems, an associates stability analysis, and an ef-
ficient algorithm for solving the problem, given two matrices A and B of size m× n
(m > n). The overdetermined eigenvalue problem might not admit any eigenpair
λ,v for which (A− λB)v = 0,v 6= 0, i.e., the matrix pencil {A−λB} might not ad-
mit any rank deficient member. Therefore, we reformulate the generalized eigenvalue
problem as the following optimization problem:

{λ̂, v̂} = argmin
λ,v 6=0

f(λ,v) = argmin
λ,v 6=0

‖ (A− λB)v‖2
‖Dv‖2 , (1.8)

where, λ ∈ C, v ∈ C
n, ‖ · ‖ denotes the Euclidean norm of its vector argument, and

D is a non singular diagonal scaling matrix, typically with entries proportional to
the entries of the corresponding rows of A − λB. The scaling using matrix D is a
pre-processing step, in case all the components of v have the same natural scale the
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scaling is not required. After reinstating A ← AD−1, B ← BD−1 and v ← Dv, we
get:

{λ̂, v̂} = argmin
λ,v 6=0

f(λ,v) = argmin
λ,v 6=0

‖ (A− λB)v‖2
‖v‖2 , (1.9)

We note that ignoring the eigenvector v, the optimization problem (1.9) is equivalent
to:

λ̂ = argmin
λ

f0(λ) = argmin
λ

σmin (A− λB) , (1.10)

where the function σmin returns the smallest singular value of its matrix argument.
Our aim is to find all the local minima, and we refer to each local minimum as an
overdetermined eigenvalue.

Along with the new interpretation of overdetermined eigenvalue, our contribution
in this paper includes:

• conditions under which the overdetermined eigenvalues are stable.
• an efficient algorithm to compute all the overdetermined eigenpairs with a
computational complexity of O(mn2).

• practical starting points for the algorithm.
• several experiments that validates the proposed interpretation and the algo-
rithm for computing overdetermined eigenpairs.

As described in equation (1.4), the proposed method for solving overdetermined
eigenvalue problems also allows one to compute the distance to uncontrollability for a
linear control system. In terms of computational complexity, the fastest method avail-
able so far is proposed by Gu et al. [11], and this method requires O(n4) operations.
On the other hand, our empirical evidence suggest that the proposed method can
compute all the local minima exhaustively in O(n3) operations. Consequently, the
empirical complexity to compute the distance to uncontrollability using the proposed
method is O(n3) operations.

Solving the optimization problem posed in equations (1.9) and (1.10) instead of
the MPA optimization problem posed in equations (1.6) and (1.7) has several advan-
tages. The advantages are explained, and demonstrated numerically in Section 4.

1.4. Organization. This paper is organized as follows: in Section 2, we deduce
the conditions under which the overdetermined eigenpairs are stable. In Section 3, we
introduce algorithms to estimate the generalized eigenpairs for overdetermined matri-
ces. In that section, the algorithms, computational complexity, and implementation
details of the proposed methods are also described. Results from our numerical exper-
iments are presented in Section 4. In that section, we also demonstrate procedures to
simulate overdetermined matrix pairs with prescribed eigenpairs. A brief discussion
on the relation between overdetermined eigenvalues and pseudospectra is presented
in Section 5. Our conclusions are presented in Section 6.

The web-page:
http://www.mat.univie.ac.at/~neum/software/oeig/

contains a well documented software consisting of all the algorithms proposed in
this paper, as well as algorithms proposed by other researchers, utility functions to
simulate overdetermined matrices with specified eigenpairs, and tools for visualization.

2. Stability of Overdetermined Eigenvalues. In this section, we discuss
the stability of the overdetermined eigenpairs as introduced in (1.9). We do this

http://www.mat.univie.ac.at/~neum/software/oeig/
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by showing that, under mild conditions, the generalized eigenvalues and generalized
eigenvectors depend continuously differentiably on the data, with computable partial
derivatives that specify the sensitivity with respect to the data.

For the sake of notational convenience we introduce the matrix valued polynomial

P(λ) = A− λB, λ ∈ C. (2.1)

Consequently, the derivative of P with respect to λ is: P′(λ) = −B. Using the above
notation, the objective function of the unconstrained optimization problem posed to
solve the overdetermined eigenvalue problem (1.9) may be expressed as

f(λ,v) =
‖P(λ)v‖2
‖v‖2 . (2.2)

Y(λ), and Z(λ), We shall also need the matrix valued polynomials defined by

X(λ) = P(λ)∗P(λ), (2.3)

Y(λ) = P(λ)∗P′(λ), (2.4)

Z(λ) = X− If + γvv∗, (2.5)

where γ is a real scalar.
Theorem 2.1. An overdetermined eigenpair (λ,v) (with ‖v‖ = 1) of two matri-

ces A and B is stable if the following two conditions (C1) and (C2) hold for some
real scalar γ:

(C1)
∣

∣v∗YZ−1Xv
∣

∣

2 −
∣

∣v∗XZ−1Yv
∣

∣

2
is bounded away from zero.

