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Part I; State-of-the-art and objectives

This project creates foundations for an automatic system that combineslitd#lity and speed of a computer
with the ability to perform at the level of a good mathematics student. The aordwrH RESS abbreviating the
project title, which may be pronounced “mattress”, indicates that the pisgeeats to provide a good, comfortable
foundation for the development of an automatic mathematical research sydtenMATHRESS project creates
the MATHRESS system that will itself be the foundation on which people will rely for mathenlatigaport.

VISION and OBJECTIVES. The ambitious long-term vision for our project is the creation of an exgstem
that supports mathematicians and scientists dealing with mathematics in:

— checking their own work for correctness;

— improving the quality of their presentations;

— decreasing the time needed for routine work in the preparation of pubfisatio

— quickly and reliably reminding them of work done by others;

— producing multiple language versions of their manuscripts;

— quickly disseminating partially checked results to other users of the system;

— intelligently searching a universal database of mathematical knowledge;

—learning like a student from the experience accumulated during interagtiothe user.

Thus such a system will have a high value for every working scientistuénadurse its functionality shall also
be developed and extended such as to support and enable, by aut@abtime input and output conversion,
visually impaired people to use the system and its mathematical content.

Our long-term vision therefore is to create an automatic general-purpdbemetical assistant MHRESS that
combines the indefatigability, accuracy and speed of a computer with the abitigrfiarm at the level of a good
mathematics student — both with respect to having the mathematical backgnowt#ge and with respect to
the ability to learn understanding ordinary mathematical language in a similar svaysadent learns it; and
also the ability to resolve standard exercises and give proofs. (Heerstanding is meant in the sense that a
competent user will find the system’s answers consistent with the uspgstations.) Moreover, the MHRESS
should be efficient in supporting the mathematical modeling of real life applicitiwolving large-scale scientific
computing, by interfacing it to established problem solving environmentsfatetitt levels of mathematical rigor,
therefore making it attractive to industry mathematicians and scientists in vanathgmatically-supported fields.

It is planned to create the system in such a way that these benefits will bdugraieailable long before the full
capability of the system is reached, thus making it attractive to mathematiciane tbaiml to contribute to its
completion. This is done by creating a backbone that enables others tdbatmaiready during the duration of
the project. By developing the system under an appropriate open damgase and by placing emphasis on a
mathematician-friendly style of using the system, a web-based participatien amdki-like construction will be
attractive to students and professionals alike. To channel externklomothe project, we consider ranking the
parts of the database where help of contributors is needed most urgently.

The project will create a multilingual, multimedia, self-learning, easy-to-usesictige system that scientists will
like to use because it provides mathematical contents and proof servidbgiptaptops as easily as Google
provides web services, Matlab provides numerical services, and Matie, Magma, GAP, or SAGE provides
symbolic services, in a way that they can comprehend and that does eairtdide amounts of extra time on their
part. The system will allow users to work on a high, intuitive level; the needtévadntively explain the intuition
to the MATHRESS will have the well-known effect of enforcing clarity almost without effor
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The system is intended to be simple on the low level yet friendly on the high I&be.former is achieved by
building semantics into a very low-level representation, while the latter is adisirag by building high-quality
interfaces. Combining low-level simplicity with high-level friendliness will be guiding principle throughout
the development of the project. MHRESS will thus support not only mathematicians working in practice but
scientists who use mathematics mainly as tools rather than being experts in deyétege tools.

The present proposal is intended to achieve some essential milesés towards this vision, as developed
below, not to fully achieve it within the 5 years of expected duration bthe project.

A successful automatic mathematical research system requires:

— the creation of a database system for storing mathematical theory thaneamtarmal representation of the
mathematical theory at the undergraduate level, and much more theory gistdra grows;

— algorithms for reading and interpreting mathematical text specifiedAfgd-like fashion (which is as close to
natural mathematical language as possible);

— an analysis and efficient formalization of the communicative processesioin a human student acquires the
capabilities to read and understand mathematical content;

— a flexible and easy to use human-machine interface;

— a dissemination and development plan for maximal impact on the scientific community

—and much more, as detailed in Part Il below.

A GRAND INTERDISCIPLINARY CHALLENGE. Our proposed work partly lies in the area of mathematical
knowledge management, an accepted definition of which statéethematical Knowledge Management is an
emerging interdisciplinary field of research in the intersection of mathesyat@mputer science, library science,
and scientific publishing.”The project will thus be by definition highly interdisciplinary. It also drawstbe
field of Artificial Intelligence. The creation of a mathematical research sys$taving cognitive capabilities of
the kind envisaged in our project will require multidisciplinary research inidevaumber of areas, some of
them identified with clarity in Toby Walsh’'s never-realized 2003 British Gr@hdllenge in Computing proposal
for a general-purpose mathematical assist@#tabases:a mathematical assistant will need to quickly access
vast mathematical databases in complex ways (e.g., to search a datalmbalforced incomplete block design
with some given propertiesikknowledge representation:a mathematical assistant will need a large ontology of
mathematical information at both the object and the meta Iéwghmated reasoning: a mathematical assistant
will need rich and complex inference mechanisisarning: a mathematical assistant will need to learn new
mathematicstser modeling: a mathematical assistant will need to infer the user’s goals and intentiongfeirm
actions;Distributed computation: a mathematical assistant will need to know how to break large computations
down to tap into the Grid. We could add to this list several other areas ahfiseand immediate relevance:
Computational Linguistics; Natural Language Processing; Foundtions of Computing, Mathematics, Logic

Our project is also consistent with the aims and substance of the British it#eg8ystems” Project launched
in 2002 by the Foresight armh{t p: / / www. f or esi ght . gov. uk/ Qur Wor k/ Conpl et edPr oj ect s/
Cogni ti ve/ i ndex. asp) of the UK Government, whose official definitioht(t p: // m g. eng. cam ac.
uk/ cogsys/ ) underlines well the interdisciplinarity of our researtBognitive systems are natural or artificial
information processing systems, including those responsible for pemelg#oning, reasoning, decision-making,
communication and action. Cognitive Systems Engineering is a highly intipldisey field, drawing from disci-
plines as diverse as computer science, statistics, heuroscience, emginand psychology."With this definition

in mind, the MATHRESS can be viewed as an artificial cognitive system for doing and unddistamathematics.

