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Great are the works of the Lord; they are pondered by all who

delight in them.

(Psalm 111:2)

For us mortals, understanding the Creation is a fascinating

process.

For me, part of the fascination is the discovery of the mathematical

structure of physics.

It may be viewed as part of God’s thoughts when He designed the

universe.
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Whereas quantum mechanics quickly matured into a meaningful

theory with solid mathematical foundations, the consolidation of

quantum field theory took several decades and, as a matter of fact,

has not yet come to a fully satisfactory end.

Buchholz & Fredenhagen, 2020
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Why is quantum mechanics ”a meaningful theory with solid

mathematical foundations”?

Beginning with the birth of modern quantum mechanics (1925),

perturbative quantum mechanics and perturbative quantum field

theory were understood as applied Lie algebras.

Beginning with Weyl (1928), nonperturbative quantum mechanics

is widely understood to be mostly applied Lie groups.
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Why not quantum field theory?

To regard nonperturbative quantum field theory as applied Lie

groups is a much less travelled path, discovered by Bogoliubov

& Shirkov (1955) in their causal S-matrix theory for relativistic

quantum field theory.

But the latter was used by them – and later – almost exclusively

for what today is called causal perturbation theory!

Independently, Goldin (1971) introduced the group approach for

the nonperturbative study of the current algebras arising in

nonrelativistic quantum field theory.

Relativistic developments of current algebra culminated in the

discovery of the Kac–Moody groups and related 2-dimensional field

theories. But the techniques successful there did not seem to

generalize to the physical spacetime dimension 4.
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In my coherent quantum physics program we study fields from the

general point of view of symmetry anf causality.

Symmetry is described in terms of infinite-dimensional groups.

Causality (responses are later than their cause) is described by

causal spaces.

Both merge in the concept of a causal group.
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In the present lecture, the nonperturbative group-based path to

quantum field theory will be enriched and better paved by

introducing the concept of a causal group.

It provides solid infrastructure for handling relativistic quantum

field theory, and might be the path leading to its mathematically

fully satisfactory consolidation.
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Special causal groups defined by certain generators and relations

arose in the recent (2020+) work by Buchholz & Fredenhagen

and Brunetti, Dütsch, Fredenhagen & Rejzner as

ingredients for the construction of dynamical C∗-algebras for

quantum field theory over Minkowski spaces.

My generalization of their approach to arbitrary causal groups frees

the causal S-matrix setting from its S-matrix connotations and

extends it to arbitrary causal spaces.
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Causal spaces

My concept of a causal space simultaneously covers

• the physical notion of causality that assume a manifold structure

but not hyperbolicity,

• the causal spaces of Kronheimer & Penrose (1967) – our

hyperbolic causal spaces –, and

• the causal sets of Bombelli, Lee, Meyer & Sorkin (1987) –

our discrete hyperbolic causal spaces.

One advantage of this generality is that one can get motivation and

intuition from the consideration of much simpler toy problems.

9



A causal space is a Hausdorff space M, whose elements are called

points, with two transitive relations ≤ and < on M such that

there is a continuous precedence function τ : M×M→ R with

τ(x, x) = 0 for x ∈M,

x ≤ y ⇔ τ(x, y) ≤ 0 ≤ τ(y, x).

x < y ⇔ τ(x, y) < 0 < τ(y, x).

The precedence function τ is not unique; the composition κ ◦ τ
with any strictly increasing continuous function κ : R→ R with

κ(0) = 0, is again a precedence function.

Due to the properties of the precedence function, ≤ is a preorder

(reflexive and transitive), the causal preorder of M, and < is a

strict partial order (irreflexive, asymmetric, and transitive), the

strict causal order of M.
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Interpretation:

Strict law of causality: x < y iff a change of forces (cause)

at x can possibly influence a response (effect) at y.

The past of a subset S of M is the open set

PastS := {y ∈M | y < x for some x ∈ S}. (1)

The closed past of S is the closed set

cPastS := {y ∈M | y ≤ x for some x ∈ S}.

The present of S is the closed set

PresentS := cPastS \ PastS.

