
Snobfit – Stable Noisy Optimization by Branch
and Fit

WALTRAUD HUYER and ARNOLD NEUMAIER

Universität Wien

The software package Snobfit for bound constrained noisy optimization of an expensive objective

function is described. It combines global and local search by branching and local quadratic fits.

The program is made robust and flexible for practical use by allowing for soft or hidden constraints,

batch function evaluations, change of search regions, etc.

Categories and Subject Descriptors: G.1.6 [Optimization]: Global optimization; Constrained

optimization

General Terms: Algorithms

Additional Key Words and Phrases: Hidden constraints, noisy function values, soft constraints

1. INTRODUCTION

Snobfit (stable noisy optimization by branch and fit) is a Matlab package de-
signed for selecting continuous parameter settings for simulations or experiments,
performed with the goal of optimizing some user-specified criterion. Specifically,
we consider the optimization problem

min f(x)
s.t. x ∈ [u, v],

(1)

u, v ∈ Rn, u < v (with componentwise inequalities), i.e., [u, v] is a bounded box in
Rn with nonempty interior, and f : D → R, where D is a subset of Rn containing
[u, v]. We shall call the process of obtaining an approximate function value f(x) a
measurement at the point x.

While there are many software packages that can handle such problems, they
usually cannot cope well with one or more of the following difficulties arising in
practice:

—the function values are expensive (for example, obtained by performing complex
experiments or simulations);

—instead of a function value requested at a point x, only a function value at some
nearby point x̃ is returned;

Authors’ address: Institut für Mathematik, Universität Wien, Nordbergstraße 15, A-1090 Wien,

Austria.

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial

advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and

notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,

to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0098-3500/20YY/1200-0001 $5.00

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY, Pages 1–0??.

2 · W. Huyer and A. Neumaier

—the function values are noisy (inaccurate due to experimental errors or to low
precision calculations);

—the objective function may have several local minimizers;

—no gradients are available;

—the problem may contain hidden constraints, i.e., a requested function value may
turn out not to be obtainable;

—the problem may involve additional soft constraints;

—the user wants to measure at several points simultaneously or make parallel
simulations;

—function values may be obtained so infrequently or in a heterogeneous environ-
ment that, between obtaining function values, the computer hosting the software
is used otherwise or even switched off;

—the objective function or the search region may change during optimization, e.g.,
because users inspect the data obtained so far and this suggests to them a more
realistic or more promising goal.

Many different algorithms (see, e.g., the survey [Powell 1998]) have been proposed
for unconstrained or bound constrained optimization when first derivatives are not
available. Conn et al. [1997] distinguish two classes of derivative-free optimization
algorithms. Sampling methods or direct search methods proceed by generating a
sequence of points; pure sampling methods tend to require rather many function
values in practice. Modeling methods try to approximate the function over a region
by some model function and the much cheaper surrogate problem of minimizing the
model function is solved. Not all algorithms are equally suited for the application to
noisy objective functions; for example, it would not be meaningful to use algorithms
that interpolate the function at points that are too close together.

A method called DACE (design and analysis of computer experiments) (see [Sacks
et al. 1989; Welch et al. 1992]) deals with finding a surrogate function for a func-
tion generated by computer experiments, which consist of a number of runs of a
computer code with various inputs. These codes are typically expensive to run
and the output is deterministic, i.e., rerunning the code with the same input gives
identical results, but the output is distorted by high-frequency, low-amplitude os-
cillations. The lack of random error makes computer experiments different from
physical experiments. The problem of fitting a response surface model to the ob-
served data consists of the design problem, which is the problem of the choice of
points where data should be collected, and the analysis problem of how the data
should be used to obtain a good fit. The output of the computer code is modeled
as a realization of a stochastic process; the method of analysis for such models is
known as kriging in the mathematical geostatistics literature. For the choice of
the sample points, “space-filling” designs such as orthogonal array-based Latin hy-
percubes [Tang 1993] are important; see [McKay et al. 1979] for a comparison of
random sampling, stratified sampling and Latin hypercube sampling.

The SPACE algorithm (Stochastic Process Analysis of Computer Experiments)
by Schonlau [Schonlau 1997; 2001; Schonlau et al. 1998] (see also [Jones et al. 1998]
for the similar algorithm EGO) uses the DACE approach resp. Bayesian global
optimization in order to find the global optimum of a computer model. The function

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Snobfit – Stable Noisy Optimization by Branch and Fit · 3

to be optimized is modeled as a Gaussian stochastic process, where all previous
function evaluations are used to fit the statistical model. The algorithm contains
a parameter that controls the balance between local and global search components
of the optimization. The minimization is done in stages, i.e., rather than only one
point, the algorithm samples a specified number of points at a time. Moreover, a
method for dealing with nonlinear inequality constraints from additional response
variables is proposed.

The authors of [Booker et al. 1999; Trosset and Torczon 1997] consider traditional
iterative methods and DACE as opposite ends of the spectrum of derivative-free
optimization methods. They combine pattern search methods and DACE for the
bound constrained optimization of an expensive objective function. Pattern search
algorithms are iterative algorithms that produce a sequence of points from an initial
point, where the search for the next point is restricted to a grid containing the
current iterate and the grid is modified as optimization progresses. The kriging
approach is used to construct a sequence of surrogate models for the objective
functions, which are used to guide a grid search for a minimizer. Moreover, Booker
et al. [1999] also consider the case that the routines evaluating the objective function
may fail to return f(x) even for feasible x, i.e., the case of hidden constraints.