Having set above the scene for the proposal, we now give the bneakutosections for the remaining of Part I:

— “Existing Related Systems’, in which the state-of-the-art is reviewed [pp. 3—6];

— “M ATH RESS in the Scientific Community”, in which the defining features of our approach are contrasted
with the state-of-the-art described in the prior section [p. 6];

— “Specification of the Mathematical Research System”in which the high-level intended specification for our
projected system MrHRESS is looked at in more detail [pp. 7-8];

— “Expected Impact and Long-Term Consequences”in which the benefits and likely consequences of our
project’s envisioned success are discussed [p. 9-10].
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EXISTING RELATED SYSTEMS. The PI's websitesw. mat . uni vi e. ac. at/ ~neuni FMat hL. ht ni)
has a large selection of resources and references to existing relatethsy For reasons of space we only refer
to a selected handful below. There is a small-scale project that aims afinm&lementary analysis rigorously
at the level of a high-school student. The argument used to suppoRBAR project bt t p: / / www. nwo.

nl / proj ect en. nsf/ pages/ 2200126954), whose results are due in March 2010, are in line with our own
goal of automating the capability of an undergraduate student of mathematies:main weakness of current
proof assistants is that mathematically they are not powerful enoughy dieevery good at keeping track of
all of the details of a mathematical proof: one routinely checks proofs usiege systems that have hundreds,
or even thousands, of cases. However, they are currently notgaog at taking by themselves steps that a
human mathematician considers to be trivial. One of the most important ofasteps that are not supported
well are problems that a high school student can solve without difficMiéy.call these high school problems”
(http://www. cs. ru. nl/~freek/ not es/ 0c2004. pdf)

Some available systemsThere are already many automatic mathematical assistants that provideretpért
specialized domains. Known classes include computer algebra systenmatadaleduction systems, modeling
systems, matrix packages, numerical prototyping languages, decisisiidreeientific computing software, etc..
Such existing tools already provide partial functionality of the kind to betedea the project but only tied
to specific applications, or with a limited scope. The exemplifications below dracéed from the PI's paper
“A modeling system for mathematicsh{t p: / / www. mat . uni vi e. ac. at/ ~neuni FMat hL/ pr oj ect .
pdf ), written for the ongoing MoSMath project, which comments on a large buexrbaustive list of such
software systems, illustrating important features and limitations of what isntlyreesailable .None can remotely
approach the vision that we propose in this project.

IATEX (htt p: // www. | at ex- pr oj ect . or g) is today’s de facto standard for the creation, communication
and publication of scientific documents, widely used by mathematicians, scieatistengineers. It is fairly
user-friendly and produces documents of excellent quality; howrwety specifies the syntax and the quotation
structure (references to equations, theorems, tables, figuresspymnotes, endnotes, etc.) of the documents,
leaving the semantics inaccessible.

Markup languages. OpenMath (it t p: / / www. openmat h. or g) is an extensible language for representing
the semantics of mathematical objects as a structured text. Its purpose is taédatibtexchange of mathematical
information between computer programs, databases, or worldwide weindots, and to enable its display in a
browser. But there is no intrinsic display form for OpenMath objects. Matbht t p: / / www. w3. or g/ Mat h)

is a low-level specification for describing mathematics as a basis for machmadiine communication, with
emphasis on web applications. MathML deals principally with the presentatioratifematical objects (so that
MathML generated display looks like nice ordinary mathematics). It only has linfiiteilities for dealing with
content; but it can embed OpenMath constructs. OMDaa @: / / www. ondoc. or g/ ondoc) is a semantics-
oriented representation format and ontology language for mathematicalddyge extending the markup of Open-
Math and MathML to the document and theory level of mathematical documems/oluminous representations

<OMOBJ> <mat h xm ns="http://ww. w3. or g/ 1998/ Mat h/ Mat hM_" >
<OvA> <matrix>
<OMS cd="cal cul us1" nane="int"/> <mat ri xr ow>
<OvBI ND> <cn> 0 </cn> <cn> 1 </cn> <cn> 0 </cn>
<OMS cd="fnsl1l" nanme="| anbda"/> </ matri xrow>
<OMBVAR> <OW nanme="x"/> </ OVBVAR> <mat ri xr ow>
<OVA> <cn> 0 </cn> <cn> 0 </cn> <cn> 1 </cn>
<OMS nane="sin" cd="transcl"/> </ matri xrow>
<OW nane="x"/> <mat ri xr ow>
</ OVA> <cn> 1 </cn> <cn> 0 </cn> <cn> 0 </cn>
</ OvBI ND> </ matri xrow>
</ OVA> </matrix>
</ OMOBJ > </ mat h>

010
of [ sinx dz in OpenMath and of the matriéo 0 1) in MathML, taken from the above web sites, show that a
1 00

markup format is not suitable as a modeling tool.
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Mizar (http:// m zar. org) is a formal language for specifying the syntax and semantics for mathematica
texts in a way that allows them to be verified automatically by computer startingdetitiheoretical axioms. A
16-year old journal entitled "Formalized Mathematics” specializes in publishizgr-generated mathematics.
The Mizar input is difficult to read and create, but the output is readpmabdable, embedding the formulas in
English (though often somewhat uneven) sentences. There areatulitags to specify data-driven applications.

Common mathematical language Making ordinary mathematical text completely comprehensible for the com-
puter is an exceedingly difficult task, at present virtually impossible witlhouwth interactive assistence. Fully
automatic partial work is reported in two Ph.D. theses by [14] and 2NN [18], which exhibit the many prob-
lems encountered in their attempts to turn some elementary number theory textseickaldl proofs. Therefore,
the informal mathematical language must be somewhat restricted to be automatiedylzable. KMAREDDINE

[7] emphasizes the problems to be overcome for a full formalization acdefitatine typical mathematician, and
introduces MathLang (KMAREDDINE et al. [9, 10],vAN TILBURG [15]), a hon-fully-formalized language close
to the common mathematical language, for interactively annotating mathematics wrieglish and translating

it into Mizar [8]. Currently, the system seems to be in an explorative stageva&lopment and does not seem to
have a structure that would lend itself easily to the specification of large optiorizaodels or other applications.

Naproche (ht t p: / / www. mat h. uni - bonn. de/ peopl e/ napr oche) is an ongoing project that aims to
translate natural mathematical text into a sequence of first order logimsesteThe input for the system is a
plain BTEX file, without any further annotation. However, the system only accepgsyasmall and rigid controlled
natural language. The people from the project are working on makintatigsiage more flexible, but until now it
is by far not flexible and rich enough to be of actual use for a mathematitransystem produces also output in
the FOF-format of the TPTFh{t p: / / ww\. cs. i ami . edu/ ~t pt p/ ), the standard challenge database for
current theorem provers; hence, by using the tools of the TPTP, avaitity of theorem provers can be accessed.

The Z notation. The Z notation it t p: // vl . zuser . or g) is a specification language based on Zermelo-
Fraenkel set theory and first order predicate logic, available sif@é2&9an ISO standard [5]. It is a mathematical
specification notation, used by industry as part of the software anavhezdlevelopment process for the highly
reliable definition of algorithmic components, particularly for safety-critigatems. Z is intended to increase
human understandability of the specified system and to allow the possibilitynéafoeasoning and development.
Professional quality typeset documents based on Z specifications gandeed by aAlEX interface provided

by the tool set CADiZitt p: / / ww user s. cs. yor k. ac. uk/ ~i an/ cadi z/); this system also provides
support for finding proofs related to Z specifications. Various othds @ available, including an interface to the
theorem proving environment HOL. However, there is no supportdaatgorithmic mathematics such as abstract
infinite sets or integrals. Moreover, the specifications themselves look merprbigrams than like mathematics.

Modeling systems.For the application to numerical problems, in particular large-scale optimizatimnmmber of
versatile modeling languages are available; seeURATH [6]. Widely used examples include AMPh{(t p:

[ www. anpl . con) and GAMS fttp:// ww. ganms. conj. They are very efficient for problems from the
applications, with interfaces to all major state of the art optimization packagmsdimg the derivatives needed
by these solvers automatically. But the current modeling languages alscsbawus limitations; in particular,
they are not able to understand arbitrary mathematical formulae.

