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Abstract. Whereas quantum mechanics quickly matured into a meaningful
theory with solid mathematical foundations, the consolidation of
quantum field theory took several decades and, as a matter of
fact, has not yet come to a fully satisfactory end.

Buchholz & Fredenhagen, 2020 [12, p.1]

Beginning with the birth of modern quantum mechanics (1925), perturbative quantum me-
chanics and perturbative quantum field theory was applied Lie algebras. Beginning with
WEYL [42] (1928), nonperturbative quantum mechanics is widely understood to be mostly
applied Lie groups. But to regard nonperturbative quantum field theory as applied Lie
groups is a much less travelled path, discovered by BOGOLIUBOV & SHIRKOV [4] (1955) in
their causal S-matrix theory for nonperturbative relativistic quantum field theory, though
the latter was later used primarily for causal perturbation theory. Independently, GOLDIN
[19] (1971) introduced the group approach for the study of the current algebras arising in
nonrelativistic quantum field theory.

In the present paper, this nonperturbative path will be enriched and better paved by intro-
ducing the concept of causal groups. It provides solid infrastructure for handling relativistic
quantum field theory, and might be the path leading to its mathematically fully satisfactory
consolidation.

Special causal groups defined by certain generators and relations arose in the recent (2020+)
work by BUCHHOLZ & FREDENHAGEN [12, 13, 14] and BRUNETTI et al. [8, 9] as ingredients
for the construction of dynamical C*-algebras for quantum field theory over Minkowski
spaces. The present generalization of their approach to arbitrary causal groups frees the
causal S-matrix setting from its S-matrix connotations and extends it to arbitrary causal
spaces.

Acknowledgment. Thanks to Karl-Hermann Neeb for useful remarks on earlier drafts.
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1 Causal structure

This section discusses causality in a general setting, covering discrete and continuous time,
nonrelativistic and relativistic models of spacetime. We assume that the reader is familiar
with the causal structure of Minkowski spacetime.

1.1 Causal spaces

As the survey in GARCIA-PARRADO & SENOVILLA [17] shows, there are many notions
of causal structure. All these exclude Galilei spacetime, which plays an important role in
physics, hence none of them is general enough. Our concept of a causal space both covers
the physical notions of causality that assume a manifold structure and generalizes the causal
spaces of KRONHEIMER & PENROSE [18, 24| (our hyperbolic causal spaces) and the causal
sets of BOMBELLI, LEE, MEYER & SORKIN [6] (our discrete hyperbolic causal spaces).
One advantage of this generality is that one can get motivation and intuition from the
consideration of much simpler toy problems.

A causal space is a Hausdorff space M, whose elements are called points, with two tran-
sitive relations < and < on M such that there is a continuous precedence function
7:M x M — R with

T(x,z) =0 forz e M,

r<y & 73y <0<71(y )
r<y < 71(x,y)<0<7(y, ).

The precedence function 7 is not unique; the composition x o 7 with any strictly increasing
continuous function £ : R — R with x(0) = 0, is again a precedence function. Due to the
properties of the precedence function, < is a preorder (reflexive and transitive), the causal
preorder of M, and < is a strict partial order (irreflexive, asymmetric, and transitive), the
strict causal order of M. Moreover,

r<y = xz<y,
r<y<z = x<z,

r<y<z = x<z,
<y (£=1,2,3...) = limxz, < lim y,
{—00 {—00

if both limits exist. This implies that the open intervals

lz,y[i={zeM|z < z<y}
are open sets and the closed intervals

[z,y] ={zeM|z<z<y}
are closed sets. As usual we write x < y also as y > = and = < y also as y > z. The

inequality x < y is interpreted informally as the

strict law of causality: = < y iff a change of forces (cause)
at x can possibly influence a response (effect) at y.
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1.2 Past, present, and future
Let S be a subset of the causal space M. We write S for the closure of S and 95 for its
boundary. The past of S is the open set
Past S :={y € M | y < z for some z € S}, (1)
and the closed past of S is the closed set
cPast S := {y € M | y < 2 for some x € S}.
The present of S is the closed set
Present S := cPast S\ Past S.
The future of S is the open set
Future S := {y € M | y > x for some x € S}, (2)
and the closed future of S is the closed set
cFuture S := {y € M | y > z for some z € S}.

We have
S C cPast S = Past S U Present S, S U Future S C cFuture S.