Jones [2001] presents a taxonomy of existing approaches for using response sur-
faces for global optimization. Seven methods are compared and illustrated with
numerical examples that show their advantages and disadvantages.

Elster and Neumaier [1995] develop an algorithm for the minimization of a low-
dimensional, noisy function with bound constraints, where no knowledge about
the statistical properties of the noise is assumed, i.e., it may be deterministic or
stochastic (but must be bounded). The algorithm is based on the use of quadratic
models minimized over adaptively defined trust regions together with the restriction
of the evaluation points to a sequence of nested grids.

Anderson and Ferris [2001] consider the unconstrained optimization of a function
subject to random noise, where it is assumed that averaging repeated observations
at the same point leads to a better estimate of the objective function value. They
develop a simplicial direct search method including a stochastic element and prove
convergence under certain assumptions on the noise; however, the proof of conver-
gence does not work in the absence of noise.

Carter et al. [2001] deal with algorithms for bound constrained noisy problems
in gas transmission pipeline optimization. They consider the Direct algorithm of
[Jones et al. 1993], which proceeds by repeated subdivision of the feasible region,
implicit filtering, a sampling method designed for problems that are low-amplitude,
high frequency perturbations of smooth problems, and a new hybrid of implicit
filtering and Direct, which attempts to combine the best features of the two other
algorithms. In addition to the bound constraints, the objective function may fail
to return a value for some feasible points. The traditional approach assigns a large
value to the objective function when it cannot be evaluated, which results in slow
convergence if the solution lies on a constraint boundary. In [Carter et al. 2001] a
modification is proposed; the function value is derived from nearby feasible points
rather than assigning an arbitrary value. In [Choi and Kelley 2000], implicit filtering
is coupled with the BFGS quasi-Newton update.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

4 · W. Huyer and A. Neumaier

The goal of the present paper is to describe a new algorithm that addresses all
the above points. In Section 2 the basic setup of Snobfit is presented; for details
we refer to Section 6. In Sections 3 to 5, we describe some important ingredients of
the algorithm, namely the branching algorithm, the local quadratic models and the
safeguarded nearest neighbors, and the five classes of points generated by Snobfit,
respectively. In Section 7, the convergence of the algorithm is established, and in
Section 8 a penalty function is proposed to handle soft constraints. Finally, in
Section 9 numerical results are presented.

2. BASIC SETUP OF SNOBFIT

The algorithm Snobfit described in this paper

—produces a user-specified number of suggested evaluation points in each step;

—proceeds by successive partitioning of the box (branch) and building local quadratic
models (fit);

—combines local and global search and allows the user to determine which of both
should be emphasized;

—handles local search from the best point with the aid of trust regions;

—allows for hidden constraints and assigns to such points a function value based
on the function values of nearby feasible points.

In the following we call a job the attempt to solve one and the same problem with
Snobfit. The function and some of the tuning parameters of Snobfit stay the
same in a job. A job consists of several calls to Snobfit. We use the notion initial
call for the first call of a job and continuation call for any later call of Snobfit on
the same job.

One call to Snobfit roughly proceeds as follows; for a detailed description of
the algorithm and its input and output parameters we refer to Section 6. The
main input ingredients are a (possibly empty) list xj , j = 1, . . . , J , of points, their
corresponding function values fj and the uncertainties ∆fj of the function values.
If the user has not been able to obtain a function value for xj , fj should be set
to NaN. In a continuation call, in addition to these “new” points, a list of “old”
points, corresponding function values and uncertainties and a kD tree of subboxes
are loaded from a working file; in an initial call the kD tree consists of only one box.
One of the input parameters that are only set in an initial call and stay the same
during the whole job is a resolution vector ∆x ∈ Rn, ∆x > 0, i.e., two points are
considered to be different if they differ by at least ∆xi in at least one coordinate i.

The algorithm therefore only suggests evaluation points whose ith coordinate is
an integral multiple of ∆xi. It first splits all subboxes containing more than one
point and generates a kD tree of subboxes containing exactly one point. Splitting
is done by the branching algorithm described in Section 3.

Section 4 is devoted to selecting the local quadratic models and the safeguarded
nearest neighbors. In the case of an initial call or if the current best point xbest

has changed compared to the previous call, a local quadratic model around xbest is
computed. Then local quadratic models are estimated around all new points and
all old points whose safeguarded nearest neighbors have changed. The algorithm
generates five types of points, explained in detail in Section 5, where the function

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Snobfit – Stable Noisy Optimization by Branch and Fit · 5

should be evaluated before the next call to Snobfit. Two points (type 1 and 2)
are generated from the best point with the aid of its local quadratic model and
trust regions. The points of type 3 are generated with the aid of the local quadratic
models at positions where good function values are expected, and the fourth type
of points are points in unexplored regions. Points of type 5 are only produced if
the algorithm does not manage to reach the desired number of points by generating
points of types 1 to 4, for example, when there are not enough points available yet
to build local quadratic models, which happens in particular in an initial call with
an empty set of input points and function values. The points of type 5 are chosen
from a set of random points such that their distances from the already sampled
points are maximal; for details see Section 5.