CVX is a software system for disciplined convex programming, allowing the useettify nonlinear optimization

problems with automatic verification of their convexity properties, in an eassgsyntax. While very specialized,
it is an example of a system that checks the assumptions of a numerical metboeltbying it, and by its syntax

enforces a healthy disciplined approach to model formulation.

Decision trees for software.The Decision Tree for Optimization Software by ™MELMANN (ht t p: // pl at o.

| a. asu. edu/ gui de. ht nl ) gives online advice about which software to use for which kind of optitiina
problem. Similar decision trees are discussed in the literature for a varietploiems in scientific computing;
see, e.g., ADISON et al. [1], RAMAKRISHNAN & RIBBENS [12], RAMAKRISHNAN et al. [13], HousTiset al.

[4], MAARUSTERet al. [11], BUNUS [2]. Although not a modeling tool, such decision trees have a natural place
in a modeling system that automatically selects the solver to use.
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Monet (htt p: // monet . nag. co. uk/ nonet ) was a project undertaken by an international consortium of
academic institutions and industrial partners between 2002—2004. Itsiebjsas to develop a framework for the
description and provision of web-based mathematical services. Mofexedifiated betweestatic descriptionsf
mathematical objects based on XML-based technologies such as OpemdatathML anddynamic processing

of mathematical objects based on Description Languages such as WSkt pfoduced interesting work, which
can potentially be reused in our system, but its emphasis on intricate web lwgiesmeither widely known
nor very popular might have squandered its chances of practicaéssicdn contrast, MrHRESS shall be a
technologically minimalist project, based on what has been proven to wdlrkygeactice, which we believe is the
“semantic wiki"-based approach illustrated e.g. by SWIM { p: / / www. kwar c. i nf o/ pr oj ect s/ swi m).

Grammatical Framework. The Grammatical Framework{t p: / / ww. ¢s. chal ner s. se/ ~aar ne/ GF)

is a special-purpose programming system whose core is a generic gramouesgor capable of recognizing
and generating important fragments of many languages. It particularhessits multilinguality, semantic con-
ditions of well-formedness, language modularity and the reuse of grammaliffarent formats and as soft-
ware components. It provides enough functionality for the restrictedraldfanguage support required for a
formal language close to the traditional informal mathematical usage. Otlprdge-related references of po-
tential interest for the project areABLSON et al. [3] for multilingual mathematics and Greenstohe t(p:

/I ww. gr eenst one. or g) for multilingual software for building and distributing digital library collections

WebALT (http://webal t. mat h. hel sinki.fi) was a project funded by the eContent EU Programme
between 2005-2007. It built upon the Grammatical Framework above @r t’g@roduce language-independent
mathematical didactical material, targetting primarily students of undergradu#temmtics. It produced as its
core deliverable a mathematical grammar for the language-independedirey of exercises in mathematics, as
well as mathematical grammars for a number of European languages to #mablgtomatic natural language
generation of mathematical texts into these languages.

Wolfram|Alpha Computational Knowledge Engine (htt p: // www. wol f r amal pha. cont ) has recently
(May 2009) launched to great expectation. It defines itself as a systekndwledge-based computing aiming to
make “all systematic knowledge immediately computable by anyone”. It is built poftdVolfram Research’s
Mathematica system, although at present it does not accept generalivdita input. Instead it accepts queries in
natural language with formulas. The Wolfram|Alpha Computational Engimersans impressive computational
capabilities; by contrast, its capability to understand and communicate with thepsears rather impoverished.
Reasonable input in natural language is often not understood. Fadherthe system is currently rather sensitive
to changes in the syntax of the queries, which seems to be indicative of@flack real semantic comprehension.

Computer algebra systems and numerical prototyping languagesMathematical software packages such as
e.g. Mathematicaht t p: / / ww. wol f ram com pr oduct s/ mat hemat i ca), MuPAD (http:// vww.
mupad. de) and Maple ft t p: / / ww. mapl esof t . com) are computer algebra systems with lots of built-in
functionality. The systems Matlaib{(t p: / / www. mat hwor ks. coni pr oduct s/ mat | ab), Scilab @t t p:

/' www. sci | ab. or g) are programming environments for efficient numerical computation anatgping,
easy to use for the working mathematician. All these are widely used buttdimedhe user access to the mathe-
matical meaning of the constructs, so that one cannot use the definednefatianything but for computations.

Logical frameworks. There are a large number of logical frameworks and theorem provsigrag which allow

the verification of (carefully specified) proofs for mathematical statempntsarily of properties of programming
languages and logics. Widely used systems include @Gogg: // paui |l | ac.inri a. fr/coq), HOL light
(http://ww. cl.cam ac. uk/ ~jrhl13/ hol -1ight), PVS http://pvs.cl.sri.con), and Twelf
(http://ww. cs. cnu. edu/ ~t wel ). Many of these systems can be used to prove nontrivial mathematics;
see, e.g., WEDIJK [16] (100 formally proved theorems, ranging from the fundamental #rmacof algebra to
Brouwer’s fixed point theorem), and Mb1JK [17] (a comparison of provers for the irrationality ¢f2). But
proofs are generally unreadable manually (except by expert us@ygpjcally, statements and proofs must be
provided in a program-like structure far removed from mathematical pradtide makes these systems unsuitable
for mathematical modeling applications.

Integrated ‘Computer Algebra’ and ‘Automated Deduction’ Systems. Beyond the specialized mathematical

5
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assistants reviewed above, the issue of functionality integration is key togaton of a system that has genuine
general-purpose capabilities. This has traditionally been approaocbedtivo main directions, one connected
with computer algebra systems and formal computation, the other conceitheadomated deduction systems
and theorem proving. TheALCULEMUS conference series has as its official objective the integration of these two
classes of systems as a springboard for a more unified approach to tagamant of mathematical knowledge.

For instance, th&heoremapackagelftt p: // ww. ri sc. uni -l i nz. ac. at/ research/t heorema)is

a Mathematica-based prototype extended by facilities for supporting logrigdisous proving of mathematical
statements. It aims to assist the working mathematician through all the phasesmaittitematical problem solving
cycle (specification, exploration, proving, programming, and writing heoremaallows users to interactively
build proofs for mathematical theorems, with nested-cell proofs that adabde and can be expanded or shortened
in a user-controlled manner. Although input and output appear in a focepgable for mathematicians, the results
are often somewhat stilted. More importantly, there are no capabilities foifgipg data-driven applications.

MATHRESS IN THE SCIENTIFIC COMMUNITY. In contrast to computer algebra or automated deduction
systems reviewed above, ourAvHRESS project grows organically from the breadth and depth of the PI's prior
mathematical work on large-scale optimization and modeling packages leadiiffigterd insights. Our project
benefits from the PI's prior experience as a working mathematician. Hanamnged with mathematics of many
flavors, pure and applied, conceptual and algorithmic, foundatiombdiata-driven, we bring a fresh perspective
to a theme mostly dealt with by logicians or algebraists soiée.open up a third way; the intention is neither

to compete with nor to criticize previous systems or existing approachesctlpriar work from these sources

is invaluable to the success of our project. AMIRESS will complement existing approaches to mathematical
knowledge management and the formalization of mathematics, aiming to integratagiveemow explain.

The MATHRESS approach comes fromdifferentside than the traditional logical and algebraic approachhs.