A subset S of M is called convex if
r,zeS, r<y<z = yes

The past (or past cone), closed past, present (or null cone), future (or future cone),
and closed future of a point x € M are defined as

Past{z} ={ye M |y <z}, cPast{z}={yeM|y <z},

Present{x} = cPast{z} \ Past{x},
Future{z} ={y e M |y > z}, cFutwre{z}={yeM |y > z}.

respectively. All these are convex sets. x < y and y > x say that x is in the past cone of y,
equivalently that y is in the future cone of 2. The open intervals |z, y[ are the intersections

of Future{z} and Past{y}, We have
x € Present{z}, cPast{z} N cFuture{z} = {z},

Informally, the present of x is the set of points that become the past once x moves into its
future.

We say that © € M is prior to y € M and write x AV y if © AV y iff the closed past of z is
disjoint from the closed future of y; the relation symbol N/ is suggestive of this property.
We have z AV y iff x > y does not hold. In general, being prior is neither transitive nor
symmetric nor antisymmetric. (This is why we do not use the more traditional notation
x Sy for o AV y introduced by BoGOLJUBOV & SCHIRKOW [4, p.468].) We call z,y € M
causally unrelated and write x x y if x AV y and y AV x.
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Figure 1: Causal prior and independence relations

If S, 5" are subsets of Ml we say that S is prior to S’ and write S AV S’ if the closed past of
S is disjoint from the closed future of S’. We call S, S” C M causally unrelated and write
S x S"if SAV S and S” AV S. (There is no danger to misinterpret S AV S’ as a Cartesian
product since the latter is a set, not a statement.)

We use the parenthesis-saving convention that, in formulas, <, >, < >, A/, and X bind
weaker than all except logical operations (which bind weakest).

Associated with every causal space M is a dual causal space M with the same set of points
as M but whose causal order < is defined by

r<,y < y<=w.

Thus past and future are interchanged. In general, the present is not causal inversion
invariant. The prior relation // is antidual in time, while causal independence is selfdual.

1.3 Classes of causal spaces

We call a causal space M

e linear if the causal order is a strict linear order, i.e., for all x,y € M, exactly one of the
relations x =y, x < y, and = > y holds.

e elliptic if x < y implies © = y (so that x < y never holds),

e parabolic if there is a parabolic time map, a nonconstant function ¢ : M — R such
that 7(x,y) := t(z) — t(y) is a precedence function,

e hyperbolic if < is antisymmetric and hence a partial order,

e locally compact if every interval in M is a compact set,

e locally finite if every interval in M is a finite set,

e discrete if it is countable, locally finite, and its topology is discrete.

e finite if M is a finite set,



For an elliptic causal space, two points are causally unrelated iff they are distinct, and the
present of any point is the whole spacetime. For a parabolic causal space, two points are
causally unrelated iff they have the same time, and the present of a point x consists of all
points with the same time as x.

In a parabolic causal space, the past, present, and future of a point € M form a partition
of M. Our notion of present agrees with tradition only if the causal set is parabolic, In all
other cases, the present of x is in our terminology not — as tradition wants to have it — the
set of points y € M with time coordinate zyy = xg, a set without any physical meaning. In
Minkowski space, the present (null cone) of x is the boundary of its past cone, often called
the past light cone of x.

A timeline is a linear causal space M; then any x € M is called a time. Simple examples
of parabolic timelines (with the identity as time map) are the finite timeline Ml = [1 : T] :=
{1,...,T}, the discrete timeline Ml = Z, and the real timeline M = R, with their natural
linear orders.

A discrete (resp. finite) model of parabolic spacetime is the product Z x S (resp. [1: T xS),
where S is a finite set, and (¢,s) < (¥',s') iff £ < ¢’ and no restrictions on s, s’. In contrast
to [6], we do not attach any fundamental physical significance to discrete causal spaces, and
use them only as toy models for gaining insight into the causal structure. They are also
useful for approximate numerical computations (discrete mechanics, see, e.g., MARSDEN
& WEST [26]), but this aspect is not addressed here.

1.4 Causal symmetries

A causality preserving map of M is a continuous map h : M — M satisfying
r<y = h(z)<h(y).

By continuity of the precedence function, we then also have
<y = h@)<h(y),
xANVy = h(x)AV h(y),

rxy = h(x)xh(y).

A causal symmetry of M is an invertible causality preserving map from M to itself whose
inverse is also causality preserving. The causal symmetries of M form a group, the causal
symmetry group cSym(M) of M.