The adjective “stable” in the name of the algorithm is to be understood in the
sense of “stable with respect to both noise in the data and the input of the user”.
For example, it is permitted

—to evaluate the function at other points than the ones suggested by Snobfit;

—to use an already sampled point again as input with a different function value –
in that case an averaged function value is computed (see Section 6, Step 2);

—to use an empty set of points as input for a call to Snobfit (which might be
useful in an initial call); and

—to use points outside the box bounds [u, v] as input, which results in an extension
of the search region (see Section 6, Step 1).

3. THE BRANCHING ALGORITHM

We assume that [u, v] is a bounded box where the function should be explored. We
want to split a subbox [x, x] containing the pairwise distinct points xk, k = 1, . . . ,K,
K ≥ 2, such that each subbox contains exactly one point. If K = 2, we choose i with
|x1
i−x2

i |/(vi−ui) maximal and split along the ith coordinate at yi = λx1
i +(1−λ)x2

i ,
where λ is the golden section number ρ := 1

2 (
√

5− 1) ≈ 0.62 if f(x1) ≤ f(x2) and
λ = 1− ρ otherwise. The subbox with the lower function value gets the larger part
of the original box so that it is eligible for being selected for the generation of a
point of type 4 more quickly.

If K > 2 we apply the following procedure:

while there is a subbox containing more than one point
choose the subbox containing the highest number of points
choose i such that the variance of xi/(vi − ui) is maximal, where the
variance is taken over all points x in the box
sort the points such that x1

i ≤ x2
i ≤ . . .

split in the coordinate i at yi = λxji + (1− λ)xj+1
i , where

j = argmax(xj+1
i − xji)

and λ = ρ if f(xj) ≤ f(xj+1) and λ = 1− ρ otherwise
end while

To each subbox [x, x] we assign its smallness

S := −
n∑

i=1

round(2log((xi − xi)/(vi − ui))) ≈ const− 2 log(volume), (2)

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

6 · W. Huyer and A. Neumaier

where round is the function rounding to nearest integers. This quantity roughly
measures how many bisections are necessary to obtain this box from [u, v]. We have
S = 0 for the exploration box [u, v], and S is large for small boxes.

4. LOCAL QUADRATIC MODELS AND SAFEGUARDED NEAREST NEIGHBORS

For the quadratic models a Hessian fit around the best point xbest is computed.
Assume that xk, k = 1, . . . ,M , M ≥ n, is the list of points distinct from xbest

that have already been sampled, let fk be the corresponding function values and
sk := xk − xbest, and define model errors εk by the equations

fk − fbest = gT sk +
1

2
(sk)TGsk + εk(sk)THsk, k = 1, . . . ,M, (3)

where H := (
∑
sl(sl)T)−1. The N := n+

(
n+1

2

)
parameters in (3) consisting of the

vector g ∈ Rn and the symmetric matrix G ∈ Rn×n are determined by minimizing∑
ε2
k. Actually, we make an economy size QR factorization

(s1, . . . , sM)T = QR

with an orthogonal matrix Q ∈ RM×n and a square upper triangular matrix R ∈
Rn×n. Then H = (RTR)−1 and

βk := (sk)THsk = ‖R−T sk‖2, k = 1, . . . ,M,

and L := R−T is stored for further use (cf. Section 6, Step 7). In addition, we
introduce the abbreviation

σ2
G :=

1

max(M −N ′, 1)

∑
ε̂2
k

with the optimized errors ε̂k from the Hessian fit. N ′ is the number of the N
parameters determined above that are unequal to zero.

For each point x its n+5 safeguarded nearest neighbors are determined as follows.
First, for i = 1, . . . , n, the point closest to x among the points y not yet in the list
satisfying |xi − yi| ≥ ∆xi is chosen. The list of nearest neighbors is filled up with
the (at least 5) points closest to x not yet in the list.

For the local quadratic fit around an arbitrary point x (including xbest) we use
as Hessian a suitable multiple of the Hessian matrix G estimated above, and define
new model errors εk by

fk = f + gT sk +
γ

2
(sk)TGsk + εk

√
∆f2

k + σ2
Gβ

2
k,

where fk and ∆fk are the corresponding function values and their uncertainties as
explained in Section 1, βk := ‖L(xk − xbest)‖2 , sk := xk − x and xk takes in turn
the values of x and its n+ 5 safeguarded nearest neighbors. The n+ 2 parameters
f, γ ∈ R and g ∈ Rn are determined by minimizing

∑
ε2
k. The factor after εk is

chosen such that for points with a large ∆fk (i.e., inaccurate function value) and
a large βk (i.e., far away from xbest), a larger error in the fit is permitted. We use
n+ 6 points to determine n+ 2 parameters in order to smooth down noise.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Snobfit – Stable Noisy Optimization by Branch and Fit · 7

5. RECOMMENDED EVALUATION POINTS

Snobfit generates points belonging to five classes. Let ∆x ∈ Rn, ∆x > 0, be a
resolution vector as defined in Section 2, and let [u′, v′] ⊆ [u, v] be the box where
the points are to be generated.

The (only) point of class 1 is obtained by minimizing the local quadratic model
around xbest over [max(xbest − d, u),min(xbest + d, v)], where d is a trust region
radius and max and min are interpreted componentwise. If the resulting point is
not at the boundary of the box, d is reduced such that the point is on the new
boundary.

Subsequently the (only) point of class 2 is generated by minimizing the quadratic
model around xbest over the box [max(xbest − ρd, u),min(xbest + ρd, v)], where ρ is
the golden section number defined in Section 3.

