
Coherent Quantization III:

Infra Fock spaces and nonlinear fields

Arnold Neumaier

Fakultät für Mathematik

Universität Wien, Österreich
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This is the third and last lecture of my lecture series on

Coherent quantization and field theory
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When I agreed in July to give these three lectures I had hoped to

be able to announce today an existence proof for quantum

electrodynamics (QED).

Unfortunately I was a bit too optimistic – spoilt by the increasing

frequency of minor and major miracles that happened in my

understanding of how the many pieces of the fundamental physics

puzzle interrelate and match each other.

Mathematicians take such miracles as a sure sign that they are

onto something extremely fruitful and interesting ....
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Instead I’ll present today concepts, partial results, and conjectures

related to my coherent physics research program.

I believe that the concepts are the right ones for a nonperturbative

understanding of quantum field theory.

I am still confident that in due time they lead to a mathematically

impeccable proof of existence for QED, the standard model, and a

unified quantum field theory that also incorporates gravity.

The goal of this lecture is to convince you that this is indeed a

reasonable expectation.
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This is work in progress.

Definitions and hence results are not yet completely stable

and might slightly change in the final version.

In particular, my notion of an infra Fock space kept changing,

as I made the whole conceptual framework more encompassing

and more useful.

The last change in its definition was made yesterday

during my final preparations for this lecture,

so this might still go on ....
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Conventions

In the following,

• All our spaces are smooth, finite- or infinite-dimensional

manifolds, and all our groups are smooth Lie groups.

• The causal space M is a smooth Lorentzian spacetime

manifold of dimension d (not necessarily d = 3)

admitting a spin structure.
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The space of field values F is a smooth complex manifold

expressing the field content of a theory.

The field bundle W is a bundle with base M
and standard fiber F.

A field is a section of the field bundle.

Locally on a bundle chart with base O
(i.e., in the mainstream physicist’s view),

a smooth field is given by a smooth map φ ∈ C∞(O,F).
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For φ4 theory,

F = C 3 φ(x)

with a Hermitan scalar field φ(x).

For quantum electrodynamics (QED), d = 3, M = R1,3, and

F = C4 × R1,3 3 (ψ(x), A(x))

with

• the massive electron-positron field ψ(x) of spin 1/2 and

• the massless photon field (= electromagnetic vector

potential) A(x) of spin 1.

Globally, ψ(x) actually represents a spinor field and

A(x) a connection on a (spinor × line) bundle over M.
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For thermal quantum electrodynamics, the space of field

values must be

F = C× C4 × R1,3 3 (s(x), ψ(x), A(x))

with an additional Hermitian field representing

• the entropy density s(x).

To also include gravity, the space of field values must be

F = C× C4 × R1,3 ×GL(R1,3) 3 (s(x), ψ(x), A(x), E(x))

with an additional frame field representing

• the gravitational potential E(x) (= tetrad in the Palatini

formalism of general relativity).
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Quantum bundles

A quantum bundle is a bundle W with base U
whose standard fiber is a complex Euclidean space H,

together with a Lie ∗-group B acting as bundle automorphisms.

We refer to the elements w of a fiber Wu (u ∈ U) as

state vectors with infrastructure u.
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The elements of B ∈ B are called B-transforms

(short for Bogoliubov transforms).

Each B ∈ B maps

u ∈ U→ Bu ∈ U

u ∈ U→ B(u) ∈ Iso(Wu,WBu),

(u,w) ∈W→ (Bu,B(u)w) ∈W,

and B(u) is an invertible linear isometry from Wu to WBu.

The orbits Bu of B on the space U of infrastructures u ∈ U
play the role of (superselection) sectors of the

quantum bundle.

11



The sections ψ ∈ S(W) of the quantum bundle W are called

wave functions.

They map u ∈ U to a state vector ψ(u) ∈Wu

with infrastructure u.

B-transforms B ∈ B act on wave functions ψ ∈ S(W) as

(Bψ)(Bu) := B(u)ψ(u) for u ∈ U.
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A quantum bundle may be viewed as a way of specifying

a nonseparable Hilbert space of wave functions.

The latter arises as the Hilbert space completion of the

direct sum of the fibers Wu with one representative

infrastructure u from each sector of the quantum bundle.

As was observed by Borchers & Sen (1975),

quantum bundles and nonseparable Hilbert spaces

are fully equivalent.

But the bundle view offers substantial conceptual advantages.
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A coherent bundle is a bundle Z with base U
whose fibers Zu (u ∈ U) are coherent spaces, together with

a Lie ∗-group B acting as bundle automorphisms.

Now a B-transform B ∈ B involves for each u ∈ U
an invertible unitary coherent map B(u) : Zu → ZBu.

Associated (in the sense of bundles) to each coherent bundle

is a quantum bundle W := Q(Z) whose fibers are the

quantum spaces Wu := Q(Zu) of the fibers Zu (u ∈ U).
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We briefly consider two cases of special interest.

In first quantization:

• Each Zu is the Cartesian product of the

extended symplectic phases spaces of classical particles,

with the particle contents specified by the field bundle.

The particles move with the dynamics given

by a classical Lagrangian L(u) determined by

the infrastructure u ∈ U.

• The corresonding quantum spaces Wu = Q(Zu) are the

Euclidean spaces for the quantum dynamics of independent

single particles with the same Lagrangian L(u),

including their antiparticles.
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The quantum spaces may also be described directly as the spaces of

solutions of a corresponding generalized Dirac equation

D(u)ψ = 0,

which, together with a positivity condition singles out the

physical wave functions ψ ∈ H in a causal function space H.