M ATH RESS system aims at excellence in respects where all current systenme siery poor, while remaining
incomplete by itself where current systems are strongM ATHRESS needs to be combined with suitable inter-
faces to reap the fruits of both. Our project complements what othersipldesindependently, and lays the basis
for a future self-supporting system in a Linux/Wikipedia fashion.

Since we need such a system for our applications to mathematical modelingoties this is achieved the better.
Thus we try to be complementary to what others do, working on the same rgoalaf different perspective —
that of a pure and applied mathematician, and ensuring that something bappemeally takes the working
mathematician’s perspective into account. Thus we believe that a sudcasimatic mathematical research
assistant system needs both our efforts and those of the traditional @adtspecialized approaches to the subject;
therefore cooperation is the natural thing to aim at.

This project is going to build and cross the bridge between mathematiciansutmmspientists, and logicians.
There are a number of things which help distinguish the mathematics’ pexspéotin the logic’s perspective
— mathematics is part of a social process, and this must be accounteddfaramieled in the support system.
For a mathematician, a proof is something quite different than for a logiciarheitld provide insight intavhy
something is true, not just prove it correct. Pure correctness is angtitgréut sterile fact. As Freek Wiedijk says
inhttp://ww.cs. ru.nl/~freek/ pubs/ qged2. pdf, the results of 140 man-years on the QED project
(awell-known 1995 vision of the theorem proving community) in the traditiomahfwould be a tar.gz file without
any immediate further use; nice, but with not much gained.

Thus we will develop the tools that pave the way for logic proof systems torbeauseful for the ordinary

mathematician who does not bother about constructivity, types, or thes@reet theory, but just wants some
assistance (i.e., relief, not an extra burden) for his daily work. This &twhseverely lacking in all previous

approaches. In particular, our plans involve an intention to work ormpéngal formalization of undergraduate

mathematics. Thus current standard mathematics with their standard priosts t@ their textbook form, but

made formally more precise) will be available as a codified set of theoremf®andl proof sketches in a high-

level formal language that we create. We organize mathematical contesrhjputer-supported and community-
supported ways, and integrate existing proof systems as they are witlcogirig on their development.
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SPECIFICATION of the MATHEMATICAL RESEARCH SYSTEM. Our primary goal is to create a system
that is useful to all scientists, and in particular, also to us. The creatiorea$ytfiem needs our expertise and
knowledge as mathematicians. Despite their valuable work that we intend fulkploite we believe the proof
assistant community has failed for many years to reach the mathematiciansgétetenmunity of first choice,
because their priorities have been wrongly placed all along. The commorematibal language is not solely
concerned with truth, but also with intelligibility, suggestiveness, undedtgn simplicity, brevity, elegance,
beauty, in a balance that finds the approval of the whole mathematical comm8aigntists will want to use
thislanguage on the formal level, and reject having to learn an artificial layggwith additional notation without
extra advantage. Logicians and computer scientists working on formalizgrmfsphave for long worked almost
completely divorced from mathematicians. This is why one needs a grouptb&ématicians, not logicians or
computer scientists, to change the situation. Having published in many dtffaeghematical communities, the
Pl knows how mathematicians in quite diverse fields work and what theyeippe, and having also done much
computer implementation work himself he knows how to translate this knowledgeoiftizase.

M ATH RESS is intended to be:

— aimed at understanding, and not just representation, verificatioreamalal (which constrain existing projects);
— learning from experience;

— extracting methods from examples;

— self-growing vocabulary, concept database, proving power;

— asking questions to improve or complete understanding;

— able to interface to automatic lemma discovery systems;

— coping with ambiguity (GLR parser and post analysis);

— coping with context dependence.

This intelligent flexibility will be necessary for a system aiding the formalizatibmathematics. Conversely,
some level of formalization of mathematics is indispensible for creating an autasyatem with a useful level of
understanding capability, and a clear and efficient communication aresexgation. Both aspects need therefore
to be developed and deepened jointly and concurrently.

Data Acquisition in the MATH RESS. According to Barendregt & Wiedijkht t p: / / ww. cs. ru. nl / F.

W edi j k/ pubs/ rspaper. pdf), creating a complex mathematical document from the decision to write it
(but after the results were already more or less obtained) to final publicaiivently takes about 4 hours/page.
(In the PI's experience, this includes time needed for material selecti@mgyicorrection, proofreading, reading
and answering referee’s reports, etc.) Creating a correspondimgifg verified document with current systems
takes, according to the same source, about 10 times as long, and thésreeally indigestible for a human.

In contrast, MATHRESS will treat common mathematical language (or a slightly formalized version of &) as
declarative programming language for creating and modifying the contéatseasoning system, reducing the
role of the human supervisor to answering queries to disambiguate or expleith time, fewer and fewer —
statements that cannot be handled automatically, thus minimizing the human worklokke in conventional
systems, the language the automatic system understands will grow with eeginteraction.

Our focus will be to stay close to actual practice in mathematics, working diredthy their language, their
editing tradition, and their informality; representing at first just what is dliyespelled out in textbooks, rather
than building up water-tight logical links between all statements. The latter eafiobe in a separate, later
step. We believe thadhis feature distinguishes the proposed project from other peole’s plans MATHRESS
allows users and external documents (textbooks, PlanetMath) to bebamested proof engines (which they
often are — one can ask an expert to interpret a difficult passage itb@od. Thus it has immediate value for
documenting mathematics at the existing informal levekTMRESS allows a gradual transition from informal
to formal mathematics by replacing/adding formal proofs to informal signatie believe this is an important
goal. We learn best when we have experience with concrete systemgliiose concrete systems can be handled
informally to build up the intuition. Our approach is non-reductionist: instedgudéling everything up from a
small low-level foundation that is more or less arbitrary (e.g. ZFC), weaakteach a machine the things that we
do, on the level that we do it. Since we can, in most or at least in many céspsteexactly what we are doing,
we gain confidence that we can also teach a machine to do the same.



Neumaier MATHRESS

Formalizing the Communicative Aspect of Mathematics in the MaTH RESS. An automatic mathematical re-
search system must have similar communication capabilities as a human mathenict ®tith respect to both
fellow humans and machines. The communicative processes by which tstaaepire and perfect such skills
must therefore be modeled in detail and implemented. They form the backbtmeinteraction abilities of the
MATHRESS with one or more (human or automatic) agents. We will develop a formal moded aorrespond-
ing computer implementation of the social aspects of doing and communicating métsena particular, the
system must interpret text by itself: unlike current systems, we will notigeoannotations and specifications
for inaccurate text but give help only in the form of subroutines thaegee automatically such annotations and
specifications from the text as it is. Mathematics notation and proof stylebdwareoptimized over the centuries
for an optimal compromise between information transfer and readability(giverequired background) with the
least amount of distraction. This feature will be preserved by our systdra.best form of presentation is the
one that minimizes work for theumanreader. The human is the slowest, hence needs to be supported best. For
examplehtt p: // www. mat . uni vi e. ac. at / FMat hL/ pr oof ex. ht m gives an instructive case of how
our view of presenting a proof differs from that of the theorem prociogmunity.