For each box [x, x] with corresponding point x the quadratic model around x is
minimized over [x′, x′], where

x′i:=

{
xi + 0.05(xi − xi) if (xi − xi)/∆xi > 0.05 maxj(xj − xj)/∆xj ,
xi otherwise,

x′i:=

{
xi − 0.05(xi − xi) if (xi − xi)/∆xi > 0.05 maxj(xj − xj)/∆xj ,
xi otherwise.

(4)

This definition serves to avoid the boundary and too narrow splits. The minimiza-
tion problem is a bound constrained quadratic program, generally indefinite, and
is solved with the Matlab package Minq [Neumaier 1998]. A point y with the
model function value fy is obtained. If |x − y| < 0.05(x − x) (with component-
wise inequalities), the point y is considered to be too close to y. In this case let
i := argmax|xi − yi|/(xi − xi) (where ties are broken by taking the index with the
largest (xi − xi)/(vi − ui)). Then yi is replaced by

y′i :=

xi + 0.05(xi − xi) if (yi > xi and xi + 0.05(xi − xi) ≤ xi)

or xi − 0.05(xi − xi) < xi,
xi − 0.05(xi − xi) otherwise,

and the model function value fy for the resulting new point is computed.
The points of class 3 are points in alternative valleys. A point is called local if its

n + 5 safeguarded nearest neighbors have higher function values. First the points
y generated from local points by minimization of the quadratic model as described
above are chosen in the order of ascending fy and afterwards also nonlocal points
are taken (again in the order of ascending fy) if they differ from all previously
generated points of class 3 by at least 0.1(v′i − u′i) in at least one coordinate i until
the desired number of points of class 3 is reached. The minimal distance between
two points of class 3 prevents that the points are essentially copies of the same
point.

The points of class 4 are points in unexplored regions. For a box [x, x] with
corresponding point x, the point z of class 4 is defined by

zi :=

{
1
2 (xi + xi) if xi − xi > xi − xi,
1
2 (xi + xi) otherwise.

Such a box is selected in order of increasing smallness S (i.e. boxes with a large
volume are chosen first) defined by (2); since S is integral, ties are frequent and are

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

8 · W. Huyer and A. Neumaier

broken by preferring for the same S boxes with a small function value f(x).
The points of class 5 serve to fill up the set of recommended evaluation points. In

order to generate n5 points of class 5, 100n5 random uniformly distributed points
in [u′, v′] are drawn. Initialize X as the set of all points that have already been
sampled (including the recommended evaluation points of this call to Snobfit),
and let Y be the set of the 100n5 random points. Then the set X5 of points of class
5 is generated as follows:

X5 = ∅
if X = ∅

choose y ∈ Y
X = {y}; Y = Y \ {y}; X5 = X5 ∪ {y};

end if
while |X5| < n5

y = argmax minx∈X ‖x− y‖2;
X = X ∪ {y}; Y = Y \ {y}; X5 = X5 ∪ {y};

end while

The coordinates of all these points are rounded to integral multiples of ∆xi (in
the case of points of class 3 or 4 into the corresponding box) and a point is only
accepted if it differs from all already sampled points by at least ∆xi in at least one
coordinate i. This has the effect that some calls to Snobfit may not return a point
of class 1 and/or of class 2.

6. THE SNOBFIT ALGORITHM

Now we are ready to describe the Snobfit algorithm in detail. We look for a
solution of the problem (1) by repeated calls to Snobfit. In each call to Snobfit,
a (possibly empty) list of points xj , j = 1, . . . , J , their function values fj , the
uncertainties of the function values ∆fj , a natural number nreq, two n-vectors u′

and v′, u′ ≤ v′, and a number p ∈ [0, 1] are fed into the program. If the user has
not been able to obtain a function value for xj , f j should be set to NaN (while xj

should be deleted if a function value has not even been tried), and p determines
the fraction of points of class 4 among the set of points of class 3 and 4. The
program then returns nreq suggested evaluation points in the box [u′, v′], their class
as defined in Section 5, their model function values, the corresponding estimated
uncertainties, the current best point, the current best function value and a measure
of the accuracy of the quadratic model at the best point (see Step 7). The idea of
the algorithm is that these points and their function values are used as input for
the next call to Snobfit, but the user may feed instead other points or even an old
point with a newly measured function value into the program. For example, some
suggested evaluations may not have been feasible or successful, or the experiment
does not allow to locate the position precisely; the position obtained differs from
the intended position but can be measured with a precision higher than the error
made.

When a job is started (i.e., in the case of an initial call to Snobfit), an n-vector
∆x > 0 is needed as additional input, which is a resolution vector as described in
Section 2. In the continuation calls to Snobfit, ∆x, all function values sampled
previously and all parameters characterizing the state of the splitting procedure are

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Snobfit – Stable Noisy Optimization by Branch and Fit · 9

reloaded from a working file created after the previous call to Snobfit.
One call to Snobfit proceeds in the following 11 steps.
Step 1. The vectors u and v are defined such that [u, v] is the smallest box

containing [u′, v′], all new input points and, in the case of a continuation call to
Snobfit, also the box [uold, vold] from the previous iteration. [u, v] is considered to
be the box to be explored and a kD tree of subboxes of [u, v] is generated; however,
all suggested new evaluation points are in [u′, v′].

