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Coherent spaces and coherent manifolds

The notion of a coherent space is a nonlinear version

of the notion of a complex Hilbert space:

The vector space axioms are dropped while the notion of

inner product, now called a coherent product, is kept.

Coherent spaces combine the rich, often highly characteristic

variety of symmetries of traditional geometric structures with the

computational tractability of traditional tools from numerical

analysis and statistics.
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A Euclidean space is a complex vector space H with a binary

operation that assigns to φ, ψ ∈ H the Hermitian inner product

φ∗ψ ∈ C, antilinear in the first and linear in the second argument,

such that

φ∗ψ = ψ∗φ, (1)

ψ∗ψ > 0 for all ψ ∈ H \ {0}. (2)

H is naturally embedded into its antidual H×, the space of all

antilinear functionals on H, and has a natural locally convex

topology in which these are continuous.

The Hilbert space completion H sits between these two spaces,

H ⊆ H ⊆ H×.
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A coherent space is a nonempty set Z with a distinguished

function K : Z × Z → C, called the coherent product, such that

K(z, z′) = K(z′, z), (3)

and for all z1, . . . , zn ∈ Z, the n× n matrix G with entries

Gjk = K(zj , zk) is positive semidefinite.

The coherent space Z is called nondegenerate if

K(z′′, z′) = K(z, z′) for all z′ ∈ Z ⇒ z′′ = z.
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Any subset Z of a Euclidean space is a coherent space with

coherent product K(z, z′) := z∗z′.

Coherent spaces provide a setting for the study of geometry

in a different direction than traditional metric, topological,

and differential geometry.

Just as it pays to study the properties of manifolds

independent of their embedding into a real Euclidean space,

so it is fruitful to study the properties of coherent spaces

independent of their embedding into a complex Euclidean space.
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Let Z be a coherent space. A map A : Z → Z is called coherent if

there is an adjoint map A∗ : Z → Z such that

K(z,Az′) = K(A∗z, z′) for z, z′ ∈ Z (4)

If Z is nondegenerate, the adjoint is unique, but not in general.

A symmetry of Z is an invertible coherent map on Z with an

invertible adjoint.

Coherent maps form a semigroup CohZ with identity; the

symmetries from a group.

An isometry is a coherent map A that has an adjoint satisfying

A∗A = 1. An invertible isometry is called unitary.
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A coherent manifold is a smooth (= C∞) real manifold Z

with a smooth coherent product K : Z × Z → C with which

Z is a coherent space.

A nondegenerate coherent manifold has a canonical Riemannian

metric induced by the distance (Parthasarathy & Schmidt

1972)

d(z, z′) :=
√
K(z, z) +K(z′, z′)− 2 Re K(z, z′) (5)

of two points z, z′ ∈ Z.

The distance is a metric precisely when the coherent space is

nondegenerate. In the resulting topology, the coherent product is

continuous.
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Quantization

In the interesting examples, the coherent space is an extended

classical phase space, and there is a quantization functor that turns

the symmetries of the coherent space into unitary operators in the

corresponding quantum space.

Thus the quantum space is a representation space for quantum

dynamics.

This provides a universal framework for quantization, extending

the traditional geometric quantization of finite-dimensional

symplectic manifolds to more general situations, and in particular

to the quantization of certain classical field theories.
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A quantum space Q(Z) of a coherent space Z is a Euclidean

space spanned (algebraically) by a distinguished set of vectors |z〉
(z ∈ Z) called coherent states satisfying

〈z|z′〉 = K(z, z′) for z, z′ ∈ Z (6)

with the linear functionals

〈z| := |z〉∗

acting on Q(Z).

Coherent states with distinct labels are distinct iff Z is

nondegenerate.
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A construction by Aronszajn 1943 (attributed by him to

Moore), usually phrased in terms of reproducing kernel Hilbert

spaces, proves the following basic result.

Moore–Aronszajn Theorem:

Every coherent space has a quantum space.

It is unique up to isometry.

10



The antidual Q×(Z) := Q(Z)× of the quantum space Q(Z)

is called the augmented quantum space.

It contains the completed quantum space Q(Z), the Hilbert

space completion of Q(Z),

Q(Z) ⊆ Q(Z) ⊆ Q×(Z).