Formalizing Levels of Trust in the M ATH RESS. To guarantee the highest possible level of reliability without
forcing an unacceptable amount of rigor (and corresponding warkyery user, all mathematical units of content
of our system will be assigned signatures containing information about ig/lassumed to be able to trust the
statement. (A signature may say, e.g., “from Bourbaki's Elements”, “impdrteal PlanetMath”, “verified by the
proof assistant HOL light on the basis of ZFC”, “by an approximate Matibutation”, “based on the Riemann
hypothesis”, or “unverified claim by user xyz”.) There will be a trusbgagation and verification system that
recognizes which assumptions a given assertion is based on and,agiver-provided definition of what is
trusted, points out all the untrusted links in existing verifications together wiin #fignatures. This enables
users to specify or even to experiment with the amount of trust they apanae to put into various sources of
information and deduction systems. Users interested in increasing the qdidtiysystem can discover theories
with important gaps on certain trust levels, and work towards closing tregse J his metadata is designed to be

as checkable as possible within the system.

Novel and Unconventional Aspects of the MTH RESS. As described above, our approach complements many
existing tools, systems and interfaces or integrates them. Many individwaspid the whole project have been
considered often enough in the literature. This shows that the proje@sible — but no-one before or yet has
managed or even tried to bring all issues together. Thus integration is on@rgigolved issue that we address.
The required integration needs a project focusedsmglegroup rather than a web of independent contributors,
however with close cooperation from the groups whose software weadtéeght the same time, MHRESS will
go far beyond the mere extension and application of known approackepporting the followinghovel aspects:
1. the systematic consideration of trust;
2. the modeling of the communicational aspects involved in doing and unddirgganathematics;
3. the renunciation of fully formalized proofs as the primary requiremeara foathematical research system
in favor of a maximally usable database of information immediately relevant to tHénganathematician;
4. the formalization of thelaims(theorems, corollaries, lemmata, statements appearing within proofs) of a
paper in full detail, not primarily of their truth;
5. the faithful representation afbitrary mathematics. By contrast, current systems fail to represent many
much-used mathematical features (ae&v. mat . uni vi e. ac. at / ~neum FMat hL. ht m #Mat hM.).
MATHRESS will likewise support a number ainconventionalaspects:
1. the combination of rigorous technigues and heuristics to interpret amlsigtetements and uncover hidden
contextual information;
. storing a structural rather than a textual representation;
3. the projectis intended as an integration framework for arbitrary theprevers and solvers but does not do
any theorem proving or solving itself;
. emphasis is on beauty and ease of use rather than on formal verification
5. in standard markup languages for mathematics, context information iseswagily repeated and makes the
representation very voluminous (see p. 3 above). The intended eapsion in MATHRESS is almost the
opposite, and has no more redundancy than a typical human mathematicidrikento see.
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EXPECTED IMPACT and LONG-TERM CONSEQUENCES. If our vision succeeds, the MM HRESS system
will change the way mathematics is done and used in practice. The projdiatrelade a system that people will
like, and that makes the efforts accumulate easily. Then it grows by itsetfselimore mathematically minded,
concerned about using what is in the system for traditional, informal matie=mweéll develop that part, without
bothering about more formality than necessary for them. Those more logisaltled, concerned about skipped
details will want to fill the gaps, add the missing conditions or degenerats,catse, to make the proofs fully
rigorous, and find plenty of material prepared by the informal advaneedgwho scouted the territory. In this
way, the approach taken in this project will suit both parties — the rigorigtstaminformalists, and, with time,
will lead to convergence. The database of informal, partly formalized @hdférmalized mathematics will be as
useful to the computer-assisted scientist as ordinary mathematics librarifes #ne ordinary scientist, and will
soon become indispensible for the working mathematicians.

M ATH RESS will enable the Large-Scale Formalization of MathematicsWe take a large step towards pushing
the formalization of mathematics to the tipping point where it becomes large-seHlgrowing and mainstream.

Mathematicians know that they already have a very expressive langptigdazed for expressing things in any
desired degree of brevity or detail, for maximal intelligibility and easy overvidlte common mathematical
language must be learnt by everyone anyway, hence it should be sheléaguage for any intelligent system
designed for the ordinary scientist. Furthermore, the intrinsic erroctiegeand error-correcting capabilities of
common mathematical language are important, e.g., in mathematics digitization projeatsdhe the use of
Optical Character Recognition (OCR). Itis well-known that OCR errong pnaduce incomplete or slightly wrong
text, which requires subsequent manual intervention to correct. ldeasdstimatedht t p: / / eri c. ed. gov/
ERI CDocs/ dat a/ eri cdocs2sql / cont ent _st orage_01/ 0000019b/ 80/ 15/ 1¢/ 60. pdf ) thatthe
costs involved in creating a digital text file suitable for searching in the JSd@&base are even greater than the
costs involved in the primary scanning step because of the necessityreftd@ human intervention post OCR.
In turn, mathematics digitization projects are substantially based on the semiautprodtiction of ATgX code
from old mathematics documents, the age of the documents increasing thegitpfm OCR errors.

PlanetMath gt t p: / / www. pl anet mat h. or g) is also based o*IgX source. Thus one may assume that
all mathematics is given in terms @fTEX documents. Indeed, the comparison AEX with markup languages
mentioned before shows thaTiX-like dialects are much superior for human modeling of mathematics to XML-
based representations. In view of the availability of powerful convegech as those from the ArXMLiv system
(kwar c. eecs. i u- bremen. de/ proj ect s/ ar XM.i v/ ), the latter may, however, prove very useful as an
intermediate stage for our work. Indeed, ArXMLiv indicates that varias&s involved in “doing mathematics”
(e.g., search, navigation, cross-referencing, quality control, ada&gptive presentation, proving, simulation) can
be machine-supported, thus relieving working scientists from some routirie anabling them to concentrate on
what humans can still do infinitely better than machines.

We expect that a useful first prototype of our system with limited but me&uingpabilities will be available by
the end of the second year, so that external people can start congibutime success of the project and beyond.
Our capacity will be 53.5 man years (50 funded plus 3.5 permanent). Wieekjk's 140 man year estimate for the
cost of formalizing 12 textbooks covering the undergraduate curricofumtypical mathematics study in the spirit
of the QED project (seé@tt p://wwv. cs. ru. nl / ~freek/ not es/ mat hstdl i b2. pdf) suggests — in
view of our not quite identical goals — that we might contribute about 10128421 my) towards the completion
of the QED project. Since our system will probably make it significantly edsresthers to work on formalizing
mathematics, our effective contribution to Wiedijk's version of QED might appih perhaps 30%.

Combining our system with the full power of current theorem provers wikenthe dream of the QED project
a reality. Although this is not our immediate goal, the result of the work in theqsexgb project will be a huge
number of exercises or challenges for standard logic solvers. Onedgads to write interfaces that translate our
proof sketch language into the native language of each logic prooinsyated we’ll write at least one of these.
Then the work of creating the required QED database is naturally split betmathematicians and logicians, and
the collection will prove useful immediately, even when only partially verifielisTatural division of work is
much easier to realize than the full QED project and will lead to substantial tivivegsafor both communities.
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M ATH RESS will make possible the Automatic Translation of Mathematics.Our system will make important
steps towards the automatic translation of mathematical content into other hurgaades, as well as into ver-
sions accessible to visually impaired people. This will be possible becausatalkmatical text is translated into a
concise low-level internal format that gives a complete description afigeningof each phrase. This description
can then be faithfully rendered in any language, though often not in aletehpisomorphic way, since even in
a single language, the same mathematical content can be put into veryrdifferels. The automatic translation
will be faithful to the contents, not to the style. Our system will be able to trémgleofs and formalized state-
ments, but not the background, physical interpretations, motivationaihamts, historical aspects etc.. This is left
to the interaction with the human translator.