Step 2. Duplicates in the set of points consisting of the “new” points and in
a continuation call also the “old” points from the previous iterations are thrown
away, and the corresponding function value f and uncertainty ∆f are updated. If a
point has been put into the algorithm m times with function values f1, . . . , fm and
corresponding uncertainties ∆f1, . . . ,∆fm, the quantities f and ∆f are defined by

f =
1

m

m∑

i=1

fi, ∆f =

√√√√ 1

m

m∑

i=1

((fi − f)2 + ∆f2
i).

Step 3. In the case of an initial call to Snobfit, the trust region radius d for
minimization from the best point is initialized as d = 1

4 (v − u). In a continuation
call, let f1 and f2 be the function values of the points closest to the points of class
1 and 2, respectively, from the previous call to Snobfit (these are taken to be the
presumed points of class 1 or 2; whether this is indeed the case depends on the
extent to which the calling agent used the recommended measurement positions),
and let fbest be the best function value and dold be the trust region radius from the
previous step. If f1 < min(f2, fbest), i.e., if the presumed point of class 1 is better
than the presumed point of class 2 and the previous best point, the trust region
radius is enlarged according to d = dold/ρ, where ρ is the golden section number
defined in Section 3. If fbest < min(f1, f2), i.e., if neither the presumed point of
type 1 nor the presumed point of type 2 has brought an improvement in function
value, the trust region is reduced according to d = ρdold. In all other cases, we keep
d = dold.

Step 4. All current boxes containing more than one point (in the case of an
initial call the kD tree of boxes consists of the single box [u, v]) are split according
to the algorithm described in Section 3 and the smallness is computed for these
boxes. If [u, v] is larger than [uold, vold] in a continuation call, the box bounds and
the smallness are updated for the boxes for which this is necessary.

Step 5. If the number of already sampled points is less than n + 6, go to Step
11. Otherwise, for each new point x a vector pointing to n+ 5 safeguarded nearest
neighbors is computed. The neighbor lists of some old points are updated in the
same way if necessary.

Step 6. For any new input point x with function value NaN (which means that
the function value could not be determined at that point) and all old points marked
infeasible whose nearest neighbors have changed, let f1 and f2 be the minimal and
maximal function value among the safeguarded nearest neighbors of x, excepting
the neighbors where no function value could be obtained, and let f1 and f2 be the
minimal and maximal function value among all feasible points sampled so far in
the case that all safeguarded nearest neighbors of x were infeasible. Then we set
f = f2 + 10−3(f2 − f1) and ∆f = ∆f2.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

10 · W. Huyer and A. Neumaier

Step 7. The current best point xbest and the current best function value fbest

are determined. In an initial call or if xbest has changed, a Hessian fit around xbest

is computed according to Section 4. Otherwise, for all new points xk the quantities
βk, defined by βk := ‖L(xk−xbest)‖2, are computed, where the matrix L is defined
in Section 4. Moreover, local quadratic fits around all new points and all old points
with changed nearest neighbors are computed and the potential points of type 3 in
each box are determined. The quantity max |fk − q(xk)|, where q denotes the local
quadratic model around xbest and the maximum is taken over xk = xbest and its
n + 5 safeguarded nearest neighbors, is computed as a measure of the accuracy of
the quadratic model around xbest.

Step 8. The point of type 1 and the point of type 2 are generated as described
in Section 5, which gives n12 ≤ 2 evaluation points, using the safeguard of Section
5.

Step 9. To generate the remaining m := nreq − n12 evaluation points, let n1 :=
bpmc and n2 := dpme. Then a random number generator sets m1 = n1 with
probability mp− n1 and m1 = n2 otherwise.

Step 10. m − m1 points of type 3 and m1 points of type 4 are generated as
described in Section 5. If the algorithm does not find m1 acceptable points of
type 3 according to the choice of ∆y, more points of type 4 are generated in order
to obtain (if possible) nreq suggested evaluation points. Only boxes that do not
contain a just generated point of type 3 are eligible for the generation of a point of
type 4.

Step 11. If the number of suggested evaluation points is still less than nreq, the
set of evaluation points is filled up with points of type 5 as described in Section 5.
If quadratic models are already available (i.e., if the number of sampled function
values is at least n + 6), we assign to the points of type 5 the model function
values and variances obtained from the quadratic models pertaining to their boxes;
otherwise, these quantities are set to NaN.

Stopping criterion. Since Snobfit is called explicitly before each new mea-
surement, the search continues as long as the calling agent (an experimenter or a
program) finds it reasonable to continue. A natural stopping test would be to quit
exploration (or move exploration to a different “box of interest”) if for a number
of calls to Snobfit no new point of type 1 is generated. Indeed, this means that
Snobfit thinks that, according to the current model, the best point is already
known; but since the model may be inaccurate, it is sensible to have this confirmed
repeatedly before actually stopping.

Changing the objective function. We assume that the objective function f
is of the form f(x) = ϕ(y(x)), where the vector y(x) ∈ Rk is obtained by time-
consuming experiments or simulations but the function ϕ can be computed cheaply.
Suppose that the objective function f has already been evaluated at x1, . . . , xM and
that, at some moment, the user decides that the objective function f̃(x) = ψ(y(x))
is more appropriate, where ψ can be computed cheaply, too. Then the already
determined vectors y(x1),. . . ,y(xM) can be used to compute f̃(x1),. . . ,f̃(xM), and
we can start a new Snobfit job with x1,. . . ,xM and f̃(x1), . . . ,f̃(xM), i.e., we use
the old grid of points but make a new partition of the space before the Snobfit

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Snobfit – Stable Noisy Optimization by Branch and Fit · 11

algorithm is continued.