The closed future of S is the closed set

cFutureS := {y ∈M | y ≥ x for some x ∈ S}.
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If S, S′ are subsets of M we say that S is prior to S′ and write

S ∧∨S′ if the closed past of S is disjoint from the closed future of

S′.

We call S, S′ ⊆M causally unrelated and write S × S′ if S ∧∨S′

and S′ ∧∨S.

*** drawings ***
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We call a causal space M

• linear if the causal order is a strict linear order, i.e., for all

x, y ∈M, exactly one of the relations x = y, x < y, and x > y holds.

• elliptic if x ≤ y implies x = y (so that x < y never holds),

• parabolic if there is a parabolic time map, a nonconstant

function t : M→ R such that τ(x, y) := t(x)− t(y) is a precedence

function, and

• hyperbolic if ≤ is antisymmetric and hence a partial order.

*** drawings ***
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In applications to physics, a spacetime is a causal space M,

usually with a manifold structure.

Of main interest in physics are the following translation invariant

causal spaces:

• M = Rd+1 (Euclidean spacetime, elliptic, modeling equilibrium

physics).

• M = R× Rd (Galilei spacetime, parabolic, modeling

nonrelativistic physics).

• M = R1,d (Minkowski spacetime, hyperbolic, modeling

relativistic physics).

Their common special case is d = 0, where M is the real timeline R.
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In Galilei and Minkowski spacetime, points are denoted by

x =

(
x0

x

)
with x0 ∈ R and x ∈ Rd.

The causal order in Galilei spacetime is defined by the precedence

function

τ(x, y) := x0 − y0

corresponding to the parabolic time map t(x) := x0.

The causal order in Minkowski spacetime is defined by the

precedence function

τ(x, y) := x0 − y0 + |x− y|,

where |x| =
√

xTx.

In general relativity and quantum gravity, spacetime is a curved

smooth orientable Lorentzian manifold.
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The causal law

The law of causality takes its simplest mathematical (and

physically very useful) form in linear response theory, which

describes how a change of forces applied to an arbitrary physical

system changes its response after sufficiently short times.
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A causal function space with base M is a Euclidean vector

space H ⊆ L2(M,F) of continuous, with respect to some Borel

measure square integrable functions from a causal space M to a

complex Euclidean space F, with Hermitian inner product

f∗g :=

∫
dxf(x)∗g(x) for f, g ∈ H.

We call f ∈ H prior to g ∈ H and write g ∧∨ f if the closed past of

the support of g and the closed future of the support of f are

disjoint. We call two functions f, g ∈ H causally unrelated and

write f × g if f ∧∨ g and g ∧∨ f .
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The causal properties of H inherited from the causal space become

visible in the algebra LinH of everywhere defined linear operators

on H:

In linear response theory, we interpret function values f(x) of a

function f ∈ H as a generalized force applied to a physical

system at the point x and assume that the response q(x) ∈ F of the

system at the point y ≥ x to the force depends linearly on f .

Linearity means that q = Gf for some linear operator G ∈ LinH.

The causal law expresses the observed fact that a change in the

response cannot appear before the force changes. In mathematical

terms, if f, h ∈ H and z ∈M are such that

f(x) = g(x) for all x ≤ z

then

Gf(x) = Gg(x) for all x ≤ z.
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By linearity and continuity, the causal law can be expressed

equivalently as

Supp f ⊆ Future(z)⇒ SuppGf ⊆ Future(z). (2)

In terms of the prior relation, the causal law takes the equivalent

weak form

g ∧∨ f ⇒ g∗Gf = 0. (3)

This weak form makes sense in the more general case where the

responses Gf belong to the typically larger antidual space H×, so

that G ∈ Lin×H := Lin(H,H×). (This is a way of saying that G is

a bilinear form on H.)
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We call G ∈ Lin×H a causal map if the causality condition (3)

holds for all f, g ∈ H.

This is necessary and sufficient for the causal behavior of the

response. A system with a linear response q = Gf to the force f is

called causal if G is causal.

Causal maps generalize lower block triangular matrices to the

operator level.