The automatic translation facility will have high impact on translating mathematicalritexbther languages,
especially those with few competent mathematics speakers. Since (exceptuatmgtor historically oriented
passages) mathematical content is much simpler than arbitrary naturaldergaad therefore more amenable to
automatic translation, our project may also play a pioneering role for autorreigldtion in other sciences.

M ATH RESS will change the way mathematics is done in practice in the classroom, in research, and in in-
dustry. The appearance of powerful calculators changed the Waylat#on skills are taught and done; something
similar will happen with MATHRESS on a higher level. As mathematics permeates science and engineering, from
the most elementary aspects to highly complex modeling tasks, the availability stesrslike MATHRESS will

make it nearly as easy to apply reliably mathematical tools as currently calcuatoapplied.

As our emphasis is on making MHRESS able to address large-scale applications, scientists and engineers will
directly profit from the ease with which they can do their modeling. It will nogiembe necessary to learn
specialized languages for solving mathematical problems — the common matheiaatitege taught anyway

to scientists and engineers will provide direct access to the solution facil&gs. result, modeling cycles will
become shorter, more complex problems become tractable more easily, &nd €gm concentrate on the parts
where their expertise is most needed.

Human expertise will gradually move away from being able to execute repatitaithematical thinking activities
to being able to evaluate the conditions under which such activities are nedsliyiemployed.

MATHRESS will enable the creation of refereeing tools that authors and/or refefeeapers of mathematical
and other scientific journals may use to check the formal parts of scientificigodpts for correctness, thus
simplifying the editorial work in the pre-publishing stage.

MATHRESS will also change the way current electronically supported learning ofamsttics is done. Cur-
rent approaches such as web advanced learning technologies (WetiA p: / / webal t . mat h. hel si nki .
fi), advanced calculation and presentation tools for mathematics educatitims(fdaMore: ht t p: / / www.
mat hsf or nor e. com), and thematic network for the coordination of content enrichment activitiise area
of mathematics for e-learning platforms (Joining Educational Mathemdticsp: / / ww. j em t hemat i c.
net ) will need to be complemented by understanding-based approachesselning elementary exercises be-
comes available upon pressing a button.
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Part Il: Methodology

The proposed project aims at a complex software system whose cbtievelopment requires a careful modular
design in order to be completable within the time frame by a group of people waarkparallel. Our experience
with the COCONUT project (a large software system for global optimizatiodéd by EU between 2000-2004)
shows that the work modules need to be chosen in such a way that sulbstaritiaan be done in each module
already from the beginning. We performed a preliminary analysis duringldrning stage and the MoSMath
project. This led to a splitting of the workload into five large work packagesuceg the scientific part of the
work, denoted by capital letters C, T, D, A and I+J, detailed in this part.dtit@n, there will be two further
work packages, one for project management and administration (MA)ora for international cooperation,
dissemination and maintenance (CDM), not described here.

Outline of Work Plan. The MATHRESS project is planned to continue far beyond the period of five years for
which funding is requested. As traditional in mathematically oriented fundamesizarch, we shall work on
where progress is most apparent, and where it is most needed fronerdpeptive of the whole project. In a
weekly seminar, jointly with the already established seminar for the project ‘@efitgy system for mathematics”
(MoSMath) funded by the Austrian Science Foundation FWF, we shalliskésprogress and literature. We give
priority to more basic issues that need to be settled in order that the remaitldepooject can proceed smoothly
and without later expensive alterations.

Thus the work plan outlined below is only a rough approximation — one possibleario. Many specific decisions
will depend on findings not yet available during the present planning staberefore, while describing below

all the work that needs to be done, we specify only which part of the woexpected to be completed or (for
long-lasting activities) at least advanced to a useful level within the faat ynd (with significant uncertainty)

within the first five years. At the end of every project year, the prgyant will be updated, and made specific for
the coming year, thus allowing the necessary adjustments.

Our proposed system will have both a wiki flavor (a huge collaboratiggkspace for mathematicians), and a
butler flavor (where a single scientist can organize his mathematics knayladd access it with system help),
naturally blended. Users have their own version of the system, basedawrdoadable reference version. They
can contribute all or part of what they do to a wiki which is left to grow lillgraFrom the wiki contents,

a review panel will select material to include into the next version of theeat® version. Thus there will be
collaborative, wiki-style organized work by different groups of peap the community: creators of mathematical
content (definitions, theorems, proofs), proof checkers who valitigtarguments either informally or with the
help of formal theorem provers, reviewers/harvestors who evaluadt iw there for quality and inclusion into a
reference version, and textbook writers who organize the high qualityrjia well-written electronic textbooks
on a subject.

For a successful automatic mathematical research system we need aisaauadlyefficient formalization of the
social process by which human students acquire their communicativeiltggmEubsection C). As mentioned
in Part |, dealing with trust is an essential aspect of real-life mathematigéal Wipdeling and representing trust
through an appropriate trust level system will be the subject of Subgeetti&xperience with past intelligent
systems shows that any efficient complex information system requiresghtioer of an adapted database system
as a prerequisite, in our case a database for storing mathematical thebsg¢8on D). Since a main concern is
the seamless extension of skills the mathematician is using anyway, we neeeltpdavd adapt algorithms for
manipulating mathematical text and database content with a functionality clos¢ &b ahaorking mathematician
(Subsection A). Finally, no collaborative software system intendeddoram use can function without flexible
and easy to use human-machine and machine-machine interfaces (Sulds€dtid number of features naturally
belong to several work packages, but are assigned to only one ointémlisting below.

C. Communicative capabilities. An automatic mathematical research system must have similar communication
capabilities as a human mathematics student, both with respect to teachersstatlewts, and machines. The
social processes by which students acquire and perfect their capabiitigt therefore be modeled in detail and
implemented. They form the backbone of the interaction abilities of theHNRESS system with one or several

11



Neumaier MATHRESS

(human or automatic) agents. The work package naturally splits into a nurnetially dependent modules for
tasks the system should be able to perform:

C1: (long-lasting, i.e.> 3 years and undertaken in parallel) Read and understand mathematicaltconte

C2: (long-lasting) Recognize the existence of hidden assumptions, assuméabiegy and notation, etc..

C3: (long-lasting) Recognize and use preferred but not binding notatimmakntions.

C4: (long-lasting) Guess from context the meaning of ambiguous formulatiodscl@eck whether the guessed
interpretation is consistent with the context.

C5: Ask sensible questions clarifying items that are not well understood orisghy ambiguous.

C6: Respond sensibly to statements commenting on user (dis)satisfaction.

C7: (long-lasting) Recognize and correct minor spelling errors, and sleppiim notation or handling degenerate
cases.

C8: Recognize the need to learn more about a concept, and to find out weeregthired information can be
found.

C9: (long-lasting) Integrate notation, concepts, algorithms, or proof metheels epeatedly or formally de-
scribed into its knowledge base.

C10: Recognize particular styles of presenting mathematics.

C11: Adapt to its partners in communication by selecting an appropriate level af detaerview.

C12: (long-lasting) Answer questions regarding its understanding and kdge/lef mathematical theory.

