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Great are the works of the Lord; they are pondered by all who

delight in them.
(Psalm 111:2)

For us mortals, understanding the Creation is a fascinating

process.
For me, part of the fascination is the discovery of the mathematical

structure of physics.

It may be viewed as part of God’s thoughts when He designed the

universe.



Whereas quantum mechanics quickly matured into a meaningful
theory with solid mathematical foundations, the consolidation of
quantum field theory took several decades and, as a matter of fact,

has not yet come to a fully satisfactory end.

Buchholz & Fredenhagen, 2020



Why is quantum mechanics “a meaningful theory with solid

mathematical foundations”?

Beginning with the birth of modern quantum mechanics (1925),
perturbative quantum mechanics and perturbative quantum field

theory were understood as applied Lie algebras.

Beginning with WEYL (1928), nonperturbative quantum mechanics
is widely understood to be mostly applied Lie groups.



Why not quantum field theory?

To regard nonperturbative quantum field theory as applied Lie
groups is a much less travelled path, discovered by BOGOLIUBOV
& SHIRKOV (1955) in their causal S-matrix theory for relativistic
quantum field theory.

But the latter was used by them — and later — almost exclusively

for what today is called causal perturbation theory!

Independently, GOLDIN (1971) introduced the group approach for
the nonperturbative study of the current algebras arising in
nonrelativistic quantum field theory.

Relativistic developments of current algebra culminated in the
discovery of the Kac—Moody groups and related 2-dimensional field
theories. But the techniques successful there did not seem to
generalize to the physical spacetime dimension 4.



In my coherent quantum physics program we study fields from the

general point of view of symmetry anf causality.

Symmetry is described in terms of infinite-dimensional groups.

Causality (responses are later than their cause) is described by

causal spaces.

Both merge in the concept of a causal group.



In the present lecture, the nonperturbative group-based path to
quantum field theory will be enriched and better paved by
introducing the concept of a causal group.

It provides solid infrastructure for handling relativistic quantum
field theory, and might be the path leading to its mathematically
fully satisfactory consolidation.



Special causal groups defined by certain generators and relations
arose in the recent (2020+) work by BUCHHOLZ & FREDENHAGEN
and BRUNETTI, DUTSCH, FREDENHAGEN & REJZNER as
ingredients for the construction of dynamical C*-algebras for

quantum field theory over Minkowski spaces.

My generalization of their approach to arbitrary causal groups frees
the causal S-matrix setting from its S-matrix connotations and

extends it to arbitrary causal spaces.



Causal spaces

My concept of a causal space simultaneously covers

e the physical notion of causality that assume a manifold structure
but not hyperbolicity,

e the causal spaces of KRONHEIMER & PENROSE (1967) — our
hyperbolic causal spaces —, and

e the causal sets of BOMBELLI, LEE, MEYER & SORKIN (1987) —

our discrete hyperbolic causal spaces.

One advantage of this generality is that one can get motivation and

intuition from the consideration of much simpler toy problems.



A causal space is a Hausdorff space M, whose elements are called
points, with two transitive relations < and < on M such that

there is a continuous precedence function 7 : M x M — R with
T(x,x) =0 for x € M,

r<y < 71(r,y) <0< 7(y,2).
r<y < 71(r,y)<0<7(y,2).

The precedence function 7 is not unique; the composition x o 7
with any strictly increasing continuous function x : R — R with

x(0) = 0, is again a precedence function.

Due to the properties of the precedence function, < is a preorder
(reflexive and transitive), the causal preorder of M, and < is a
strict partial order (irreflexive, asymmetric, and transitive), the

strict causal order of M.
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Interpretation:

Strict law of causality: x <y iff a change of forces (cause)
at x can possibly influence a response (effect) at y.