(C2) If σi are the singular values of X− If then σn−1 > σn and the number

q :=
σ1 − σn

σn−1 − σn

(2.6)

is reasonably bounded.

Proof. At a minimizer (λ,v) of (2.2), f is stationary with respect to λ and v. By
setting ∂f

∂λ
and ∂f

∂v
to zero, we get the equations

v∗P(λ)P′(λ)v = 0, (2.7)

P(λ)∗P(λ)v = f(λ,v)v. (2.8)

Since f is homogeneous in v, we may require v to be normalized, i.e.,

v∗v = 1. (2.9)

Using (2.3), (2.4), we may write the above conditions as

v∗Y(λ)v = 0, (2.10)

X(λ)v − fv = 0, (2.11)

v∗v − 1 = 0. (2.12)

Now we suppose that the data, i.e., the matrices A and B, depend smoothly on a
parameter τ . The eigenpair is stable if the solution f(τ), λ(τ), v(τ) is smooth in τ . In
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other words, we need ḟ = df
dτ
, λ̇ = dλ

dτ
and v̇ = dv

dτ
to be well-defined and reasonably

bounded. We now derive explicit formulas for these derivatives.
Differentiating X and Y with respect to τ gives

d

dτ
X(λ) = Xτ (λ) +X(λ)

dλ

dτ
, (2.13)

d

dτ
Y(λ) = Yτ (λ) +Y(λ)

dλ

dτ
, (2.14)

where Xτ and Yτ are respectively the partial derivative of X and Y with respect to
τ . We shall show how to satisfy the equations

v̇∗Yv + v∗(Yτ + λ̇Y)v + v∗Yv̇ = 0, (2.15)

(Xτ + λ̇X)v +Xv̇ − ḟv − v̇f = 0, (2.16)

v∗v̇ = 0. (2.17)

It is easy to see that these imply the equation

d

dτ





v∗Y(λ)v
X(λ)− fv

v∗v



 = 0. (2.18)

Consequently, a solution of the system of equations (2.15), (2.16), (2.17) near τ = 0
gives a curve of overdetermined eigenpairs that is smooth in τ , proving our claim.

Using the definition of Z (2.5) and the relations (2.16) and (2.17), we get

v̇ = Z−1(ḟv −Xτv − λ̇Xv). (2.19)

Since Z is a Hermitian matrix and Zv = γv, we can write

γv∗Z−1 = v∗. (2.20)

Since (2.11) implies

v∗Xv = fv∗v = f, (2.21)

we get, using the relations (2.17), (2.19), (2.20), and (2.21),

ḟ − v∗Xτv − λ̇f = v∗(ḟv −Xτv − λ̇Xv)

= γv∗Z−1(ḟv −Xτv − λ̇Xv)

= γv∗v̇ = 0. (2.22)

Thus we can express ḟ as

ḟ = λ̇f + v∗Xτv. (2.23)

Starting from condition (2.15), and using the relations (2.19), and (2.10) we get

(ḟv −Xτv − λ̇Xv)∗Z−1Yv + v∗Yτv + v∗YZ−1(ḟv −Xτv − λ̇Xv) = 0. (2.24)

We may eliminate ḟ from the above equation using relation (2.20), and get

(Xτv + λ̇Xv)∗Z−1Yv − v∗Yτv + v∗YZ−1(Xτv + λ̇Xv) = 0. (2.25)
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From this equation, λ̇ can be computed explicitly: If we denote the coefficients of λ̇∗

by a, the coefficients of λ̇ by b, and the terms independent of λ̇ (as well as independent
of ḟ , v̇) by c, then λ̇ is found to be

λ̇ =
b∗c− c∗a

b∗b− a∗a
. (2.26)

By construction of a and b we have b∗b−a∗a =
∣

∣v∗YZ−1Xv
∣

∣

2−
∣

∣v∗XZ−1Yv
∣

∣

2
. Thus

the condition (C1) guarantees a well-defined and reasonably bounded λ̇. Equation
(2.23) now shows that ḟ is also well-defined and reasonably bounded.

Finally, equation (2.19) shows that v̇ is well-defined and reasonably bounded if,
in addition, Z is well conditioned. This is guaranteed by condition (C2) if we choose
γ appropriately. Indeed, if γ ∈ [σn−1 − σn, σ1 − σn], then

cond(Z) =
σ1 − σn

σn−1 − σn

= q. (2.27)

(It is easy to see that this choice of γ minimizes the condition number of Z.)
Remark 1. An overdetermined eigenvalue problem may also have illposed eigenspaces.