C13: Assess the quality of an argument or proof and suggest sensible impote

C14: Verify proofs, arguments given in a book or by a lecture note, upona®icpn different levels of formality.
C15: Relate mathematical content to the system’s own understanding, and classifatirial accordingly.

C16: Formulate meaningful plans for proceeding in a more complex task.

C17: Recognize that variations of the same statement say essentially the samerthie@bde to say how they
differ.

The modules C1-C6 are basic and will be in a useful shape by the endio$tlyear, but with limited functionality
in case of C1-C4. The modules C12 and C13 are the main target duringjbetjgluration, and depend essentially
on C1-C11. We therefore aim at advancing those modules to a usefiibiethe end of the fifth year or earlier,
so that we shall be able to approximate C12 and C13. The modules startingMiithilCbe considered as far as
time permits but are unlikely to be completed within the funded period of five years

There is well-known informal work on the art of doing mathematics, provamgl problem solving (e.g., books
by Polya) related to this work package. Apart from simple dialog systenthdécautomatic grading of exercises,
we are not aware of significant implementation work related to communicapexsof mathematics. It will be
a main achievement of this project to develop the communicative aspects gfrdathematics from scratch in a
formal model and a corresponding implementation.

T: Trust. Human mathematics students take many mathematical facts on trust. This enableés theakly
reach a useful level of expertise. The amount of trust can be adeutity as required for the task at hand and
can be changed in a piecemeal fashion from very informal to completehal@ed. An automatic mathematical
research system must therefore be able to copy that behavior aretlgragsess the amount of trust it can put into
a web of connected mathematical statements. Modeling and implementing thelsiiteegpe the subject of this
work package. It naturally splits into a number of partially dependent medule

T1: Design a mathematical mechanism to define and inherit trust in a way closenoahfaractice, and a number
of well-defined trust levels.

T2: Recognize which assumptions a given assertion is based on.

T3: Create a trust checker that, given a definition of what is trusted, poibtlidhe untrusted links in existing
verifications together with their signatures.

T4: Enable users to specify or even to experiment with the amount of trust thgyrepared to put into various
sources of information and deduction systems.

T5: (long-lasting) Design a trustable environment in which to execute system uhatigms, and create a pro-
gramming language to specify the algorithms in a way that they can be easilgdatitiomatically for correctness.
Whatever cannot be automated will be done interactively. But we strivedp the automatic part as large as pos-
sible.
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T6: Enable modular theorem proving at increasingly demanding trust levels.

T7: (long-lasting) Allow users to start with statements and proofs on the stamdanchal mathematical level, in-
creasing trust selectively at the weakest links in a chain of proofselfirgt years of the project most trust values
will probably come from textbook authorities, gradually to be complementedlbyfbrmalized, automatically
checkable proofs.

T8: Create a verifiable consistency verification program in which the wholddséacan be checked for internal
consistency of the signatures, by checking the appropriateness igiatwes that are within reach of the system.
(For example, it would be unreasonable to require checking whethéer@mee to Bourbaki is actually in their
books. This might change with the availablility of these books in machine-sibbe$orm.)

T9: The documents defining the MHRESS must ultimately be generated automatically and verified for equiva-
lence with the internal representation by tha RESS verbalizer (which should reproduce the document).
T10: (long-lasting) This requires the verifiability (and ultimately, verification) obddjorithms used in the system
in a more than heuristic fashion.

The modules T1-T4 are basic and will be in a useful shape by the endfifstheear. The module T7 is the main
target during the project duration, and depends essentially on T1-@ &éfefore aim at completing the modules
T1-T6 by the end of the fifth year or earlier, and having module T7 in ailsképe by then. The modules starting
with T8 will be considered as far as time permits but are unlikely to be completethwhitn funded period of five
years.

Except for some (nonautomatic) metadata annotation in XML languages,etkiste no trust-related prior work
in mathematics. It will be a main achievement of this project to develop the trpst®sof doing mathematics
from scratch in a formal model and a corresponding implementation.

D: Database.Human mathematics students acquire with time a large memory of interrelated mathefaetscal
This enables them to understand new mathematical texts without more than giéningsi to context, and to
apply their understanding to a task at hand. The memory grows naturallyweith ieteraction of a mathematical
nature. An automatic mathematical research system therefore needsasdatgdiem that is able to store, retrieve
and search mathematical content in a well-organized fashion, and iesr@a®matically with continued use. In
order to mirror the quality and flexibility of the informal mathematical community, theltisse must be such that
it holds and updates not only user-specific information but also informé#&tion a web-based master database
holding more authoritative mathematics content approved by a reviewerd fioidially consisting of members
of our team), as well as information from trusted automatic peers with whodemmasuser cooperates.

Since the MATHRESS system shall support the general mathematician as early as possibleeanseto start
with the standard undergraduate material. The PI's “Analysis und Lirdgebra” book contains everything in a
uniform style, and its meanings and intentions are completely known to the &itHik book is in German is an
asset, since as a byproduct of the project, there will soon be both a @amdan English version of the book, and
ultimately versions in many languages. The book just serves as a firsasestAll techniques developed to parse
and process the book and its contents will become completely general with diniat shey will apply later (with
minor adaptations) to any mathematics book in any language. As the projeeepsowe aim at incorporating the
contents of other books and mathematics repositories if #igiX Isource is available to us.

This work package is concerned with developing such a database systepted to the needs of mathematical
information. It naturally splits into a number of partially dependent modules. prbposed database system for
storing mathematical theory:

D1: allows the systematic storage and retrieval of mathematical concepts, iti@sysand proofs;

D2: is fairly independent of notational styles, input language, and undgriyimhematical or logical foundation;
D3: (long-lasting) allows for different, also historical approaches to a stibje

D4: has a versioning and backup/restore system for safe upgrading, etc.;

D5: has a standardized transfer language for communicating database betteren different database instances
and to standard formats like MathML;

D6: gets automatic upgrades from an online reference repository;

D7: (long-lasting) is well-documented to make it easy to use for human readers;
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D8: contains external references for background information, authgfitidher explanation;

D9: (long-lasting) contains a formal but unverified representation of the mmattieal theory at the undergraduate
level; at least naive set theory, linear algebra, real analysis, bigsiora, and basic numerical analysis; initially
from ALA , analysis and linear algebra lecture notes by théBRIYD, a book on convex optimization by Steve
Boyd, andAS, the special functions book by Abramowitz and Stegun;

D10: (long-lasting) ... and of much more theory as the system grows;

D11: (long-lasting) incorporates info from PlanetMath (open source mathenestoyElopedia);

D12: (long-lasting) incorporates info from the Digital Math Archive (publismeathematical literature, in DjVu,
by Springer);

D13: provides a diagram authoring system that produces high quality mathendigems while preserving the
semantics used to create the diagrams;

D14: allows conceptual and structural search;

D15: interfaces seamlessly to Google Scholar and Google Books.