The past of a subset S of M is the open set
Past S :={y € M | y < x for some = € S}. (1)
The closed past of S is the closed set
cPast S := {y € M | y < z for some z € S}.
The present of S is the closed set
Present S := cPast S \ Past S.
The closed future of S is the closed set

cFuture S := {y € M | y > x for some x € S}.
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If S, 5" are subsets of M we say that S is prior to S’ and write
S AV S if the closed past of S is disjoint from the closed future of
S’

We call S, S’ C M causally unrelated and write S x S’ if S AV S’
and S’ AV S.

X drawings ***
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We call a causal space M

e linear if the causal order is a strict linear order, i.e., for all

x,y € M, exactly one of the relations xr = y, x < y, and x > vy holds.
e elliptic if z <y implies x = y (so that x < y never holds),

e parabolic if there is a parabolic time map, a nonconstant
function ¢ : Ml — R such that 7(x,y) := t(x) — t(y) is a precedence

function, and

e hyperbolic if < is antisymmetric and hence a partial order.

HRx drawings ***
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In applications to physics, a spacetime is a causal space M,

usually with a manifold structure.

Of main interest in physics are the following translation invariant

causal spaces:

o M = R%! (Euclidean spacetime, elliptic, modeling equilibrium

physics).

e M = R x R? (Galilei spacetime, parabolic, modeling
nonrelativistic physics).

e M = R (Minkowski spacetime, hyperbolic, modeling
relativistic physics).

Their common special case is d = 0, where M is the real timeline R.
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In Galilei and Minkowski spacetime, points are denoted by

T = (xo) with 2y € R and x € R%.
X

The causal order in Galilei spacetime is defined by the precedence

function
T(x,Y) == To — Yo
corresponding to the parabolic time map t(x) := xo.
The causal order in Minkowski spacetime is defined by the
precedence function
T(2,y) = o — Yo+ |x — |,
where |x| = VxTx.

In general relativity and quantum gravity, spacetime is a curved

smooth orientable Lorentzian manifold.
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The causal law

The law of causality takes its simplest mathematical (and
physically very useful) form in linear response theory, which
describes how a change of forces applied to an arbitrary physical

system changes its response after sufficiently short times.
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A causal function space with base M is a Euclidean vector
space H C L?(M,T) of continuous, with respect to some Borel
measure square integrable functions from a causal space M to a
complex Euclidean space IF, with Hermitian inner product

Frgi= [ defe)ge) for f.g €.

We call f € H prior to g € H and write g AV f if the closed past of
the support of g and the closed future of the support of f are
disjoint. We call two functions f, g € H causally unrelated and
write f X g if f AV g and g AV f.
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The causal properties of H inherited from the causal space become
visible in the algebra Lin H of everywhere defined linear operators

on H:

In linear response theory, we interpret function values f(z) of a
function f € H as a generalized force applied to a physical
system at the point x and assume that the response ¢(x) € F of the
system at the point y > x to the force depends linearly on f.

Linearity means that ¢ = Gf for some linear operator G € Lin H.
The causal law expresses the observed fact that a change in the
response cannot appear before the force changes. In mathematical
terms, if f,h € H and z € M are such that

f(x) =g(x) forall x <z
then
Gf(x) =Gg(x) forall x < z.

18



By linearity and continuity, the causal law can be expressed

equivalently as
Supp f C Future(z) = SuppGf C Future(z). (2)

In terms of the prior relation, the causal law takes the equivalent

weak form
gN\ f= ¢g°Gf=0. (3)

This weak form makes sense in the more general case where the
responses G f belong to the typically larger antidual space H*, so
that G € Lin* H := Lin(H, H*). (This is a way of saying that G is

a bilinear form on H.)
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We call G € Lin* H a causal map if the causality condition (3)
holds for all f,g € H.

This is necessary and sufficient for the causal behavior of the
response. A system with a linear response ¢ = G f to the force f is
called causal if G is causal.

Causal maps generalize lower block triangular matrices to the

operator level.