For such a case, the conditions (C1) and (C2) are not satisfied. In principle, these
two conditions are computable, though their cost is an order of magnitude larger than
the computation of the spectral information itself. The complexity of computing the
spectral information is described in Section 3.

3. Algorithms for overdetermined eigenvalue problem.

3.1. Direct Approach. We consider the problem to find all the local minima
of the function f defined in equation (1.9). One may impose an equivalent constraint
‖v‖ = 1 to remove the scale invariance. The function f is multi-modal and has at
most n local minima, unless the matrix pencil {A− λB} is identically rank deficient.

We first show that it is possible to find a unitary transformation that reduces the
objective function f in equation (1.9) to an equivalent form that consists of upper
triangular matrices and a symmetric positive definite matrix.

Theorem 3.1. For a given pair of matrices (A,B) of size m× n (m > n), there
exists upper triangular matrices R0,R ∈ C

n×n, such that

argmin
λ,v 6=0

‖ (A− λB)v‖2
‖v‖2 = argmin

λ,v 6=0
fr(v, λ) (3.1)

where,

fr(v, λ) =
‖Rλv‖2 + v∗Cv

‖v‖2 , (3.2)

Rλ = R0−λR is a parameterized triangular matrix, and C is Hermitian and positive
semidefinite.

Proof. The proof of the above theorem is as follows.
Step 1. We compute an orthogonal factorization

(B,A) = Q̃R̃ = Q̃

(

R11 R12

O R22

)

; (3.3)

The matrices R11, R12, and R22 are thus obtained by extracting the n × n sub-
matrix from the upper left corner, the n× n sub-matrix from the upper right corner,
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the (m − n) × n sub-matrix from the lower right corner of the upper triangular ma-
trix R̃, respectively. We note that R11 is also upper triangular. Using the above
decomposition, i.e., equation (3.3), we can write:

A− λB = Q̃

(

R12 − λR11

R22

)

, (3.4)

and, consequently, we get the following intermediate representation:

‖ (A− λB)v‖2 = ‖ (R12 − λR11)v‖2 + ‖R22v‖2. (3.5)

Step 2. To simplify the intermediate representation further, we apply the gen-
eralized Schur decomposition (also known as QZ decomposition) to the matrix pair
(R12,R11), to find unitary matrices Q, Z such that

R0 = QR12Z, R = QR11Z, (3.6)

are upper triangular.
Step 3. Next, we compute the positive semidefinite matrix

C = E∗E, where E = R22Z. (3.7)

Consequently, we get a reduced form:

‖ (A− λB) v̄‖2 = ‖ (R0 − λR) v̄‖2 + v̄∗Cv̄, (3.8)

where v̄ is related to v by the following unitary transformation:

v = Zv̄. (3.9)

Hence we show that it is possible to find a unitary transformation that reduces the
problem posed in equation (1.9) with the objective function f to the form stated in
equation (3.1) with the objective function fr.

Remark 2. The factor Q̃ in (3.3) is not required explicitly, which saves stor-
age and computational effort. Thus a Q-less QR-factorization is sufficient for this
purpose. The economy version of the Lapack’s QR-factorization routine, or Mat-

lab’s qr function called with the second argument set to ′0′, returns only the upper
triangular matrix.

Remark 3. We note that the intermediate representation (3.5) is essentially
unique if B has a full rank n; but this is not always the case. On the other hand, the
above reduction involves only orthogonal transformations, and hence it is stable.

Remark 4. In the formula (3.5), we note that the first term corresponds to
a square eigenvalue problem, while the second term contains the contributions to the
noise in a form that is independent of λ. If the noise is not of interest, or in a noiseless
scenario, one may simply discard R22 and proceed with solving the eigenvalue problem:

R12v = λR11v, (3.10)

using the QZ factorization. In the presence of noise, the solution of the eigenproblem
(3.10) does not lead to a solution of the original problem posed in equation (1.9).
However, the solution of (3.10) usually gives a good initial guess for the eigenpairs.

Remark 5. In equation (3.6), we note that R11 is already triangular while R12

generally is not; thus the preliminary orthogonal factorization and transformation in
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the QZ-algorithm can be dispensed with. As we shall see later, the above transforma-
tion (3.6) significantly reduces complexity.

Remark 6. Relation (3.9) is used to transform the solution of (3.1) back to the
original system (1.9).

Remark 7. The transformation from equation (1.9) to equation (3.1) requires
only the QR factorization, the QZ algorithm and the matrix multiplication. All of
these steps have a computational complexity of O(mn2) flops. Consequently, the com-
plexity of the reduction of (1.9) to (3.1) is also O(mn2) flops.