For example, it is easy to see that on a finite timeline [1 : n], with

functions f regarded as vectors f ∈ Rn with components fx = f(x),

the causal maps are given by multiplication with lower triangular

matrices.
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If M is Minkowski space and the measure used to define H is the

Lebesgue measure then the linear map G whose kernel is the

retarded Green’s function of a linear hyperbolic differential

equation Dψ = 0 is an important example of a causal map with a

direct physical meaning.

From such a G we may form the metric

Π :=
1

2πi
(G−G∗) = δ(D).

This implies that

〈f, g〉 := f∗Πg

is the natural inner product on the space of solutions of Dψ = 0.
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Causal groups for discrete models

To motivate the concept of a causal group we consider a class of

nonlinear dynamical models simple enough that all functional

analytic difficulties are absent.
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Our causal space is the parabolic space M = Z× S with points

x = (t,x), where the parabolic time map projects to the first

coordinate. Our fiber of field values is a vector space V of

complex-valued functions on S, corresponding to a complex scalar

field.

We define the causal function space H consisting of all sequences f

with values in C∞(V,V), indexed by t ∈ Z with bounded temporal

support, i.e., ft = 0 for sufficiently large |t|. We call the elements

f ∈ H acceleration sequences.

The correspondence with fields is given by

q(t,x) = qt(x), F (t,x) = ft(x) for qt ∈ V, x ∈ S. (4)
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We consider the discrete dynamical system

qt+1 − 2qt + qt−1 = ft(qt), (5)

with discrete time t, dynamical variables qt ∈ V, and a given

acceleration sequence f ∈ H.

The phase space associated with (5) consists of the

zt :=

(
qt
qt−1

)
∈ V2.

Given zt for some t, the dynamics (5) can be uniquely solved for all

t by recursion in both time directions,

zt+1 = At(f)(zt) :=

(
ft(qt) + 2qt − qt−1

qt

)
,

zt = At(f)−1(zt+1) :=

(
qt

ft(qt) + 2qt − qt+1

)
,
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Since f ∈ H, the acceleration ft vanishes for large |t|.

Therefore the asymptotic dynamics at large negative and large

positive times is linear in t.

Thus it is possible to discuss asymptotic scattering.
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We parameterize the linear asymptotic solutions for large negative

time by

(
u

v

)
, where

qt = u− tv for t < Supp f, (6)

so that

zt =

(
qt
qt−1

)
= Ωt

(
u

v

)
:=

(
u− tv

u− (t− 1)v

)
. (7)

Similarly, we parameterize the linear asymptotic solutions for large

positive time by

(
u′

v′

)
, where

qt = u′ − tv′ for t > Supp f. (8)
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The classical S-matrix S(f) is not a matrix but a nonlinear map

of the asymptotic phase space to itself, the classical analogue of the

quantum S-matrix in quantum mechanical scattering.

S(f) maps the phase space at sufficiently large negative time to the

phase space at sufficiently large positive time by

S(f)

(
u

v

)
:= Ω−1

T zT =

(
u′

v′

)
,

where T > Supp f and zT is obtained by solving the dynamics (5)

started with (6).
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Theorem. The transformations

U(f, g) := S(f)S(g)−1 for f, g ∈ H (9)

satisfy the transition relation

U(f, g)U(g, h) = U(f, h) for f, g, h ∈ H (10)

and the causality relation

U(f + e, g + e) = U(f, g) if e ∧∨ g − f. (11)
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General causal groups

Let G be a group and H be a causal function space with base M. A

causal transition map on G with carrier space H is a map

U : H×H→ G with (10) satisfying (11) for all f, g, e ∈ H such that

e and g − f have compact support.

We call G a causal group over M with carrier space H if it has

a causal transition map.
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In the most important case where the causal space is Minkowski

spacetime, the causality condition arose first in the context of the

causal S-matrix theory for quantum field theory by Bogoliubov

& Shirkov (1959).

Using (9) to express the transition map in terms of S, (11) may be

viewed as a condition

S(f + e)S(g + e)−1 = S(f)S(g)−1 if e ∧∨ g − f (12)

restricting the possibilities for S. Fully formal versions equivalent

to (12) were given independently by Epstein & Glaser (1973)

and Slavnov (1977).