For example, it is easy to see that on a finite timeline [1 : n|, with
functions f regarded as vectors f € R™ with components f, = f(z),
the causal maps are given by multiplication with lower triangular

matrices.
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If M is Minkowski space and the measure used to define H is the
Lebesgue measure then the linear map G whose kernel is the
retarded Green’s function of a linear hyperbolic differential
equation D = 0 is an important example of a causal map with a

direct physical meaning.

From such a G we may form the metric

1
II:=—(G-G") = :
Y (G—G*)=9(D)
This implies that
(f,9) = [llg

is the natural inner product on the space of solutions of Dy = 0.
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Causal groups for discrete models

To motivate the concept of a causal group we consider a class of
nonlinear dynamical models simple enough that all functional

analytic difficulties are absent.
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Our causal space is the parabolic space Ml = Z x S with points
x = (t,x), where the parabolic time map projects to the first
coordinate. Our fiber of field values is a vector space V of

complex-valued functions on S, corresponding to a complex scalar
field.

We define the causal function space H consisting of all sequences f
with values in C*°(V,V), indexed by t € Z with bounded temporal
support, i.e., f; = 0 for sufficiently large |t|. We call the elements

f € H acceleration sequences.

The correspondence with fields is given by

q(t,x) = q:(x), F(t,x)= fi(x) forqgeV,xeS.  (4)
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We consider the discrete dynamical system

Qt+1 — 2qt + q—1 = fi(q), (5)

with discrete time ¢, dynamical variables ¢; € V, and a given
acceleration sequence f € H.

The phase space associated with (5) consists of the

Zi .— ( 1 ) €V2
dt—1

Given z; for some t, the dynamics (5) can be uniquely solved for all
t by recursion in both time directions,

s = A ) = (10020,

7 = A(f) 7 (2141) = ( N ) :

fe(qe) + 2q: — qeya
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Since f € H, the acceleration f; vanishes for large |t|.

Therefore the asymptotic dynamics at large negative and large

positive times is linear in t.

Thus it is possible to discuss asymptotic scattering.
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We parameterize the linear asymptotic solutions for large negative

U
time by ( ), where
v

g =u—tv fort < Supp f, (6)

o= (o) =) = (e D) "

Similarly, we parameterize the linear asymptotic solutions for large
/

U
positive time by ( /), where
v

so that

q =u —tv' fort> Suppf. (8)
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The classical S-matrix S(f) is not a matrix but a nonlinear map
of the asymptotic phase space to itself, the classical analogue of the

quantum S-matrix in quantum mechanical scattering.

S(f) maps the phase space at sufficiently large negative time to the
phase space at sufficiently large positive time by

S(/) (“) =0plar = (fj:)a

where T' > Supp f and z7 is obtained by solving the dynamics (5)
started with (6).
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Theorem. The transformations

U(f,g):=S(f)S(g)~" for f,g e H (9)
satisfy the transition relation
U(f,9)U(g,h) =U(f,h) for f,g,h € H (10)
and the causality relation

U(f+eg+e)=U(f,g) ifervg—f. (11)
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General causal groups

Let G be a group and H be a causal function space with base M. A
causal transition map on G with carrier space H is a map

U:Hx H — G with (10) satisfying (11) for all f, g,e € H such that
e and g — f have compact support.

We call G a causal group over M with carrier space H if it has
a causal transition map.
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In the most important case where the causal space is Minkowski
spacetime, the causality condition arose first in the context of the
causal S-matrix theory for quantum field theory by BOGOLIUBOV
& SHIRKOV (1959).

Using (9) to express the transition map in terms of S, (11) may be

viewed as a condition
S(f+e)S(g+e)™t =8(f)S(g)~" ifervg—f  (12)

restricting the possibilities for S. Fully formal versions equivalent
to (12) were given independently by EPSTEIN & GLASER (1973)
and SLAVNOV (1977).