The completed quantum spaces of coherent spaces may be viewed

as reproducing kernel Hilbert spaces, but constructed without

starting from a Hilbert space conventionally defined using a

measure.
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Let Q(Z) be a quantum space of the coherent space Z. Then for

any coherent map A on Z, there is a unique linear map

Γ(A) : Q(Z)→ Q×(Z) such that

Γ(A)|z〉 = |Az〉 for all z ∈ Z (7)

(Neumaier & Ghani Farashahi 2022).

We call Γ(A) the quantization of A and Γ the quantization

map.

The quantization map furnishes a representation of the semigroup

of coherent maps on Z on the quantum space of Z.

In particular, this gives a unitary representation of the group of

unitary coherent maps on Z.
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Example. The Möbius space Z = {z ∈ C2 | |z1| > |z2|} is a

coherent manifold with coherent product

K(z, z′) := (z1z
′
1 − z2z

′
2)−1.

A quantum space is the Hardy L2 space of analytic functions on

the complex upper half plane with square integrable limit on the

real line.

The Möbius space has a large semigroup of coherent maps (a

semigroup of compressions, Olshanski 1981) consisting of the

matrices A ∈ C2×2 such that

α := |A11|2− |A21|2, β := A11A12−A21A22, γ := |A22|2− |A12|2

satisfy the inequalities

α > 0, |β| ≤ α, γ ≤ α− 2|β|.

It contains as a group of symmetries the group GU(1, 1) of matrices

preserving the Hermitian form |z1|2 − |z2|2 up to a positive factor.
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This example generalizes to central extensions of all

semisimple Lie groups and associated symmetric spaces

or symmetric cones and their line bundles.

These provide many interesting examples of coherent manifolds.

This follows from work on coherent states discussed in monographs

by Perelomov 1986, by Faraut & Korányi 1994, and by Neeb

2000.

In particular, the nonclassical states of light in quantum optics

called squeezed states are described by coherent spaces

corresponding to the metaplectic group, and collective states in

solid state physics are described by coherent spaces corresponding

to the metagonal (spin) group.
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For a coherent manifold, the symmetry group is usually a Lie group

generated by first order differential operators called coherent

differential operators.

Under weak conditions, every coherent differential operator X can

be quantized by promoting it to the self-adjoint operator

dΓ(X) :=
d

dt
Γ(eιtX)

∣∣∣
t=0

.

In the quantum physics applications, ι = i/~.

The infinitesimal quantization map dΓ has natural properties;

for example, it is linear and the relation eιtdΓ(X) = Γ(eιtX) holds.
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By taking limits of linear combinations of coherent states for Z

we may construct excited coherent states corresponding to

coherent products for certain bundles ExNZ over Z, with the same

completed quantum space.

In the simplest case, the first order excited coherent states are the

|z,X(z)〉 := lim
s→0

s−1(|esXz〉 − |z〉),

where X is a vector field on Z. These are singly excited coherent

states for the space TZ with coherent inner product

K([z,X(z)], [z′, X ′(z′)]) := 〈z,X(z)|z′, X ′(z′)〉 = LXRX′K(z, z′),

where LX and RX′ are the directional derivatives along the vector

fields X and X ′ in the left and right argument, respectively.
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Thus coherent manifolds are a new, geometric way of working with

concrete Hilbert spaces in which they are embeddable.

In place of measures and integration, differentiation is the

basic tool for evaluating inner products.

This makes many calculations easy that are difficult in

Hilbert spaces whose inner product is defined through an integral.
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Klauder spaces and Fock spaces

Bosonic Fock spaces arise as the quantum spaces of Klauder spaces.
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We call a coherent space Z slender if any finite set of linearly

dependent, nonzero coherent states in a quantum space Q(Z) of Z

contains two parallel coherent states.

In quantum spaces of slender coherent spaces it is possible to define

generalized annihilation operators and generalized normal

ordering with similar properties as in Fock spaces. For details see

Neumaier & Ghani Farashahi 2022.

Slenderness proofs are quite nontrivial and exploit very specific

properties of the coherent states of the coherent spaces. For

example, the Möbius space is slender.
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The Klauder space KL[V ] over the Euclidean space V is the

coherent manifold Z = C× V of pairs z := [z0, z] ∈ C× V with

coherent product K(z, z′) := ez0+z′0+z∗z′ .

KL[C] is essentially in Klauder 1963. Its coherent states

are precisely the scalar multiples of the coherent states

discovered by Schrödinger 1926.