The modules D1-D5 are basic and will be in a useful shape by the endfirsthgear. The modules D9 and D10
are the main targets during the project duration, and depend essentiall§-@8and many algorithms from
work package A). We therefore aim at completing the modules D1-D8 bynthefethe fifth year or earlier, and
having module D9 and D10 in a useful shape by then. The modules startin®®ithvill be considered as far as
time permits but are unlikely to be completed within the funded period of five years

This work package is mainly based on known techniques amply discussed litetiature (database systems
in general; Formal Digital Library; Semantic Web: RDF, OWL; work by Solonteferman on mathematical
graphics suppotit t p: / / mat h. st anf or d. edu/ ~f ef er man/ paper s/ | nfi ni te_Di agrans. pdf).
One section (only) of the special functions collection by Abramowitz andustegs proposed to be completely
formalized by March 2010 by Freek Wiedijk in the project FEAR by March@CPrior work by our team includes
the COCONUT database library VDBL and the graph template library VGTd paaliminary work on the ALA
lecture notes within the MoSMath projettt(t p: / / www. mat . uni vi e. ac. at / ~neunt FMat hL. ht m ).

Though time-intensive (partly due to the amount of material to be considevedxpect no special difficulties
in this work package. The only significant challenge is to make the struceaath sophisticated enough that it
can approximate the (much more challenging) conceptual searches a ntittzenmaight want to perform. The
recently launched Wolfram Alpha Computational Knowledge Engine takest#fit limited step in this direction.

A: Algorithms. Human mathematics students acquire the ability to read and understand mathdarajicade,
and to relate the contents to their mental activities. An automatic mathematicalcresaatent mimics this by
well-defined algorithms simulating these tasks. This work package is aboulingpthee human behavior and
translating it into the design and implementation of algorithms able to imitate the humansaspen automatic
level. The work package naturally splits into a number of partially dependedules that interface or develop
algorithms for:

Al: (long-lasting) Reading and interpreting mathematical text specified ANHWRESS format, designed as a
IATEX-like language as close to natural mathematical language as possiblee@tiies the design of an internal
MATHRESS representation of mathematical content.

A2: (long-lasting) Potential verification of the input process. Context-fraengnars must be definable and inter-
pretable. Since mathematical grammar is ambiguous and incremental, an eafiépleencremental LR parser
is needed, and a formal specification of the parser to ensure caneldring of natural text and exact translation
to/from the database.

A3: (long-lasting) Displaying contents in natural mathematical language, if possititferent styles and/or lan-
guages.

A4: Hierarchical arrangement of mathematical material in the form of blockserelyy a DAG structure, in ways
comprehensible by humans.

A5: (long-lasting) Verifying the semantical reasonableness of mathematid&ntarsing heuristics and interac-
tive questioning.

A6: (long-lasting) Heuristic evaluation of the quality of mathematical content w.r.gitren goals; this requires
preliminary answers to what constitutes elegance, readability, claritytyh@aa depth.
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A7: (long-lasting) Verifying the logical correctness of proofs given thigits of auxiliary results used, by inter-
facing with existing theorem provers.

A8: Automatic calculation of routine computations.

A9: (long-lasting) Heuristic decision making for how to reach assigned goals.

A10: Finding counterexamples of (from a human point of view) obviously wisiatements, pointing out obvious
gaps and errors in proofs.

All: (long-lasting) Adapting mathematical content to a personal notation style.

A12: Automatic recognition and formation of special cases and generalizations.

A13: Display formal text in a way accessible to visually or auditorily impaired people.

Al4: Comparing different sections of mathematical content with respect to stalistmilarity and common in-
formation.

A15: Meaningful handling of mathematically similar fragments of theories, to be able pvabf by analogy, to
recognize canonical constructions such as those abstracted byrgatemmy, to select from variations of a result
a “canonical” version.

A16: Restructuring mathematical content according to specific goals.

Al7: Waking and sleeping phases for highly attentive foreground work eadyanizing background work, re-
spectively.

In each case, the algorithms must be documented, giving a precise srgifia translation of this specification
into human-readable terms, and (sooner or later, probably not within $h& fiears) a formal verification that the
implementation satisfies the specification.

The modules A1-A4 are basic and will be in a useful shape by the end fifgtyear; Al in a limited form. They
overlap with some goals in the MoSMath project that the PI's research tegamlin May 2008; thus a substantial
synergetic effect will be achieved. The modules A1-A9 shall be completetie end of the fifth year or earlier,
and the modules A10—-A13 shall by then be in a reasonably good shapenddules starting with A14 will be
considered as far as time permits but are unlikely to be completed within thedfpeded of five years.

This work package is mainly based on known techniques amply discussed litettature (extensive parser-
generator literature, Naproche, Attempto, the grammatical framework @fnany logical frameworks, theorem
provers, and problem solving environments). Closest to our needasgrinterfacing are (in different directions):
Flex/Bison parser-generator, Claus Zinn's thesis, Naproche, llsAbar, Mathematica, MathWiki, and GF for
multilingual support. Their adaptation to the special demands of informal matitsrisasometimes challenging
if the task is to be performed at a high level of quality. Many of the tasks (elty. formalized theorem proving)
can be delegated to existing specialized systems by writing appropriatedeteri&le do not intend to advance the
state of the art in these specialized directions, but simply make existing implemest@tailable to the automatic
system.

I+J: Human-machine (I) and machine-machine (J) interfaces.An automatic mathematical research system
is useless for the working scientist unless it can easily communicate with huAarey human mathematics
student, it also needs the ability to communicate with and learn from peers -sofheare systems with similar
or complementary capabilities. The interfaces needed to make this possitie atéject of this work package.
It naturally splits into a number of partially dependent modules. The humahinginterface consists of

I1: afacility to easily inspect and edit the database;

12: graph-based techniques to understand the interdependence of thet ajrthe database;

I3: (long-lasting) a dialog system for communication with the user; both the systdrha user must be able to
ask and respond to simple questions by the other side;

14: web-based interaction tools to allow remote users to contribute to the growthuatity of the database
contents;

I5: (long-lasting) a fXmacs-like editor for creating mathematical content, for editing mathematical rordpiiss
for publications, in some format designed as a variamtipd;

16: automatic synchronization tools between different instances of the databas

I7: (long-lasting) an advanced dialog system for communication with the ustrti® system and the user are
able to ask and respond to questions that sound like normal questionisiforaan mathematics student;
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18: (long-lasting) a batch mode for the automatic (rough) interpretation of mathemntgitbooks, and their
incorporation into the database;

19: review mechanisms for contribution to theAWVHRESS by third parties;

110: graphical tools for mathematical modeling of applications.

Machine-machine interfaces consist among others of

J1: (long-lasting) aATEX to MATHRESS translator;

J2: an XML to MATHRESS translator;

J3: interfaces with decisions trees for mathematical software;

J4. (long-lasting) translators of proofs from known solvers to the internat WRESS format;

J5: (long-lasting) translators of theory databases from current praistasts to the MTHRESS format;
J6: a distributed environment for the collaboration of several automatic studierttse web.

The modules 1115 and J1-J2 are basic and will be in a useful shape {aa first, limited form only) by the end
of the first year, and completed by the end of year 5 or earlier. J1-el2apwvith goals in the MoSMath project
that the PI's research team began in May 2008; thus a substantiageyinaffect will be achieved. The modules
16—19 and J3-J6 will by then be in a fairly useful shape, although 11€dbably beyond the 5 years horizon. Most
closely related to the J tasks are the existing systems ArXMLiv and Naprasheell as the now dead MONET
project, which we intend to exploit.

This work package is mainly based on known techniques amply discussedllitethture; however, the amount
of work to adapt it to a system easy to use by the average scientist is sighific
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