This relation is the basis of causal perturbation theory, now a
quite extensive branch of algebraic quantum field theory.
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The transition relation is equivalent to the statement that,

restricted to an arbitrary path f : R — H, the transition operators
U(f(s), f(t)) define a time-dependent flow on G.

Informally, the causality relation says that the same additive
changes e of the common past of f and ¢ in a localized region do
not affect the transition behavior restricted to compact regions.

From (10) we find for ¢ = ¢’ = f that

U(f, f) =1, (13)

and then for ¢’ = f
U(f.9)"" =Ulg. f). (14)
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Given an arbitrary map S :H — G, the map U - H xH — G
defined by (9) satisfies (10).

Conversely, given (10), the map S, : H — G defined for any fixed
element e € H by

Se(f) :==U(f,e) (15)
determines U through (9) with S = S, since (10) implies

Se(f)Se(g) " =U(f,e)U(g,e)"" =U(f,9).
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Let M be a causal space and H be a causal function space with

base M. Let w be a real symplectic form on H such that

w(f,g) =0 if fAVg. (16)

(For example, this is always the case for w(f,g) := AIm f*g with
fixed real \.)

Then the Heisenberg group G, (H), consisting of all W, (f) with
a € R, f € H with product

Wao(fIW5(g) := Waip—wir.g)(f +9), (17)

is a causal group with carrier space H and causal transition map

U(f,9) :=Wuir.g)(f —9)

The transition relation follows from the multiplication law (17) and

the causality relation follows from (16).
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The free causal group on H is a group defined by generators and
relations. The generators are the symbols U(f, g) with f, g, € H,
and the defining relations are (10) and (11).

Every causal group is a homomorphic image of the free causal

group with the same carrier space.

Certain causal groups defined by generators and relations also arise
via (12) as ingredients for the construction of dynamical
C*-algebras in work by BUCHHOLZ & FREDENHAGEN (20204 ) for
bosonic fields. and by BRUNETTI, DUTSCH, FREDENHAGEN &
REJZNER (20224 ) for fermionic fields and fields in curved
spacetimes. In their treatments, the free causal group is subject to
additional relations related to a specific Lagrangian.
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Locality and quantum fields

Causal groups over d-dimensional elliptic, parabolic, and hyperbolic
spacetimes with d < 4 are relevant for FEuclidean, nonrelativistic,

and relativistic (classical and quantum) field theories, respectively.

They give rise to the well-established local commutation relations
characterizing the local quantum physics approach of algebraic

quantum field theory.
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From the point of view of my coherent approach to field theory,

e a local classical field theory is a representation of a causal

group by diffeomorphisms of a manifold, and

¢ a local quantum field theory is a unitary highest weight
representation of a causal group on a Euclidean vector space.

Here ’'highest weight’ has to be understood in a generalized sense

(whose precise meaning I haven’t yet fixed).
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If the causal group is represented classically on a coherent
manifold, coherent field quantization produces a corresponding

quantum field theory.

Conjecture.

(i) For every quantum field theory 7, (in the traditional sense)
there is a coherent space Z with a causal group of symmetries
whose classical limit is a classical field theory 7., and whose

quantum space reproduces 7.

(ii) If 7, or 7. has an explicit construction then Z also has an

explicit construction.

(The classical limit is a well-defined concept for any coherent space.
It corresponds to a limit A~ — 0 in the traditional formulation of

quantum mechanics.)
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Proposition
U(f,dU(f,9)=U(f, g +9—f) ifg —fAvg—F, (18)

U(f,9),U(f,9)l=0 ifg —fxg—f (19)

(19) is the group version of the traditional causal commutation

relation for local quantum fields.
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A domain of a causal space M is a nonempty, open subset O of M

with compact closure.

A local net of groups over M is a collection of subgroups G(QO) of
a group (G, one for each domain O of M, such that

G(O) CG(O") fOCO (20)

and G(O) and G(O’) commute whenever O x O'.

Proposition Let f € H. Then the collection of groups G¢(O)
generated by all U(f,g) with Suppg C O is a local net of groups.