A causality reversing map of M is a continuous map r : Ml — M satisfying
r<y = 71y <r(x)

and hence

r<y = 1y <r(x),

)
ANy = r(y) A\Vr(z),
rxy = r(y) xr(z), r(z) xr(y).



An anticausal symmetry of M is an invertible causality reversing map from M to it-
self whose inverse is also causality reversing. A causal inversion map is an anticausal
symmetry T with 72 = 1. A causal space is selfdual if it has an antianticausal symmetry.

A symmetry of a causal space M is a causal or anticausal symmetry of Ml. The symmetries
of M also form a group, the extended causal symmetry group cSym, (M) of M. In an
elliptic causal space, every bijection is a causal and anticausal symmetry. On the other
hand, the majority of causal spaces has no symmetry apart from the identity.

A causal space M is called translation invariant if it is an additive abelian group and
x <y iff y —x > 0. In this case, each translation 7, : Ml — M by z € M, defined by

T.(z) :=x+ 2z forx e M,

is a causal symmetry of M. Translation invariant causal spaces are selfdual, with causal
inversion maps 1), : * — z — x for any z € M.

In applications to physics, a spacetime is a causal space M, usually with a manifold struc-
ture. Of main interest in physics are the translation invariant causal spaces M = R4*!
(Euclidean spacetime, elliptic, modeling equilibrium physics), M = R x R? (Galilei
spacetime, parabolic, modeling nonrelativistic physics), and Ml = R4 (Minkowski space-
time, hyperbolic, modeling relativistic physics), each with its common special case d = 0,
where M is the real timeline R. In Galilei and Minkowski spacetime, points are denoted by

T = (IO) with 2o € R and x € R?, and the causal order is defined in Galilei spacetime by
X

the precedence function
T(I‘, y) = To — Yo

corresponding to the parabolic time map ¢(z) := xp, and in Minkowski spacetime by the
precedence function

T(x,y) =20 —yo + X — Y|,

where x| = vVxTx.

For d > 1, the causal symmetry group of Minkowski space R is the group generated by
translations, Lorentz boosts, and dilatations. For d = 1, the causal symmetry group is much
larger, isomorphic to the product of two group of orientation preserving homeomorphisms
of the real line (corresponding to the two lines forming the 2-dimensional light cone).

In general relativity and quantum gravity, spacetime is a curved smooth orientable Lorentzi-
an manifold. But when gravitation is dynamical, spacetime is not a causal space; the
causal structure then resides instead in the tangent spaces, which have a pointed Minkowski
structure. In an external gravitational field that does not create closed timelike curves, this
induces on the curved spacetime the structure of a hyperbolic causal space (KRONHEIMER
& PENROSE [24]).

1.5 Cauchy structures

Except for parabolic causal spaces, time plays no role at all in causality issues. In place of
the Galilean time concept one needs for an observer-independent description of motion in



more general causal spaces the concept of a many-fingered time, pioneered by TomoO-
NAGA [40] and SCHWINGER [35] in their covariant perturbative quantization of quantum
electrodynamics, and used in classical general relativity since KUCHAR [25].

A Cauchy structure on a causal set M is a collection § of subsets of M called Cauchy
slices such that, for all compact subsets A of M and all closed subsets P and F' of S with
P AV F| there are Cauchy slices ¥_, ¥, and X satisfying

Y. CPastS, SCPastXy, (3)

P C cPast ¥y, 3, C PastF. (4)

The Cauchy structure is complete if for every Cauchy slice X, each z € M is in exactly
one of the sets Past 3, ¥, and Future X.

In a parabolic causal space, the collection S of time slices
Y, ={reM|t(z)="1}

defines a Cauchy structure iff the parabolic time map is unbounded from below and from
above. In Minkowski space, the collection § of Cauchy surfaces defines a Cauchy structure.
In general, a Cauchy structure can exist only on causal spaces with infinitely many points;
but this is by far from sufficient for their existence.

1.6 Causal lattices

A causal lattice is a discrete, translation invariant causal space. Z denotes the ring of
integers. The 2-dimensional light cone lattice is the causal lattice Ay with points = =
(x4,z_) € Z x Z and hyperbolic inner product

(r,y) =xyy_+x_y, €Z forx,y € Ay,
whose causal order is defined by the precedence function
T(z,y) == max(zy — y4, - —y-).

Its extended causal symmetry group is an extension of the group of lattice translations by
a group of order 8 with elements

x = (axy, fr_),
x = (az_, Bz),

where o, 8 € {—1,1}.