7. CONVERGENCE OF THE ALGORITHM

For a convergence analysis, we assume that ∆x = 0 and that the exploration box
[u, v] is scaled to [0, 1]n. In order to make the algorithm theoretically meaningful
for ∆x = 0, we replace (4) by

x′i:=

{
xi + 0.05(xi − xi) if xi − xi > 0.05 maxj(xj − xj),
xi otherwise,

x′i:=

{
xi − 0.05(xi − xi) if xi − xi > 0.05 maxj(xj − xj),
xi otherwise.

(5)

and do not do any rounding, which means that all points of type 3 and 4 are accepted
since they differ from the old point in the box. Moreover, we assume that [u′, v′] =
[u, v] = [0, 1]n during the whole job, that at least one point of class 4 is sampled
in each call to Snobfit and that the function is evaluated at the points suggested
by Snobfit. Then Snobfit is guaranteed to converge to a global minimizer if the
objective function is continuous – or at least continuous in the neighborhood of
a global optimizer. This follows from the fact that, under the assumptions made
above, the set of points sampled by Snobfit forms a dense subset of the search
space. That is, given any point x ∈ [u, v] and any δ > 0, Snobfit will eventually
sample a point within a distance δ from x. We now establish this property.

When a box with smallness S is split into two parts, the following two cases are
possible if S1 and S2 denote the smallnesses of the two subboxes. When the box
is split into two equal halves, we have S1 = S2 = S + 1, and otherwise we have
S1 = S and S2 = S + 1 (after renumbering the two subboxes if necessary). This
implies that, if Smin is the minimal smallness occurring in the kD tree of subboxes,
the number of boxes with smallness Smin does not increase after a box has been
split (it either stays the same or decreases by one).

The definition of the point of type 3 prevents splits in too narrow variables and
the same holds for the points of type 4. Indeed, consider a box [x, x] containing the
point x and let

xi − xi ≥ xj − xj for j = 1, . . . , n (6)

(i.e., the ith extension of the box is the largest one). In order to simplify notation,
we assume that

xj − xj ≥ xj − xj (7)

and thus we have zj = 1
2 (xj + xj) for j = 1, . . . , n (the other cases can be handled

similarly) for the point z of type 4. According to the branching algorithm defined
in Section 3, the box will be split along the coordinate k with zk−xk = 1

2 (xk−xk)
maximal, i.e., xk − xk ≥ xj − xj for j = 1, . . . , n. Then (6), (7) and the definition
of k imply

xk − xk ≥ xk − xk ≥ xi − xi ≥
1

2
(xi − xi),

which means that only splits along coordinates k with xk − xk ≥ 1
2 max(xj − xj)

are possible.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

12 · W. Huyer and A. Neumaier

The fact that the worst case of a type 4 split is a factor 1
4 (1 +

√
5) ≈ 0.8090 and

that the worst factor of a type 3 split is 1
40 (37 +

√
5) ≈ 0.9809 guarantee that the

boxes containing any point x ∈ [u, v] shrink sufficiently fast after sufficiently many
splits. More precisely, for each δ > 0 and i = 1, . . . , n, there exists an mi(δ) ∈ N
such that the ith side length of the box containing x is less than δ if the box has
been split at least mi(δ) times along the ith coordinate. Moreover, since we assume
that in each call to Snobfit at least one box with minimal smallness Smin is split
and the number of boxes with smallness Smin does not increase, this implies that
after sufficiently many calls to Snobfit, there are no boxes with smallness Smin

left any more.
If we now consider the subbox containing a global minimizer x∗, this box will

eventually be split at least mi(δ) times along each coordinate i, i = 1, . . . , n, since
the safeguards against too narrow splits prevent that a box is split along certain
coordinates all the time and rarely along others and the choice of boxes eligible
for the generation of a point of type 4 guarantees that the box containing x∗ will
eventually be split again.

These properties give the following convergence theorem for Snobfit with ∆x =
0 and at least one point of type 4 in every call to Snobfit.

Theorem 7.1. Suppose that the global minimization problem (1) has a solution
x∗ ∈ [u, v], and that f : [u, v] → R is continuous in a neighborhood of x∗, and let
ε > 0. Then the algorithm will eventually find a point x with f(x) < f(x∗)+ε, i.e.,
the algorithm converges.

8. HANDLING GENERAL CONSTRAINTS

In this section we consider the constrained optimization problem

min f(x)
s.t. x ∈ [u, v], F (x) ∈ F,

(8)

where, in addition to the assumptions after (1), F : [u, v] → Rm is a vector of m
continuous contraint functions F1(x),. . . ,Fm(x), and F := [F , F] is a box in Rm
defining the constraints on F (x).

Traditionally (see [Fiacco and McCormick 1990]), constraints that cannot be
handled explicitly are accounted for in the objective function, using simple l1 or
l2 penalty terms for constraint violations, or logarithmic barrier terms penalizing
the approach to the boundary. There are also so-called exact penalty functions
whose optimization gives the exact solution (see, e.g., [Nocedal and Wright 1999]);
however, this only holds if the penalty parameter is large enough, and what is large
enough cannot be assessed without having global information.