This generalizes the locality properties of the causality relation first
investigated by SLAVNOV (1977) and IL'IN & SLAVNOV (1978).

Using the standard machinery of functional analysis one can derive
from a local net of groups corresponding local nets of C'*-algebras
and local nets of von Neumann algebras.
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We now assume that the causal group G is a Lie group and the

transition map U(f, g) is continuously differentiable in g.

We call the algebra U(G) of linear differential operators on C*°(G)
the universal group algebra of G. (It is isomorphic to a
semidirect product of G and the universal enveloping algebra of the
Lie algebra of G, but this is not directly relevant here.)

We may treat U(f,g) as multiplication operator in the universal
group algebra U(G).
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For f,g,e € H we define the (g-independent) operators

As(e) = ihiTU(f + Te, g)

- _U(h (21)

These are linear operators on C°°((G) generating the field algebra

of a local quantum field theory.
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Using distribution-valued quantum fields

Ar(w) =i 00 (1,97, (22)

familiar from causal perturbation theory, where the quotient on the

right denotes functional differentiation we may rewrite (21) as

Aj(©) = | dre@)Ap, o)
In terms of (9), (22) reads

d5(f)
df ()

a formula going back to the early days of causal perturbation

Agpla) =i S (h)

theory.
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Causal commutation rules for the field operators follow from the

commutation rule

\U(f,9),U(f,h)] =0 if Suppg x Supph

by differentiation.
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Quantization of causal groups

We now show how to quantize the causal group constructed from
our discrete dynamics, so that it produces the correct discrete

quantum mechanical dynamics.
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We treat the complex space V as a real Euclidean vector space with
bilinear inner product z''y.

Linear operators A € Lin V? are written as 2 x 2 block matrices
A A
A ( 11 12) (23)
Azr Ao
whose components A;; € LinV are the operators defined by

A($1> — <A11$1 + Au@) for x1,x9 € V.

T Ao1x1 + Agoxs

Examples of interest are the block matrices

0 1 —1
J = ( ) , Alc) = (C ) for c€ Lin V.
-1 0 1 0

They satisty the relations
JV=—J, J*=-1, A(c)'JA(c) = J.
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A € LinV? is called symplectic if AT JA = J.

The set of all symplectic matrices A € Lin V? is a group, the
symplectic group Sp(V,R).

Examples of symplectic matrices are J and the A(c).
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A canonical transformation is a map Q € Diff(V?) such that

0Q(z)
0z

The canonical transformations form a group Can(V,R).

c Sp(V,R) for z € V.

Since

Ay = (102 ) e spvm),

the time step maps A;(f) are canonical transformations.

1 —t
Qt —
1 1-—t¢
satisfies 2 JQ; = J, hence is symplectic, hence a linear canonical

transformation.

As a product of canonical transformations, the classical S-matrix
S(f) is a canonical transformation.
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To obtain physically relevant unitary representations via
geometric quantization we lift these canonical transformations
to quantomorphisms of a line bundle over the symplectic space. If
the force in our discrete dynamical system has the form

flg) =-VV(g)

for some scalar potential V' (q), the required quantomorphisms

maps a point (q,p, s) to (Q, P, S) with

Q=0Q(q,p), P=P(qp), S=s+m(qgDp),

where
Q(g,p) :=2q—p—-V'(q)/m, P(q,p):=q,
m(q,p) :==q¢° —pg+ V(q)/m —qV'(q)/m.

Thus in this case, the dynamics can be quantized by geometric

quantization.
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Tomonaga—Schwinger structures

As in our discrete example, classical field theories with a uniquely
solvable initial-value problem may give rise to causal groups.