The 2-dimensional light cone lattice Ay has a Cauchy structure given by the sets
Y= {2 |k ez},

where

" —2F € {(1,0),(0,—1)} fork e Z
and

K:={keZ|a"" -2 =(1.-1)}
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[*** lattice with diagonal null directions ***

Figure 2: The 2-dimensional light cone lattice

is unbounded from above and from below, is a complete Cauchy slice. Drawn in the plane,
the points of X lie on a zigzag curve with linear pieces in the direction of the null axes
74 = 0 and infinitely many bends in both spatial directions; the bends are at the point z*
with k£ € K.

For d > 2, the d-dimensional light cone lattice is the hyperbolic causal lattice A; with
points x = (14,%x) € Ay x Z%~% and inner product

(‘T7y> = (xchyd) - XTy €Z for T,y € Ad7
whose causal order is given by
r<y & max(ry—yp,r-—y ) <0< (r—y,z—y),

r<y = max(ry -y, -y ) <0< (z—y,x—y).

A4 has an infinite group of symmetries that includes besides the lattice translations all
reflections R, in the infinitely many points z € Ay with (z, z) = £1, 42, defined by

)z for x € Ay.

Even more generally, all hyperbolic lattices (see, e.g., NIKULIN [33], BELOLIPETSKY [3])
are also causal. Many of these have a large group of symmetries (see, e.g., NIKULIN [34],
BORCHERDS [7]).



2 The causal law

In this section we look at the manifestation of the causal law, first in linear response theory,
then in a class of nonlinear discrete dynamical systems.

2.1 Causal function spaces and linear response theory

The law of causality takes its simplest mathematical (and physically very useful) form in
linear response theory, which describes how a change of forces applied to an arbitrary
physical system changes its response after sufficiently short times.

A causal function space is a Euclidean vector space H C L?*(M, F) of continuous, with
respect to some Borel measure square integrable functions! from a causal space M to a
complex Euclidean space F, with Hermitian inner product?

o= / duf(z)'g(z) for f,g € H,

where w*w’ denotes the Hermitian inner product of w,w’ € F, We call M the base of H.

If M is translation invariant an additive abelian group, the measure is assumed to be trans-
lation invariant. If M is discrete, the measure dx is assumed to be the counting measure, so
that integration amounts to taking an unweighted sum over the points of M.

We call f € H prior to g € H and write g AV f if the closed past of the support of g and
the closed future of the support of f are disjoint. We call two functions f, g € H causally
unrelated and write f x g if f AV g and g AV f. In an elliptic causal space, f AV g iff f x g
iff g AV f iff f and g have disjoint support, but in general, /\/ is not symmetric.

The causal properties of H inherited from the causal space become visible not in H itself
but in the algebra Lin H of everywhere defined linear operators on H: In linear response
theory, we interpret function values f(z) of a function f € H as a generalized force
applied to a physical system at the point x and assume that the response ¢(z) € F of the
system at the point y > x to the force depends linearly on f. Linearity means that ¢ = G f
for some linear operator G € LinH. The causal law expresses the observed fact that a
change in the response cannot appear before the force changes. In mathematical terms, if
fih € H and z € M are such that

f(z)=g(x) forallz <z

then
Gf(z) = Gg(x) forall x < z.

Causality in the sense defined above is different from the arrow of time introduced into
physics by EDDINGTON [15, pp. 68-71] in terms of statistical irreversibility. The latter
depends on the presence of randomness. The statistical arrow of time can be explained

If M is a manifold, H could also be a space of sections of a Hermitian vector bundle with base M and
standard fiber F, with straightforward changes.

2In realistic physical spacetimes, the Borel measure is the Lebesgue measure, and we use the correspond-
ing notation for the general case.
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(and is indeed explained by Eddington) in terms of the present notion of causality by the
imposibility to prepare forces that would undo the effects — perceived by us as random —
introduced by chaotic motion. In particular, as shown by spin echos (HAHN [21]), we can
reverse a seemingly irreversible process precisely to the extent that we can prepare these
forces. On the other hand, the statistical arrow of time does not help the least to explain
(without circular reasoning) the causal law.