The use of more general transformations (cf. [Dallwig et al. 1997]) gives rise to
more precisely quantifiable approximation results. In particular, if it is known in
advance that all constraints apart from the simple constraints are soft constraints
only (so that some violation is tolerated), one may pick a transformation that in-
corporates prescribed tolerances into the reformulated simply constrained problem:

Theorem 8.1. (Soft optimality theorem). For suitable ∆ > 0, σi, σi > 0, f0 ∈
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Snobfit – Stable Noisy Optimization by Branch and Fit · 13

R, let

q(x) =
f(x)− f0

∆ + |f(x)− f0|
,

δi(x) =

(Fi(x)− F i)/σi if Fi(x) ≤ F i,
(Fi(x)− F i)/σi if Fi(x) ≥ F i,
0 otherwise,

r(x) = 2
(∑

δ2
i (x)

)/(
1 +

∑
δ2
i (x)

)
.

Then the merit function

fmerit(x) = q(x) + r(x)

has its range bounded by]−1, 3[, and the global minimizer x̂ of fmerit in [u, v] either
satisfies

Fi(x̂) ∈ [F i − σi, F i + σi] for all i, (9)

f(x̂) ≤ min{f(x) | F (x) ∈ F, x ∈ [u, v]}, (10)

or one of the following two conditions holds:

{x ∈ [u, v] | F (x) ∈ F} = ∅, (11)

f0 < min{f(x) | F (x) ∈ F, x ∈ [u, v]}. (12)

Proof. Clearly, q(x) ∈]−1, 1[and r(x) ∈ [0, 2[, so that f(x) ∈]−1, 3[. If there
is a feasible point x with f(x) ≤ f0 then q(x) ≤ 0, r(x) = 0 at this point. Since
fmerit is monotone increasing in q + r, we conclude from fmerit(x̂) ≤ fmerit(x) that

q(x̂) ≤ q(x̂) + r(x̂) ≤ q(x) + r(x) = q(x),

−1 + r(x̂) ≤ q(x̂) + r(x̂) ≤ q(x) + r(x) ≤ 0,

hence f(x̂) ≤ f(x), giving (10), and r(x̂) ≤ 1,

δ2
i (x̂) ≤

∑
δ2
i (x̂) ≤ 1,

giving (9).

Since the merit function is bounded by] − 1, 3[even if f and/or some Fi are
unbounded, the formulation is able to handle so-called hidden constraints. There,
the conditions for infeasibility are not known explicitly but are discovered only
when attempting to evaluate one of the functions involved. In such a case, if the
function cannot be evaluated, the merit function value can be simply set to 3.

(11) and (12) are degenerate cases that do not occur if a feasible point is already
known and we choose f0 as the function value of the best feasible point known
(at the time of posing the problem). A suitable value for ∆ is the median of the
|f(x) − f0| for an initial set of trial points (in the context of global optimization
often determined by a space-filling design [McKay et al. 1979; Owen 1992; 1994;
Sacks et al. 1989; Tang 1993]). The number σi measures the degree to which

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

14 · W. Huyer and A. Neumaier

the constraint Fi(x) ∈ Fi may be softened; suitable values are in many practical
applications available from the meaning of the constraints.

Of course there are other choices for q(x), r(x), fmerit(x) with the same proper-
ties. The choices given are simple and lead to a continuously differentiable merit
function with Lipschitz-continuous gradient if f and F have these properties. (The
denominator of q(x) is nonsmooth, but only when the numerator vanishes, so that
this only affects the Hessian.)

9. NUMERICAL RESULTS

In this section we report results of Snobfit on the 9 test functions used in [Jones
et al. 1993], where an extensive comparison of algorithms is presented; this test
set was also used in [Huyer and Neumaier 1999]. Let n be the dimension of the
problem, and the default box bounds [u, v] from the literature were used. The
algorithm was started with n+ 6 points chosen at random from [u, v]. In each call
to Snobfit, n + 6 points in [u, v] were generated, and we set ∆x = 10−4(v − u)
and p = 0.1. Instead of a test function f(x), we considered

f̃(x) := f(x) + σN,

where N is a normally distributed random variable with mean 0 and variance 1,
and ∆f was set to max(3σ, ε), where ε := 2.22 ·10−16 is the machine precision. The
algorithm was stopped if (fbest − f∗)/|f∗| < 10−2, where f∗ is the known optimal
function value (which is 6= 0 for our test set). The number of function calls was
limited to 10000.

Since a random element is contained in the initial points as well as the function, 10
jobs were computed with each function and each value of σ, and the median nfmed

of function calls needed to find a global minimizer was computed. In Table I, the
dimensions n, the standard box bounds [u, v], the number nslow of jobs where a
global minimizer was not found within 5000 function evaluations, and the median
nfmed are given.

σ = 0 σ = 0.01 σ = 0.1
n [u, v] nslow nfmed nslow nfmed nslow nfmed

Branin 2 [−5, 10]× [0, 15] 0 64 0 68 0 48

Six-hump camel 2 [−3, 3]× [−2, 2] 0 48 0 48 0 44
Goldstein–Price 2 [−2, 2]2 0 100 0 92 0 100

Shubert 2 [−10, 10]2 0 112 0 112 0 116
Hartman 3 3 [0, 1]3 0 76.5 0 63 0 63

Hartman 6 6 [0, 1]6 0 276 3 282 0 366

Shekel 5 4 [0, 10]4 0 580 0 295 4 1155

Shekel 7 4 [0, 10]4 0 990 0 870 6 8550

Shekel 10 4 [0, 10]4 0 375 0 1045 3 305

Table I. Dimensions, box bounds and results with Snobfit for the unperturbed and perturbed

problems

In the case of the unperturbed problem (σ = 0), the results are competitive
with results of noise-free global optimization algorithms (see [Jones et al. 1993] and
[Huyer and Neumaier 1999]). For the perturbed problem, the algorithm sometimes

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

Snobfit – Stable Noisy Optimization by Branch and Fit · 15

gets stuck in a nonglobal local minimizer for the Shekel m functions, which have m
local minimizers and only one of them is global.