In order to compute the generalized eigenpairs of the matrices A and B, we first
compute the eigenpairs (λ,v) of the generalized eigenvalue problem:

R0v = λRv, (3.11)

or equivalently from equation (3.10). Further we use each of these eigenpairs as a
starting point for a local optimization of the objective function in equation (3.2), i.e.,

fr (v, λ) =
v∗ (R∗

λRλ +C)v

v∗v
, (3.12)

Here we use the following notation:

Rλ = R0 − λR. (3.13)

The simple form of the objective functions and the availability of good initial estimates
(if the noise term is not too large) allows a direct treatment of the local optimization.
At a minimizer, the gradient of (3.1) vanishes, which leads to the following equations:

(R∗
λRλ +C)v = κv, (3.14)

obtained by differentiating the function fr with respect to v, and

(Rv)
∗
Rλv = 0, (3.15)

obtained by differentiation the function fr with respect to λ. Here,

κ = fr (v, λ) . (3.16)

equation (3.14) demonstrates the fact that v is an eigenvector corresponding to an
eigenvalue κ of R∗

λRλ +C, and since κ = fr (v, λ), it must be the smallest eigenvalue.
The left hand side of equation (3.14) is a positive semidefinite Hermitian matrix.

One can improve an approximate solution (v, λ, κ) by updating v with an inverse
iteration step suggested by equation (3.14), followed by updating λ with generalized
Rayleigh quotient suggested by equation (3.15), and updating κ using equation (3.16).
However this approach converges very slowly, and requires O(n3) operations per eigen-
value per iteration.

3.2. Least distance formulation. An efficient algorithm should require only
O(n2) flops per iteration per eigenpair. To accomplish this objective, within each
iteration, we update the generalized eigenvector from v to v̄ = v+d. Substituting v
with v̄ in (3.14), and assuming for the moment that ‖d‖, κ, ‖C‖ are small, we neglect
the non-linear terms in d, C and κ, and get the following constraint:

R∗
λRλv̄ − κv = −Cv. (3.17)
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In order to control the step size d, we obtain the generalized eigenvector v̄ by solving
the following least distance problem in the naturally scaled norm:

argmin
v̄,κ

‖Rλ(v̄ − v)‖2

s.t R∗
λRλv̄ − κv = −Cv. (3.18)

We note that (3.18) is a linearly constrained problem with a quadratic objective func-
tion; such problems are commonly known as equality constraint quadratic programs.
Such programs are solved by solving a linear system, see [9, §5.1.4.2]. The quadratic
program (3.18) leads to the following equivalent linear system:

(

R∗
λRλ v
v∗ 0

)(

v̄
−κ

)

=

(

−Cv
v∗v

)

. (3.19)

We note that the LU factorization of the coefficient matrix in the above system of
equations (3.19) can be computed in only O(n2) operations. However, Rλ might be
close to singular. Specifically, in the very first iteration if the starting points are
computed from equation (3.11). In such a case, one should modify the offending
diagonal element. This can be done by replacing the matrix Rλ by the matrix

S = Rλ + ρeλe
∗
λ, (3.20)

where eλ = e(k) with k=argmin |(Rλ)kk| and ρ = max|Rλ|jk. If the eigenvalues of
Rλ are reasonably separated (more precisely, if Rλ has the numerical rank n − 1)
then S is well-conditioned. We note that the coefficient matrix of (3.19) is a rank
3 perturbation of S∗S. Since S is triangular, the computational complexity of the
algorithm remains O(n2) operations per iteration. In case ‖C‖ is not too small,
the problem of Rλ getting close to singular happens only in the very first iteration.
Hence another approach to alleviate this problem is by slightly perturbing the initial
approximations of λ obtained from equation (3.11).

An iterative algorithm to obtain the eigenpairs using the least distance approach
is designed as follows: within each iteration update the new eigenvector by solving
the system of equations (3.19), and then update the eigenvalue using the generalized
Rayleigh quotient:

λ̄ = λ+
(Rv̄)

∗
Rλv̄

(Rv̄)
∗
Rv̄

. (3.21)

A step by step description of the procedure is given in Algorithm 1
In Section 4 we demonstrate the performance of this algorithm numerically. We

observe that the method with least distance formulation, Algorithm 1, takes a lot of
iterations to converge unless the initial approximation is very good. Also Algorithm 1
requires ‖C‖ and hence κ to be small, which might not be the case in presence of
significant noise.

3.3. Joint optimization of eigenvalues and eigenvectors. To achieve a fast
convergence, we modify the previous approach with the least distance formulation
(3.18), (3.19), in a way that λ changes simultaneously with v. We replace (v, λ) in
equation (3.14) by v̄ = v + d and λ̄ = λ+ µ, and obtain the following equation:

(

(Rλ − µR∗)(Rλ − µR) +C− κI
)

(v + d) = 0. (3.22)



Overdetermined Eigenvalue Problem 11

Algorithm 1 Least distance approach

Require: A, B, Niter

1: Compute R, R0 // equation (3.6)
2: Form initial eigenpair // equation (3.10), (3.11)
3: for each initial eigenpair (v0, λ0) do
4: for i = 1 : Niter do
5: compute: Rλi−1

= R0 − λi−1R
6: update eigenvector: solve the linear system for v′ (3.19) with Rλi−1

7: rescale eigenvector: vi =
v
′

‖v′‖

8: update eigenvalue: λi = λi−1 +
(Rvi)

∗
Rλi−1

vi

(Rvi)
∗
Rvi

.