The support Supp f of f € H is the closure of the set of all z € M with f(z) # 0. By
linearity and continuity, the causal law can be expressed equivalently as

Supp f C Future(z) = SuppGf C Future(z). (5)
In terms of the prior relation, the causal law takes the equivalent weak form
gN f = ¢g'Gf=0. (6)

This weak form makes sense in the more general case where the responses Gf belong to the
typically larger antidual space H*, so that G € Lin™ H := Lin (H,H*). (This is a way of
saying that G is a bilinear form on H.)

We call G € Lin* H a causal map if the causality condition (6) holds for all f,g € H.
This is necessary and sufficient for the causal behavior of the response. A system with a
linear response ¢ = G f to the force f is called causal if G is causal.

Causal maps generalize lower block triangular matrices to the operator level. Indeed,
it is easy to see that on a finite timeline [1 : n|, with functions f regarded as vectors
f € R™ with components f, = f(z), the causal maps are given by multiplication with lower
triangular matrices. Similarly, on a finite parabolic causal set, the causal maps are given by
multiplication with lower block triangular matrices.

If M is Minkowski space and the measure used to define H is the Lebesgue measure then the
linear map G whose kernel is the retarded Green’s function of a linear hyperbolic differential
equation

Dy =0

is an important example of a causal map with a direct physical meaning. From such a G
we may form the metric

H:E%@—Gﬂ:&m.

This implies that
(f9) = ["g

is the natural inner product on the space of solutions of Dy = 0.

2.2 Discrete model dynamics

To motivate the concept of a causal group we consider a class of nonlinear dynamical models
simple enough that all functional analytic difficulties are absent. Our causal space is the
parabolic space Ml = Z x S with points = (¢,x), where the parabolic time map projects
to the first coordinate. Our fiber of field values is a vector space V of complex-valued
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functions on S, corresponding to a complex scalar field. We define the causal function
space H consisting of all sequences f with values in C*°(V,V), indexed by t € Z with
bounded temporal support, i.e., f; = 0 for sufficiently large |t|. We call the elements f € H
acceleration sequences. The correspondence with fields is given by

Q(tax) = Qt(x)a F(t,X) = ft(X) for gt € V7 X €S, (7)
We consider the discrete dynamical system

Q1 — 201 + -1 = fi(q), (8)

with discrete time ¢, dynamical variables ¢; € V, and a given acceleration sequence
f € H. The phase space associated with (8) consists of the

Z; = ( 9 > EVZ
qi—1

The causal inversion map C' interchanges the two blocks of z,,

Cz; .= (Qt_l).
q

Given z; for some ¢, the dynamics (8) can be uniquely solved for all ¢ by recursion in both

time directions,
+ 2q; — Gs—
L1 = At(f)(Zt) = (ft(%) thIt a 1) )

2y = A(f) H(zen1) = (ft(%) —i—%tqt - Qt+1> ’

The nonlinear time step maps A;(f) defined by this are invertible,
A ()™= CAUS)C,
which expresses causal inversion invariance of the equations of motion (8).

Since f € H, the acceleration f; vanishes for large |t|. Therefore the asymptotic dynamics
at large negative and large positive times is linear in ¢. Thus it is possible to discuss
asymptotic scattering. We parameterize the linear asymptotic solutions for large negative

time by (u)’ where
v
g =u—tv for t < Supp f, (9)

= () =90 = (e ) o

Similarly, we parameterize the linear asymptotic solutions for large positive time by ( |,
v

so that

where
q =u —tv fort > Supp f. (11)
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The classical S-matrix S(f) is not a matrix but a nonlinear map of the asymptotic phase
space to itself, the classical analogue of the quantum S-matrix in quantum mechanical
scattering.

S(f) maps the phase space at sufficiently large negative time to the phase space at sufficiently

large positive time by
w\ u
S(f) (U) = QT Zr = (U'>’

where T' > Supp f and zr is obtained by solving the dynamics (8) started with (9).

2.1 Theorem. The transformations

U(f,9):=S(f)S(g)"" for f,g€H (12)
satisfy the transition relation
U(f.9)U(g,h) =U(f,h) for f,g,h € H (13)

and the causality relation

U(f+h,g+h)=U(f,g) ifhAVg-—f. (14)

Proof. (13) follows from

U(f,9)U(g,h) = S(f)S(9)~'S(9)S(h)™" = S(f)S(h)~™" = U(f, h).