Klauder spaces are slender. Their quantum spaces are essentially

the bosonic Fock spaces introduced by Fock 1932 in the context

of quantum field theory; they were first presented by Segal

1960 in a form equivalent to the above.

The quantum space of KL[Cn] was systematically studied

by Bargmann 1963.
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Klauder spaces have a large semigroup of coherent maps, which

contains a large unitary subgroup. The oscillator semigroup over

V is the semigroup Os[V ] of matrices

A = [ρ, p, q,A] :=

 1 p∗ ρ

0 A q

0 0 1

 ∈ Lin(C× V × C)

with ρ ∈ C, p ∈ V ×, q ∈ V , and A ∈ Lin(V, V ×); one easily verifies

the formulas for the product

[ρ, p, q,A][ρ′, p′, q′,A′] = [ρ′ + ρ+ p∗q′,A′∗p+ p′, q + Aq′,AA′]

and the identity 1 = [0, 0, 0, 1].
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With the adjoint

[ρ, p, q,A]∗ = [ρ, q, p,A∗],

Os[V ] is a *-semigroup consisting of coherent maps acting on

[z0, z] ∈ Kl[V ] as

[ρ, p, q,A][z0, z] := [ρ+ z0 + p∗z, q + Az]. (8)
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The subset of coherent maps of the form

Wλ(q) := [ 1
2
(q∗q + iλ),−q∗, q, 1] (q ∈ V, λ ∈ R)

is the Heisenberg group H(V ) over V . We have

Wλ(q)Wλ′(q
′) = Wλ+λ′+σ(q,q′)(q + q′),

Wλ(q)[z0, z] = [ 1
2
(q∗q + λ) + z0 − q∗z, q + z]

with the symplectic form

σ(q, q′) = 2 Im q∗q′. (9)

The n-dimensional Weyl group is the subgroup of H(Cn)

consisting of the Wλ(q) with real λ and q.
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Theorem For a Klauder space Z:

(i) Every linear operator A : Q(Z)→ Q×(Z) can be written

uniquely in normally ordered form A = :F (a∗, a):.

(ii) The map F → :F : is linear, with :1: = 1 and

:f(a)∗F (a∗, a)g(a): = f(a)∗ :F (a∗, a): g(a).

In particular,

:f(a)∗g(a): = f(a)∗g(a).

(iii) The quantized coherent maps satisfy

Γ(A) = :eρ+p
∗a+a∗q+a∗(A−1)a: for A = [ρ, p, q,A].

(iv) The Weyl relations

ep
∗aea

∗q = ep
∗qea

∗qep
∗a

and the canonical commutation relations

(p∗a)(a∗q)− (a∗q)(p∗a) = σ(p, q)

hold with the symplectic form (9).
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Coherent quantization of linear field equations

The coherent quantization of linear field equations for bosons (and

fermions) is done in terms of infinite-dimensional symplectic (and

orthogonal) Hua spaces, a new class of coherent spaces based on

the geometric analysis by Loo-Keng Hua 1945 (for the

finite-dimensional case).

Their symmetry groups are infinite-dimensional metaplectic and

metagonal (spin) groups. They allow one to describe the full

quantum scattering behavior of linear field equations in terms of

classical scattering and Maslov corrections for the phase of the

S-matrix.
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Traditionally, the fermionic Fock space construction is based on a

distinguished vacuum state – the 0-particle state.

In quantum field theory, many vectors in a fermionic Fock space

may serve as a potential vacuum state; the vacuum of a Fock

space depends on the Hamiltonian under consideration.

In time-dependent systems, the Hamiltonian and hence the

corresponding vacuum state changes with time. Thus a Fock space

description is inadequate.

We conclude that the structure of interest in quantum field theory

is not the Fock space itself but a mathematically precise version of

”what is left from Fock space when no vacuum state is

distinguished”.
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In quantum mechanics (quantizing a finite-dimensional classical

dynamics), this ”Fock space stripped of a special vacuum state” is,

as a Hilbert space, the same object as the Fock space itself, but

each choice of a vacuum defines a different associated excitation

structure, anticommuting algebra, and exterior algebra, related to

each other by Bogoliubov transformations.

In quantum field theory (quantizing infinite-dimensional classical

dynamics), the excitation structure becomes the multi-particle

structure of the theory.