9: end for
10: end for

Assuming ‖C‖, and hence κ, are small we neglect all terms nonlinear in d, µ, κ and
C, and find (after reinstating v = v + d)

R∗
λRλv − κv = −Cv + µR∗

λRv + µ∗R∗Rλv. (3.23)

The above equation is used only for finding an initial search direction; so it does
not matter that the approximate equation (3.23), is not accurate in case that ‖C‖ is
large. The least distance problem (3.18) with the modified constraint (3.23) gives the
following system of linear equations:
(

R∗
λRλ v
v∗ 0

)(

v
−κ

)

=

(

−Cv
v∗v

)

+ µ

(

R∗
λRv
0

)

+ µ∗

(

R∗Rλv
0

)

. (3.24)

Similarly to equation (3.19), the above system of linear equations (3.24) can be solved
in O(n2) operations. The solution to the above system yields a parametric solution
for the eigenvectors in the following form:

v = v0 + µv1 + µ∗v2. (3.25)

If we denote the inverse of the system matrix in (3.24) by U, i.e.,

U

(

R∗
λRλ v
v∗ 0

)

= I; (3.26)

then1 v0, v1, v2 are given by truncating the last entry of the vectors

U

(

−Cv
v∗v

)

, U

(

R∗
λRv
0

)

, U

(

R∗Rλv
0

)

, (3.27)

respectively. Because of the nonlinearities one must be prepared to take shorter steps.
In order to represent the parametric solution (3.25) with real coefficients, we use:

v = v + αp+ βq+ γr, α, β, γ ∈ R, (3.28)

where,

p = v0 − v, q = v1 + v2, r = i (v1 − v2) . (3.29)

1note that v0, v1, v2 are not the eigenvectors after initial, first and second iteration
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Note that the point v corresponds to α = 1, and µ = β + iγ.

In order to obtain α,β, and γ, and to get global convergence even when ‖C‖ is
large, we substitute λ = λ0 + µ from equation (3.21) to the objective function in
equation (3.1) and get:

f1 (v) =
1

‖v‖2
(

‖Rλ0
v‖2 − |(Rv)∗(Rλ0

v)|2
‖Rv‖2 + v∗Cv

)

(3.30)

We note that equation (3.30) describes a multi-modal function with minimizers near
the eigenvectors of the matrix pencil (R0,R).

Inserting the parametric representation of the eigenvector (3.28) into the function
f1 in equation (3.30) yields the following rational function of α, β, γ with explicitly
computable coefficients:

fp (g) =
1

‖Vg‖2
(

‖Rλ0
Vg‖2 − |(RVg)∗(Rλ0

Vg)|2
‖RVg‖2 + g∗V∗CVg

)

(3.31)

here we use g ≡ [1, α, β, γ]T , and V ≡ [v,p,q, r]. This function can be optimized
in O(1) operations to get the optimal values of α, β, γ. It is easy to see that each
iteration v→ v gives a strict improvement to f1(v) unless v is already optimal, and
can be computed in O(n2) operations. A step by step description of the algorithm
based on the joint optimization of λ and v is given in Algorithm 2.

Algorithm 2 Joint optimization of λ and v

Require: A, B, Nmax

1: Compute R, R0 // equation (3.6)
2: Form initial eigenpair // equation (3.10), (3.11)
3: for each initial eigenpair (v0, λ0) do
4: for i = 1 : Niter do
5: compute: Rλ(i−1)

= R0 − λi−1R
6: solve equation (3.24) for a parametric representation of the eigenvector.
7: optimize the parameters α, β, and γ using equation (3.31)
8: reconstruct eigenvector using equation (3.28)

9: rescale eigenvector: vi =
v
′

‖v′‖

10: update eigenvalue: λi = λi−1 +
(Rvi)

∗
Rλi−1

vi

(Rvi)
∗
Rvi

.

11: end for
12: end for

4. Numerical experiments. In this section we demonstrate our approach nu-
merically. At first we present the simulation setup that we used for the numerical
experiments. Next we compare our approach with the MPA. In the next subsection
we report the performance of the proposed algorithms in different scenarios. In the
final subsection, we demonstrate how the proposed method is beneficial for computing
the distance to uncontrollability of a linear control system.