An earlier version of Snobfit was used successfully for a real life constrained
optimization application involving the calibration of nanoscale etching equipment
with expensive measured function values, in which most of the problems mentioned
in the introduction were present.

The Matlab code of the version of Snobfit described in this paper is available
on the web at http://www.univie.ac.at/~neum/software/snobfit/.

ACKNOWLEDGMENT

The major part of the Snobfit package was developed within a project sponsored
by IMS Ionen Mikrofabrikations Systeme GmbH, Wien, whose support we gratefully
acknowledge. We’d also like to thank Erich Dolejsi for his help with debugging the
program

REFERENCES

Anderson, E. and Ferris, M. 2001. A direct search algorithm for optimization of expensive
functions by surrogates. SIAM J. Optim 11, 837–857.

Booker, A., J.E. Dennis, J., Frank, P., Serafini, D., Torczon, V., and Trosset, M. 1999. A
rigorous framework for optimization of expensive functions by surrogates. Structural Optim 17,

1–13.

Carter, R., Gablonsky, J., Patrick, A., Kelley, C., and Eslinger, O. 2001. Algorithms for
noisy problems in gas transmission pipeline optimization. Optim. Eng. 2, 139–157.

Choi, T. and Kelley, C. 2000. Superlinear convergence and implicit filtering. SIAM J. Op-
tim. 10, 1149–1162.

Conn, A., Scheinberg, K., and Toint, P. 1997. Recent progress in unconstrained nonlinear
optimization without derivatives. Math. Programming 79B, 397–414.

Dallwig, S., Neumaier, A., and Schichl, H. 1997. GLOPT – a program for constrained global
optimization. In Developments in Global Optimization, I. M. Bomze, T. Csendes, R. Horst,

and P. M. Pardalos, Eds. Nonconves Optimization and its Applications 18. Kluwer, Dordrecht,
19–36.

Elster, C. and Neumaier, A. 1995. A grid algorithm for bound constrained optimization of

noisy functions. IMA J. Numer. Anal. 15, 585–608.

Fiacco, A. and McCormick, G. 1990. Sequential Unconstrained Minimization Techniques.

Classics in Applied Mathematics 4. SIAM, Philadelphia.

Huyer, W. and Neumaier, A. 1999. Global optimization by multilevel coordinate search. J.

Global Optim. 14, 331–355.

Jones, D. 2001. A taxonomy of global optimization methods based on response surfaces. J.
Global Optim. 21, 345–383.

Jones, D., Perttunen, C., and Stuckman, B. 1993. Lipschitzian optimization without the
lipschitz constant. J. Optim. Theory Appl. 79, 157–181.

Jones, D., Schonlau, M., and Welch, W. 1998. Efficient global optimization of expensive

black-box functions. J. Global Optim. 13, 455–492.

McKay, M., Beckman, R., and Conover, W. 1979. A comparison of three methods for selecting

values of input variables in the analysis of output from a computer code. Technometrics 21,
239–245.

Neumaier, A. 1998. MINQ: General definite and bound constrained indefinite quadratic pro-
gramming. http://www.mat.univie.ac.at/~neum/software/minq/.

Nocedal, J. and Wright, S. 1999. Numerical Optimization. Springer Series in Operations

Research. Springer, Berlin.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

16 · W. Huyer and A. Neumaier

Owen, A. 1992. Orthogonal arrays for computer experiments, integration and visualization.

Statistica Sinica 2, 439–452.

Owen, A. 1994. Lattice sampling revisited: Monte Carlo variance of means over randomized

orthogonal arrays. Ann. Stat. 22, 930–945.

Powell, M. 1998. Direct search algorithms for optimization calculations. Acta Numerica 7,

287–336.

Sacks, J., Welch, W., Mitchell, T., and Wynn, H. 1989. Design and analysis of computer

experiments. With comments and a rejoinder by the authors. Stastist. Sci. 4, 409–435.

Schonlau, M. 1997. Computer experiments and global optimization. Ph.D. thesis, University of

Waterloo, Waterloo, Ontario, Canada.

Schonlau, M. 1997–2001. SPACE Stochastic Process Analysis of Computer Experiments.
http://www.schonlau.net.

Schonlau, M., Welch, W., and Jones, D. 1998. Global versus local search in constrained

optimization of computer models. In New Developments and Applications in Experimental

Design, N. Flournoy, W. Rosenberger, and W. Wong, Eds. Institute of Mathematical Statistics

Lecture Notes – Monograph Series 34. Institute of Mathematical Statistics, Hayward, CA, 11–

25.

Tang, B. 1993. Orthogonal array-based latin hypercubes. J. Amer. Statist. Assoc. 88, 1392–1397.

Trosset, M. and Torczon, V. 1997. Numerical optimization using computer experiments. Tech.

Rep. 97-38, ICASE.

Welch, W., Buck, R., Sacks, J., Wynn, H., Mitchell, T., and Morris, M. 1992. Screening,
predicting, and computer experiments. Technometrics 34, 15–25.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