This relation is the basis of causal perturbation theory, now a

quite extensive branch of algebraic quantum field theory.
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The transition relation is equivalent to the statement that,

restricted to an arbitrary path f : R→ H, the transition operators

U(f(s), f(t)) define a time-dependent flow on G.

Informally, the causality relation says that the same additive

changes e of the common past of f and g in a localized region do

not affect the transition behavior restricted to compact regions.

From (10) we find for g = g′ = f that

U(f, f) = 1, (13)

and then for g′ = f

U(f, g)−1 = U(g, f). (14)
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Given an arbitrary map S : H→ G, the map U : H×H→ G
defined by (9) satisfies (10).

Conversely, given (10), the map Se : H→ G defined for any fixed

element e ∈ H by

Se(f) := U(f, e) (15)

determines U through (9) with S = Se since (10) implies

Se(f)Se(g)−1 = U(f, e)U(g, e)−1 = U(f, g).
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Let M be a causal space and H be a causal function space with

base M. Let ω be a real symplectic form on H such that

ω(f, g) = 0 if f ∧∨ g. (16)

(For example, this is always the case for ω(f, g) := λ Im f∗g with

fixed real λ.)

Then the Heisenberg group Gω(H), consisting of all Wα(f) with

α ∈ R, f ∈ H with product

Wα(f)Wβ(g) := Wα+β−ω(f,g)(f + g), (17)

is a causal group with carrier space H and causal transition map

U(f, g) := Wω(f,g)(f − g).

The transition relation follows from the multiplication law (17) and

the causality relation follows from (16).
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The free causal group on H is a group defined by generators and

relations. The generators are the symbols U(f, g) with f, g,∈ H,

and the defining relations are (10) and (11).

Every causal group is a homomorphic image of the free causal

group with the same carrier space.

Certain causal groups defined by generators and relations also arise

via (12) as ingredients for the construction of dynamical

C∗-algebras in work by Buchholz & Fredenhagen (2020+) for

bosonic fields. and by Brunetti, Dütsch, Fredenhagen &

Rejzner (2022+) for fermionic fields and fields in curved

spacetimes. In their treatments, the free causal group is subject to

additional relations related to a specific Lagrangian.
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Locality and quantum fields

Causal groups over d-dimensional elliptic, parabolic, and hyperbolic

spacetimes with d ≤ 4 are relevant for Euclidean, nonrelativistic,

and relativistic (classical and quantum) field theories, respectively.

They give rise to the well-established local commutation relations

characterizing the local quantum physics approach of algebraic

quantum field theory.

35



From the point of view of my coherent approach to field theory,

• a local classical field theory is a representation of a causal

group by diffeomorphisms of a manifold, and

• a local quantum field theory is a unitary highest weight

representation of a causal group on a Euclidean vector space.

Here ’highest weight’ has to be understood in a generalized sense

(whose precise meaning I haven’t yet fixed).
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If the causal group is represented classically on a coherent

manifold, coherent field quantization produces a corresponding

quantum field theory.

Conjecture.

(i) For every quantum field theory Tq (in the traditional sense)

there is a coherent space Z with a causal group of symmetries

whose classical limit is a classical field theory Tc, and whose

quantum space reproduces Tq.

(ii) If Tq or Tc has an explicit construction then Z also has an

explicit construction.

(The classical limit is a well-defined concept for any coherent space.

It corresponds to a limit ~→ 0 in the traditional formulation of

quantum mechanics.)
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Proposition

U(f, g′)U(f, g) = U(f, g′ + g − f) if g′ − f ∧∨ g − f, (18)

[U(f, g′), U(f, g)] = 0 if g′ − f × g − f (19)

(19) is the group version of the traditional causal commutation

relation for local quantum fields.
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A domain of a causal space M is a nonempty, open subset O of M
with compact closure.

A local net of groups over M is a collection of subgroups G(O) of

a group G, one for each domain O of M, such that

G(O) ⊆ G(O′) if O ⊆ O′ (20)

and G(O) and G(O′) commute whenever O ×O′.

Proposition Let f ∈ H. Then the collection of groups Gf (O)

generated by all U(f, g) with Supp g ⊆ O is a local net of groups.

This generalizes the locality properties of the causality relation first

investigated by Slavnov (1977) and Il’in & Slavnov (1978).