A MATLAB based implementation of the proposed algorithms can be downloaded
from :
http://www.mat.univie.ac.at/~neum/software/oeig/

This software is used for the numerical experiments given in this section.

http://www.mat.univie.ac.at/~neum/software/oeig/
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4.1. Simulation setup. We simulate overdetermined matrices for testing the
performance of the proposed algorithms. Our objective is to simulate overdetermined
noisy matrix pairs (A,B) of size m×n that might not admit any non-trivial solution,
but the unperturbed noiseless counterpart of this matrix pair, say (A0,B0), admits
only r non-trivial eigenvalues λ1, . . . , λr, where r 6 n.

We first generate a pair of square matrices (As,Bs) of size n × n such that
λ1, . . . , λr are the only non-trivial generalized eigenvalues of this matrix pair. Such
matrix pairs are easy to construct. We set As to an upper triangular matrix with the
first r diagonal entries set to λ1, . . . , λr and the remaining diagonal entries set to 1,
all other entries above diagonal are random. We set Bs to another upper triangular
matrix with the first r diagonal entries set to 1 and the remaining diagonal entries set
to 0, all other entries above diagonal are random. We note that the super diagonal
entries of As and Bs can be used to adjust the conditioning of the matrices and hence
their susceptibility to noise. Further, we multiply both the matrices As and Bs from
left and right with a pair of unitary matrices, which also results in a matrix pair, say
(Aq,Bq), with λ1, . . . , λr as the only generalized eigenvalues. Next, we multiply both
Aq and Bq from the left with an m×n matrix of full rank, i.e., n. The products form
a matrix pair that has λ1, . . . , λr as the only generalized eigenvalues. These products
are the desired noiseless matrices (A0,B0), which admit only r specified non-trivial
eigenvalues λ1, . . . , λr. Finally, we perturb each entry of the matrix pair (A0,B0) with
complex additive noise to get the desired matrix pair (A,B). With such simulated
matrix pairs, the backward stability of any algorithm for overdetermined eigenvalue
problem can be studied easily.

4.2. Comparison with the MPA. In this section, we compare the proposed
optimization problem posed in equation (1.9) and (1.10), with the MPA optimization
problem posed in equation (1.6) and (1.7). We observe that for certain kind of matrix
pairs that frequently arises in practice, the factor 1/

√

1 + |λ|2 in the objective func-
tion (1.7) of the MPA has the effect that the eigenvalues of relatively large magnitude
go unnoticed. In order to illustrate this fact, we simulate a matrix pair (A0,B0) of
dimension 50 × 5, which admits only one non-trivial solution λ = 9.0. Further, we
perturbed each entry of the matrix pair (A0,B0) with additive Gaussian noise (with
σ = .01) to obtain the matrix pair (A,B). We evaluate the objective function of the
problem we solve as posed in equation (1.10), and the objective function of the MPA
as posed in equation (1.7) over a fine grid in the Argand plane. The level curves of
both the functions are plotted in Figure 4.1. We note that for the objective function
f0 in equation 1.10 corresponding to our approach, a minima close to 9.0 is visible,
and one can expect a solution. On the other hand, the function g0 in equation 1.7,
corresponding to the MPA, does not show any sign of a local minimum around 9.0.
This observation is explained by the fact that in the above example, σmin(A− λB)
is increasing slower than

√

1 + |λ|2 around the local minimum at λ = 9.0.

We note that for a matrix pair (A0,B0) with exactly n generalized eigenvalues,
the surface σmin(A0 − λB0) increases to infinity outside a certain finite disc in the
Argand plane. On the other hand, for a matrix pair (A0,B0) with a smaller number
of generalized eigenvalues than the dimension of the domain, i.e., r < n, the surface
σmin(A0 − λB0) decreases to zero outside a certain finite disc in the Argand plane.
Thus, especially for matrix pairs where r < n, the MPA is not sufficient to locate
the generalized eigenvalues. Moreover, even if g0, the objective function of the MPA,
locates the minima properly, the surface around the minima is very flat because of
the factor 1/

√

1 + |λ|2, which in turn slows down the optimization procedure. In
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Fig. 4.1. Level curves of the function f0 and g0 in the complex plane

[3], all the numerical experiments were done using matrix pair (A,B) of size m× n,
which were obtained by perturbing matrix pair (A0,B0), admitting n generalized
eigenpairs. However, practical problems where (A0,B0) admits fewer eigenpairs than
n is not uncommon. For example, such a matrix pair is obtained in a harmonic
inversion problem, when the assumed model order for estimation is greater than the
number of harmonic components present in the signal.

We note that, apart from the problems of fading eigenvalues and slow convergence,
the MPA based algorithm requiresO(n3) operation per iteration per eigenpair. On the
other hand, the proposed method requires O(n3) operation per iteration per eigenpair.