A covariant description is given in terms of the metric operator

Π(u) := δ(D(u))

by letting Wu be the space H equipped with the u-inner product

〈φ, ψ〉u := φ∗Π(u)ψ.
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In second quantization:

• Each Zu is a coherent space of classical fields z over spacetime M
satisfying a linear field equation D(u)z = 0 whose coefficients

depend on the infrastructure.

• The corresponding quantum spaces Wu = Q(Zu) are Euclidean

spaces for the quantum dynamics of linear fields whose dynamics

depends on the infrastructure u.
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Infra Fock spaces

In descriptions of many-particle fermionic quantum systems,

many vectors in a fermionic Fock space may serve as a potential

vacuum state; the vacuum of a Fock space depends on the

Hamiltonian under consideration.

In time-dependent systems, the Hamiltonian and hence the

corresponding vacuum state changes with time. Thus a Fock space

description is inadequate.

Each choice of a vacuum defines a different associated excitation

structure, anticommuting algebra, and exterior algebra, related to

each other by Bogoliubov transformations.
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This is naturally handled by the concept of infrastructure

introduced above.

In quantum field theory (quantizing infinite-dimensional

classical dynamics), the excitation structure becomes the

multi-particle structure of the theory.

It is conventionally accounted for by Fock spaces with

a distinguished vacuum state.

Thus to incorporate changes of the vacuum state

we need a bundle of Fock spaces!
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FockV (or FockRV if the statistics R is specified) denotes the Fock

space of

• unsymmetrized (R = 0),

• symmetrized (R = 1),

• antisymmetrized (R = −1), or

• braided (R a more general Yang–Baxter operator)

wave functions over the Euclidean vector space V.

FockNV denotes the subspace of wave functions with N arguments.

20



Motivated by the above, we define an infra Fock space

as a quantum bundle whose fibers are Fock spaces.

Corresponding to each quantum bundle W (and each statistics R),

there is an associated infra Fock space Ŵ whose fibers are the

Ŵu = FockWu (u ∈ U).

Thus infra Fock spaces are just second quantized quantum bundles.
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Examples of Infra Fock spaces are the quantum bundles Q(Z),

where Z is a coherent bundle

whose fibers Zu are Klauder or Hua spaces.

These make the quantization process gewometrically accessible and

computationally transparent.
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The field algebra of an infra Fock space Ŵ is the

algebra Ef of all bundle endomorphisms of Ŵ.

The observable algebra of an infra Fock space Ŵ is the

subalgebra Eo of all B-invariant bundle endomorphisms of Ŵ.

This definition explains the role of the group B of B-transforms.

This could have been done already on the level of

quantum bundles, but the terminology introduced

is colored by the quantum field case.
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A state of an infra Fock space Ŵ is a positive linear functional 〈·〉
on the observable algebra Eo of Ŵ.

Each B-orbit Bψ̂ of B on wave functions ψ̂ ∈ S(Ŵ) defines

a state by

〈A〉ψ := ψ∗Aψ for A ∈ Eo

upon noting that

〈A〉ψ = 〈A〉Bψ for A ∈ Eo, B ∈ B.

Thus B-transforms may be viewed as gauge transformations

on the wave functions of infra Fock space.
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In the applications, the group B of B-transforms may comprise one

or more of the following:

• boson field shifts

• 1-particle operators mixing particles and antiparticles (as in the

original work by Bogoliubov on superconductivity)

• phase shifts in gauge theories

• spacetime symmetries (e.g., translations, rotations, boosts,

dilatations, diffeomorphisms)

• permutation or braid group symmetries for identical particles

• (Stückelberg) renormalization group transformations

Thus B-transforms unify a number of previously independent

phenomena in quantum field theories.
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It is then natural to ask if there is a role to be played by the

diffeomorphism group and its representations in relativistic

quantum field theories.

Goldin and Sharp, 2019

The new setting gives an easy access

to diffeomorphism invariance.

Goldin, Menikoff, and Sharp pioneered in the 1970s the

applied group theory approach to nonrelativistic quantum field

theories via current algebra, and its close relations to classical

nonrelativistic fluid mechanics.

There, the diffeomorphism group and its unitary representations

play a prominent role.
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Quantum fluids

Infra Fock spaces lead naturally to quantum fluids,

which form a framework for diffeomorphism invariant

quantum field theories.

Quantum fluid dynamics interpolates between the

superselection sectors of a quantum field theory.
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The remainder of the lecture (if there is still time left)

will unfortunately have to be given on the blackboard,

since I haven’t manage to write the slides.
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Conclusion

In these lectures

• I introduced a new way to think about quantization and quantum

field theory.

• The new point of view simplifies the quantization process and

allows one to apply geometric reasoning to the algebraic problems.

Though a lot is still to be done, this seems to me a very fruitful

way to approach the unsolved construction problems in

4-dimensional relativistic quantum field theory.
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Surely someday, we can believe, we will grasp the central idea of it all

as so simple, so beautiful, so compelling that we will all say to each

other, ”Oh, how could it have been otherwise! How could we all have

been so blind so long!”

John Archibald Wheeler, 1990
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Then God saw everything that He had made, and indeed, it was

very good.

(Genesis 1:31)

It is very pleasing to see that this also holds for the

mathematical structure of physics – God’s master plan

when He designed the universe.
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This is ongoing work in progress.

What I showed you is just the tip of a huge iceberg waiting to be

charted and explored.

For abstracts, slides and preprints (once available) see

https://arnold-neumaier.at/cohErlangen2023.html

For the discussion of questions concerning my coherent approach to

quantum theory, please use the discussion forum

https://www.physicsoverflow.org
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