Moreover, problems appear in infinite dimensions due to the

existence of inequivalent representations of the canonical

commutation relations.
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As we may use affine spaces where all points are on equal footing in

place of vector spaces with a distinguished origin, so symplectic

and orthogonal Hua spaces are bundles over symmetric spaces

without any distinguished origin, equipped with a coherent product

related to the Kähler structure of these spaces.

In group theoretic terms, we have bundles over the symmetric

spaces Sp(V2)/U(V) in the symplectic case and SO(V2)/U(V) in

the orthogonal case.

In finite dimensions, Hua 1945 gave a description of these spaces in

terms of linear operators A from V2 to V satisfying the bilinear

equation zTJz = 0, where

J =

(
0 1

−1 0

)
and J =

(
1 0

0 1

)
in the symplectic and orthogonal case, respectively.
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Hua showed that the set of these operators has the structure of a

metric space with a distance function taking integer values only.

The points form an infinite graph, in modern terminology a

distance regular graph called a dual polar graph.

The symmetry group acts as a distance transitive group of

automorphism.
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Incidentally, I ended my career as a pure mathematician by

coauthoring an encyclopedic book (Brouwer et al. 1989) on the

beautiful subject of distance regular graphs.

These constitute a vast generalization of the concept of platonic

solids, featuring computationally very useful geometric

representations for most finite simple groups.

But I discovered Hua’s contribution to this only many years after

the publication of that book ....
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A central extension of the distance transitive symmetry groups of

Hua acts on the corresponding line bundles.

In finite dimensions, the coherent states of Perelomov 1986

associated with these line bundles lead to a coherent product on

these bundles, turning them into coherent spaces whose symmetry

groups are the metaplectic and metagonal groups.

The construction may be extended to infinite dimensions.

The explicit description of the coherent product involves questions

of how to specify the cocycles of the central extensions; for the

applications one needs as explicit formulas as possible.
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Since there is no distinguished origin, the quantum space

associated with a Hua space has no distinguished state vector.

Only the whole class of coherent states is distinguished, and any of

them may serve as a potential vacuum state.

Thus the quantum spaces are examples of infra Fock spaces, a

generalization of Fock spaces that will be discussed in Lecture III.
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The case of charged fermionic matter interacting solely through a

time-dependent external electromagnetic field is the only

practically relevant field theory in 4 dimensions whose quantization

is truly understood (Gracia-Bond́ıa & Várilly et al. 1994).

In this case, the single-particle dynamics is given by a linear Dirac

equation in a complex Euclidean space with (in general)

time-dependent Hamiltonian H(t), called a Dirac operator.

In the language of second quantization, this Euclidean space is

called the 1-particle space, although its classical meaning is that of

a space of half-densities for charged fermionic matter.
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As is well-known, a Dirac operator has a real spectrum unbounded

in both directions.

At all times where this Dirac operator has no generalized eigenstate

with zero energy, the invariant subspace spanned by the positive

eigenfunctions of the Dirac operator is a maximal isotropic subspace

of the bilinear form defined by the real part of the inner product.

Unless the Dirac operator happens to be time independent, this

subspace changes with time, and defines the coherent state

specifying the correct vacuum state at each time t.
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All this can be discussed with full mathematical details.

I hope that a preprint will be available by the end of the year.

If you want to see a preview, please let me know.

Then I’ll give you a preliminary copy (with a number of gaps and

probably some inaccurate or even faulty statements), in exchange

for your comments on the contents.
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This is ongoing work in progress.

What I showed you is just the tip of a huge iceberg waiting to be

charted and explored. Two more views of this beautiful iceberg:

Coherent Quantization II:

Causal groups and quantum fields

Thursday, December 14, 2023, 16:15-18:00, AG Mathematische

Physik, Übungsraum Ü1, 01.250, Cauerstr. 11, Erlangen

Coherent Quantization III:

Infra Fock spaces and nonlinear fields

Monday, December 18, 2023, 14:15-15:45, AG Lie-Gruppen,

Übungsraum Ü2, 01.251, Cauerstr. 11, Erlangen

For abstracts, slides and preprints (once available) see

https://arnold-neumaier.at/cohErlangen2023.html
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Thank you for your attention!

For the discussion of questions concerning coherent spaces,

please use the discussion forum

https://www.physicsoverflow.org

For abstracts, slides and preprints (once available) see

https://arnold-neumaier.at/cohErlangen2023.html
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