Using the standard machinery of functional analysis one can derive

from a local net of groups corresponding local nets of C∗-algebras

and local nets of von Neumann algebras.
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We now assume that the causal group G is a Lie group and the

transition map U(f, g) is continuously differentiable in g.

We call the algebra U(G) of linear differential operators on C∞(G)

the universal group algebra of G. (It is isomorphic to a

semidirect product of G and the universal enveloping algebra of the

Lie algebra of G, but this is not directly relevant here.)

We may treat U(f, g) as multiplication operator in the universal

group algebra U(G).
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For f, g, e ∈ H we define the (g-independent) operators

Af (e) := i~
d

dτ
U(f + τe, g)

∣∣∣
τ=0

U(f, g)−1; (21)

These are linear operators on C∞(G) generating the field algebra

of a local quantum field theory.
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Using distribution-valued quantum fields

Af (x) = i
dU(f, g)

df(x)
U(f, g)−1, (22)

familiar from causal perturbation theory, where the quotient on the

right denotes functional differentiation we may rewrite (21) as

Af (e) =

∫
M
dxe(x)Af,g(x).

In terms of (9), (22) reads

Af (x) := i
dS(f)

df(x)
S(f)−1,

a formula going back to the early days of causal perturbation

theory.
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Causal commutation rules for the field operators follow from the

commutation rule

[U(f, g), U(f, h)] = 0 if Supp g × Supph

by differentiation.
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Quantization of causal groups

We now show how to quantize the causal group constructed from

our discrete dynamics, so that it produces the correct discrete

quantum mechanical dynamics.
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We treat the complex space V as a real Euclidean vector space with

bilinear inner product xT y.

Linear operators A ∈ LinV2 are written as 2× 2 block matrices

A =

(
A11 A12

A21 A22

)
(23)

whose components Ajk ∈ LinV are the operators defined by

A

(
x1

x2

)
=

(
A11x1 +A12x2

A21x1 +A22x2

)
for x1, x2 ∈ V.

Examples of interest are the block matrices

J :=

(
0 1

−1 0

)
, A(c) :=

(
c −1

1 0

)
for c ∈ LinV.

They satisfy the relations

JT = −J, J2 = −1, A(c)TJA(c) = J.
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A ∈ LinV2 is called symplectic if ATJA = J .

The set of all symplectic matrices A ∈ LinV2 is a group, the

symplectic group Sp(V,R).

Examples of symplectic matrices are J and the A(c).
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A canonical transformation is a map Q ∈ Diff(V2) such that

∂Q(z)

∂z
∈ Sp(V,R) for z ∈ V2.

The canonical transformations form a group Can(V,R).

Since

At(f)′(zt) =

(
f ′(qt) + 2 −1

1 0

)
∈ Sp(V,R),

the time step maps At(f) are canonical transformations.

Ωt =

(
1 −t
1 1− t

)
satisfies ΩTt JΩt = J , hence is symplectic, hence a linear canonical

transformation.

As a product of canonical transformations, the classical S-matrix

S(f) is a canonical transformation.

47



To obtain physically relevant unitary representations via

geometric quantization we lift these canonical transformations

to quantomorphisms of a line bundle over the symplectic space. If

the force in our discrete dynamical system has the form

f(q) = −∇V (q)

for some scalar potential V (q), the required quantomorphisms

maps a point (q, p, s) to (Q,P, S) with

Q = Q(q, p), P = P (q, p), S = s+ π(q, p),

where

Q(q, p) := 2q − p− V ′(q)/m, P (q, p) := q,

π(q, p) := q2 − pq + V (q)/m− qV ′(q)/m.

Thus in this case, the dynamics can be quantized by geometric

quantization.
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Tomonaga–Schwinger structures

As in our discrete example, classical field theories with a uniquely

solvable initial-value problem may give rise to causal groups.