4.3. Results. In order to illustrate the performance of the proposed algorithms
numerically, we simulate a matrix pair (A0,B0) of size 15 × 5 that has only the
following three non-trivial eigenvalues 2+4i, 3+2i, and 4+2.2i. Further, we generate a
matrix pair (A,B) by perturbing each entry of the matrix pair (A0,B0) with complex
additive Gaussian white noise of standard deviation σ = .01. In Figure 4.2, we show
the noise-free (exact) eigenvalues; the starting eigenvalues; the final estimate with
the joint optimization method (Algorithm 2); and the level curve of the function f0
over the complex plane. We observe that the estimated eigenvalues converged close to
the exact noise-free eigenvalues. The gap that remains between the exact noise-free
eigenvalues and the estimated ones is due to the noise in the matrix pairs (A,B).
One can expect that with more data points, i.e., with more rows in the matrix pairs
(A,B) this gap is diminished, and thereby a better estimation of the eigenvalues is
achieved. In order to demonstrate this fact, we simulated several matrix pair (A,B)
each with 5 columns and varying number of rows, using the same eigenvalues for
the noiseless counterpart, and same level of noise (σ = .01) to perturb the entries.
In Figure 4.3(a), we report the root mean square error (RMSE) of the estimated
eigenvalues with respect to the noise-free eigenvalues computed over 1000 random
perturbation of the noise-free matrix pair (A0,B0). For matrix pairs of size 5× 5 the
eigenvalues were estimated using the QZ decomposition. In Figure 4.3(a) we observe
that the estimation of the eigenvalues gets more accurate with increasing number of
rows. The next experimental setup is similar to the previous one, except that we fix
the size of the matrix pair to 30 × 5, and vary the intensity of the additive noise.
In Figure 4.3(b), we report the root mean square error (RMSE) of the estimated
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Fig. 4.2. The complex plane showing the noiseless (exact) eigenvalue, the starting eigenvalue,
the estimated eigenvalue, and the path traced over the iterations.

eigenvalues with respect to the noise-free eigenvalues computed over 1000 random
perturbation of the noise-free matrix pair (A0,B0) with different intensities of the
additive white Gaussian noise.

In the following paragraphs we discuss the rate of convergence. Rather than
giving a theoretical proof, we use numerical experiments to demonstrate the rate of
convergence. For the ith iteration, we define the distance to the exact solution ei (or
the error), the quotient of the error qi, and the root of the error ri as follows:

ei = |λi − λ∞| (4.1)

qi =
ei+1

ei
=
|λi+1 − λ∞|
|λi − λ∞|

. (4.2)

qi = i
√
ei =

i

√

|λi − λ∞|. (4.3)

Here, λi is the estimate of the eigenvalue in the ith iteration, and λ∞ is the final
estimate, i.e., result of the last iteration. The limiting values of qi and ri should
demonstrate the rate of convergence.
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Fig. 4.3. Estimation using joint optimization of eigenvalue and eigenvector, Algorithm 2
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Fig. 4.4. Rate of convergence of Algorithm 2

We consider the pair (A,B) each of size 30× 5 with the same noiseless eigenval-
ues used in the last illustration, i.e., 2 + 4i, 3 + 2i, and 4 + 2.2i. Each entry of the
noiseless matrices are perturbed with additive white Gaussian noise of standard devi-
ation σ = .01. In Figure 4.4, we show the quotient of the error ri and the root of the
error ri of the eigenvalues obtained with the method based on joint optimization of
eigenvalues and eigenvectors, i.e., Algorithm 2. We notice that the method converges
very fast within first 10 iterations.

The algorithm based on a least distance approach, i.e., Algorithm 1 converges
much slower compared to the algorithm based on joint optimization of eigenvalues
and eigenvectors, i.e., Algorithm 2. Starting from the same initial eigenvalues, as
shown in Figure 4.2, Algorithm 1 requires several thousands of iterations to converge,
which might be prohibitive for practical application.

We found that the MPA based approach also requires several thousands of iter-
ations to convergence. In Figure 4.5 we show the error as defined in equation 4.1 at
each iteration, as obtained using Algorithm 2, and the MPA based method. The same
pair of matrices of size 30 × 5 as described above were used, with the same starting
points as shown in Figure 4.2. We note that the MPA based method converges rela-
tively fast when it gets very close to the solution. However, it is not easy to find such
an accurate starting point with noisy matrix pairs. On several examples, we observed
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Fig. 4.5. Estimation using Algorithm 2 and algorithm based on the minimal perturbation
approach (MPA) [3]. Three curves in each plot corresponds to three generalized eigenvalues of the
matrix pairs.

that the MPA approach converges relatively faster only in case the eigenvalues are
close to zero, and the number of eigenvalues is equal to the dimension of the domain,
i.e., n.

Depending on the method in which the data is collected, the rows of the matrix
pair (A,B) might not be homogeneous. Considering the fact that we use Euclidean
norm in equation 1.9, the matrix pair might require a pre-processing step of row
equilibration to obtain a meaningful result.