This is achieved on the classical level by geometric means that
imitate the ideas of TOMONAGA (1946) and SCHWINGER (1948) for

covariant quantum electrodynamics that earned them a Nobel prize.
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A Cauchy structure on a causal set M is a collection S of subsets
of M called Cauchy slices such that, for all compact subsets A of

M and all closed subsets P and F' of S with P AV F', there are
Cauchy slices >, >, and >, satisfying

>_ CPastS, S CPastX,, (24)

P C cPast ¥y, Xy C Past F. (25)

In a parabolic causal space, the collection S of time slices
Yoi={reM|t(x) =71}

defines a Cauchy structure iff the parabolic time map is unbounded

from below and from above.

In Minkowski space, the collection S of Cauchy surfaces defines a

Cauchy structure.
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A Tomonaga—Schwinger structure on M consists of

e a causal function space H with base M,

e a Cauchy structure S on M,

o sets Z(X) (X €S) and Zf (f € H), and

e for each ¥ € § and f € H an invertible Mgller operator
(X)) : Zy — Z(X) such that

Q_(f) if X AV Supp f,

Qo(2) 71024 (2) = {Q+(f) if Supp f AV 2.

(26)

The maps Q4 (f),Q_(f) : Zy — Zy are uniquely determined by
(26).

H is called the carrier space of the Tomonaga—Schwinger

structure.
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The transition maps

Ur(X, %) :=Q:(5)(2) 1 Z2(B) — Z(%)
describe the many-fingered time flow from Z(3) to Z(3/).
Theorem. Every Tomonaga—Schwinger structure with carrier
space H determines on the group Sym(Zy) of bijections of Z; a

causal transition map whose carrier space is the subspace H.
consisting of all functions in H with compact support.
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Tomonaga—Schwinger structures can be constructed from certain
classes of ordinary or partial differential equations with uniquely
solvable initial value problem.

We assume that § is a Cauchy structure on the causal space M and
H is a causal function space with base M. Suppose that M and the
value spaces F,F’ F ;< are smooth manifolds,

P:C*®(M,F) - C>*(M,F) and

F:C*®M,F) x H— C°(M, Fpnys) are smooth local maps, i.e.,
(Pu)(x) and F(u, f)(z) depend only on u(x), f(x) and their

derivatives.

We only state the principle; to be really useful for 4-dimensional
spacetimes, one probably needs to weaken the assumptions made.
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Theorem. Suppose that for every X € S, every f € H, and every
ug € C*°(3,F), the equations

F(ua f) =0, u'Z = Uo (27)

have a solution u € C°°(M, F), and any two such solutions have the

same Pu. Then
Z(X) :=C*X,F) for ¥ eS,
Zy ={Pu|ue C*M,F), F(u,f) =0} for f e H,

Qf(E)[z] = Z|§; for z € Zf

defines a Tomonaga—Schwinger structure on Ml with carrier space
H.
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In parabolic spacetimes, existence theorems for ODEs in Banach
spaces apply.

Therefore ODEs and regular index 1 DAEs should produce in this
way Tomonaga—Schwinger structures on parabolic spacetimes, thus

recovering nonrelativistic field theories.

In particular, we recover results by BUCHHOLZ & FREDENHAGEN
(2020) — who phrased their results in terms of dynamical
C'*-algebras — on nonrelativistic quantum mechanics, considered as

1 4+ O-dimensional quantum field theories.
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All this can be discussed with full mathematical details.
A preprint of the contents of this second lecture is already available

at

https://arnold-neumaier.at/cGroups.pdf
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This is ongoing work in progress.

What I showed you is just the tip of a huge iceberg waiting to be
charted and explored. One more view of this beautiful iceberg:

Coherent Quantization III:

Infra Fock spaces and nonlinear fields

Monday, December 18, 2023, 14:15-15:45, AG Lie-Gruppen,
Ubungsraum UQ, 01.251, Cauerstr. 11, Erlangen

For abstracts, slides and preprints (once available) see
https://arnold-neumaier.at/cohErlangen2023.html

For the discussion of questions concerning my coherent approach to
quantum theory, please use the discussion forum
https://www.physicsoverflow.org
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