This is achieved on the classical level by geometric means that

imitate the ideas of Tomonaga (1946) and Schwinger (1948) for

covariant quantum electrodynamics that earned them a Nobel prize.
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A Cauchy structure on a causal set M is a collection S of subsets

of M called Cauchy slices such that, for all compact subsets A of

M and all closed subsets P and F of S with P ∧∨F , there are

Cauchy slices Σ−, Σ0, and Σ+ satisfying

Σ− ⊆ PastS, S ⊆ Past Σ+, (24)

P ⊆ cPast Σ0, Σ0 ⊆ PastF. (25)

In a parabolic causal space, the collection S of time slices

Στ := {x ∈M | t(x) = τ}

defines a Cauchy structure iff the parabolic time map is unbounded

from below and from above.

In Minkowski space, the collection S of Cauchy surfaces defines a

Cauchy structure.
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A Tomonaga–Schwinger structure on M consists of

• a causal function space H with base M,

• a Cauchy structure S on M,

• sets Z(Σ) (Σ ∈ S) and Zf (f ∈ H), and

• for each Σ ∈ S and f ∈ H an invertible Møller operator

Ωf (Σ) : Zf → Z(Σ) such that

Ω0(Σ)−1Ωf (Σ) =

{
Ω−(f) if Σ ∧∨ Supp f ,

Ω+(f) if Supp f ∧∨Σ.
(26)

The maps Ω+(f),Ω−(f) : Zf → Z0 are uniquely determined by

(26).

H is called the carrier space of the Tomonaga–Schwinger

structure.

51



The transition maps

Uf (Σ′,Σ) := Ωf (Σ′)Ωf (Σ)−1 : Z(Σ)→ Z(Σ′)

describe the many-fingered time flow from Z(Σ) to Z(Σ′).

Theorem. Every Tomonaga–Schwinger structure with carrier

space H determines on the group Sym(Zf ) of bijections of Zf a

causal transition map whose carrier space is the subspace Hc
consisting of all functions in H with compact support.
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Tomonaga–Schwinger structures can be constructed from certain

classes of ordinary or partial differential equations with uniquely

solvable initial value problem.

We assume that S is a Cauchy structure on the causal space M and

H is a causal function space with base M. Suppose that M and the

value spaces F,F′,Fphys are smooth manifolds,

P : C∞(M,F)→ C∞(M,F) and

F : C∞(M,F)×H→ C∞(M,Fphys) are smooth local maps, i.e.,

(Pu)(x) and F (u, f)(x) depend only on u(x), f(x) and their

derivatives.

We only state the principle; to be really useful for 4-dimensional

spacetimes, one probably needs to weaken the assumptions made.
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Theorem. Suppose that for every Σ ∈ S, every f ∈ H, and every

u0 ∈ C∞(Σ,F), the equations

F (u, f) = 0, u|Σ = u0 (27)

have a solution u ∈ C∞(M,F), and any two such solutions have the

same Pu. Then

Z(Σ) := C∞(Σ,F) for Σ ∈ S,

Zf := {Pu | u ∈ C∞(M,F), F (u, f) = 0} for f ∈ H,

Ωf (Σ)[z] := z|Σ for z ∈ Zf
defines a Tomonaga–Schwinger structure on M with carrier space

H.
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In parabolic spacetimes, existence theorems for ODEs in Banach

spaces apply.

Therefore ODEs and regular index 1 DAEs should produce in this

way Tomonaga–Schwinger structures on parabolic spacetimes, thus

recovering nonrelativistic field theories.

In particular, we recover results by Buchholz & Fredenhagen

(2020) – who phrased their results in terms of dynamical

C∗-algebras – on nonrelativistic quantum mechanics, considered as

1 + 0-dimensional quantum field theories.
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All this can be discussed with full mathematical details.

A preprint of the contents of this second lecture is already available

at

https://arnold-neumaier.at/cGroups.pdf
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This is ongoing work in progress.

What I showed you is just the tip of a huge iceberg waiting to be

charted and explored. One more view of this beautiful iceberg:

Coherent Quantization III:

Infra Fock spaces and nonlinear fields

Monday, December 18, 2023, 14:15-15:45, AG Lie-Gruppen,

Übungsraum Ü2, 01.251, Cauerstr. 11, Erlangen

For abstracts, slides and preprints (once available) see

https://arnold-neumaier.at/cohErlangen2023.html

For the discussion of questions concerning my coherent approach to

quantum theory, please use the discussion forum

https://www.physicsoverflow.org
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