4.4. Distance to Uncontrollability. In Section 1, we described how the prob-
lem of estimating distance to uncontrollability is related to the overdetermined eigen-
value problem. In this paragraph, we show the results obtained using Algorithm 2
on two linear control problems. The first problem is an example of an uncontrol-
lable system; with this example we verify that the proposed algorithm when used for
computing the distance to uncontrollability can detect uncontrollable systems. We
consider the problem given as Example 2 in [10, §4]. Using Algorithm 2 we find that
for this system the distance to uncontrollability is 0, i.e., this system is an example
of an uncontrollable system. The second problem is a controllable system; hence for
this example we compute the distance to uncontrollability. For this purpose, we con-
sider the problem given as Example 1 in [12, §6]. Using Algorithm 2 we find that the
distance to uncontrollability is 3.923843021870004E − 2. This result matches with
the one published in [12] with 14 correct digits. In fact, the proposed algorithm com-
putes much more spectral information which is discarded when only the distance to
uncontrollability is required.

The fastest algorithm available so far for computing the distance to uncontrolla-
bility is proposed by Gu in [11]. The method proposed in [11] has a computational
complexity of O(n4). On the other hand, the proposed method computes in practice
all the eigenvalues with O(n3) computations, though not with a theoretical guaran-
tee. Consequently, the proposed method can be employed in practice to compute the
distance to uncontrollability with O(n3) computations.

5. Relation to pseudospectra. Pseudospectra (see [24]) help to visualize and
understand the spectral properties of matrices, especially for non-normal matrices.
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The ǫ-pseudospectrum of a square matrix A is defined as

Λǫ(A) = {λ ∈ C : σmin(A− λI) 6 ǫ} , (5.1)

where σmin returns the smallest singular value of its matrix argument. While there
are other equivalent definitions of pseudospectra, we choose this particular definition
(5.1) because of its close relation with our definition of overdetermined eigenvalues.
According to [24, Eq. (2)], the pseudospectrum is a set that contains the eigenvalues
as well as eigenvalues of a perturbed system, where the perturbation is bounded by ǫ.

Pseudospectra for matrix pencils are introduced in [25]. The ǫ-pseudospectrum
of a pair of square matrices A, B is defined as follows:

Λǫ(A,B) = {λ ∈ C : σmin(A− λB) 6 ǫ} , (5.2)

Pseudospectra for non-square (rectangular) matrices are described in [26]. As
discussed in [26], the ǫ-pseudospectrum of a pair of matrices A, B with perturbation
bounded by ǫ in the matrix A and no perturbation in the matrix B is again given by
equation (5.2).

Our definition of overdetermined eigenvalues matches with the definitions of the
pseudospectrum given in equations (5.2). From the pseudospectrum point of view,
our definition of overdetermined eigenvalues gives point in the complex plane from
where a connected component of the pseudospectrum begins to grow as ǫ is increased
from zero.

In [26, §6.1] the ǫ-pseudospectrum when both the matrices are perturbed, such
that the perturbation in A is bounded by αǫ and the perturbation in B is bounded
by βǫ, is reported as follows:

Λǫ(A) =

{

λ ∈ C :
σmin(A− λB)

α+ β|λ| 6 ǫ

}

. (5.3)

On the other hand, the analysis presented in [3] suggests the following ǫ-pseudospectrum

Λǫ(A,B) =

{

λ ∈ C :
σmin(A− λB)
√

α+ β|λ|2
6 ǫ

}

. (5.4)

Although our definition of overdetermined eigenvalues (1.10) corresponds to pseu-
dospectra of rectangular matrices where only one matrix is perturbed, we obtained
very satisfactory overdetermined eigenvalues even when both the matrices are per-
turbed. See § 4 for details of the experiments performed.

6. Conclusions. In this paper we proposed methods for the solution of the
generalized eigenvalue problems (A− λB)v ≈ 0 for overdetermined matrices A and
B. Our approach is based on searching for λ which minimizes the smallest singular
value over the matrix pencil {A − λB}. We derived conditions under which the
overdetermined eigenpairs are stable. For estimating the overdetermined eigenpairs,
we developed two algorithms. The first one was designed as an algorithm with O(n2)
operations per iteration per eigenvalue, hence a least distance formulation approach
is used. This approach was found to be very slow if the initial approximations are
away from the solution. In order to alleviate this problem, a second, improved method
was developed, where the eigenvectors and eigenvalues are optimized simultaneously.
The second method locates the solution very fast, and requires O(n2) operations per
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iteration. In our experiments we found that the final method requires less than 20
iterations to converge.

The proposed method improves in several ways upon the algorithm based on
the minimal perturbation approach (MPA). The proposed method requires O(n2)
operations per iterations per eigenvalue, while the MPA based method requires O(n3)
for the same task. The proposed method converges much faster than the MPA-
based method. Moreover, the objective function used by the proposed method seems
more appropriate than the one used in MPA, since the later tends to lose meaningful
overdetermined eigenvalues.
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