(ii) The prior relation h AV g — f implies for a parabolic causal set that there is a time 7
such that
hy =0 fort>7, and ¢g;=f; fort<r. (15)

Since the supports of f and g are bounded, there is a 7" > 0 such that the solutions are
linear in ¢ for |t| > 7. Thus

S(f) = Qi Ar(fr) - Ao (f-r)r = AL (N A(]), (16)
where
AL(f) =l Ar(fr) - Ara(frr), A—(f) = Ac(fr) - Ar(f-1)Q-r,
with factors in decreasing order of t € [=T,T]. Because of (15) we have
A(f+h)=A(f), Au(g+h)=A(g),
A(f+h)=A(g+h), A(f)=AI9),

hence
U(f+h,g+h) = S(f+h)S(g+h)"
= A (f+RA(f+R)A(g+Nh)" A (g+ D)™
= A(f+h)AL(g+h) " =A(f)A(9)™"
AL (NA-(NHA-(9) " Ar(g) = S(f)S(9) " = U(f,9)-
Thus (12) holds. 0

A factorization like (16) of a (quantum) S-matrix was first used in a causal context by
BoGOLJUBOV & SCHIRKOW [4, p.467].
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2.3 Symplectic structure and quantization

Let V be a real Euclidean vector space with bilinear inner product z7y. Linear operators
A € LinV? are written as 2 x 2 block matrices

A Ap
A= 17
(A21 Am) an
whose components A;; € LinV are the operators defined by

T Aoy + A12$2)
A = for x1,29 € V.
(332> (A215L’1 + Agoxy b

Examples of interest are the block matrices

(1) (52 k()

They satisfy the relations
c*=1, ct=c=C", CJC=-J
Jh=—J J=-1, J=-]
K'=K, KJK=0 KJ*=JK.
A € LinV? is called symplectic if AT’ JA = J. For example, the matrices

C

Ae) == cK — J = (1

_01) for c€e LinV

are symplectic since
A()TJA(e) = (cK + J)J(cK — J) = AKJK + ¢(KJ* — J*’K) — J* = J.

The set of all symplectic matrices A € Lin V? is a group, the symplectic group Sp(V,R).
A canonical transformation (or symplectomorphism) is a map Q € Diff(V?) such that

a(;—iz) € Sp(V,R) for z € V2,

2.2 Proposition. The canonical transformations form a group Can(V,R).

Proof. 1f Q,R € Can(V,R) then

d(QR)(z) 9 _0Q OR(z)
2, = 5, UR(2) = 5 (R(z)— — € 5p(V,R),

9(QR)(2)

hence QR € Can(V,R). If R = Q! then (QR)(z) = z, hence 5
z

=1, so that

= (Gm)

14
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Hence Q! =R € Can(V,R). 0

Since

A(f) (ze) = (f/(%l) 2 _01> € Sp(V,R),

the time step maps A;(f) are canonical transformations. Since A;(f)(z:) has determinant
1, the time step maps are also volume preserving.

1 —t
= (1 1— t) ‘
satisfies QT JQ; = J, hence is symplectic, a linear canonical transformation. As a product
of canonical transformations, S(f) is a canonical transformation.

In order to obtain physically relevant unitary representations via geometric quantization we
need to lift these canonical transformations to quantomorphisms; see SOURIAU [38].

A quantomorphisms is a map in a symplectic line bundle with local coordinates (g, p, s)
that leaves the 1-form 0 := p” dg—ds invariant. Their general form maps (¢, p, s) to (Q, P, S)
with

Q=Q(¢.p), P=Plgp), S=s+m(qp),

where

dp dp’ dg dg

In our discrete dynamical situation,

dn _ pdQ dr_ pd@ (18)

Q(g,p) :==2q¢—p—V'(qg)/m, Plq,p):=q, =lq,p):=q¢"—pq+V(q)/m—qV'(q)/m.

produces the required quantomorphism if the force has the form

flg) =-VV(qg)

for some scalar potenital V(¢). Thus the dynamics can be quantized by geometric quanti-
zation.
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3 Causal groups

In this section we generalize Theorem 2.1 in terms of the general notion of a causal group.

3.1 Causal groups and quantum field theory

Let G be a group and H be a causal function space with base M. Motivated by Theorem
2.1, we call a map U : H x H — G satisfying the transition relation (13),

U(f,9)U(g,g") =U(f,g") for f,g,9 €H,

a transition map on G with carrier space H. We call a transition map U causal if the
causality relation (14),

Ulf+e,g+e)=U(fg) ifervg—f,

holds for all f,g,e € H such that e and g — f have compact support. Informally, the
causality relation (14) says that the same additive changes e of the common past of f and
g in a localized region do not affect the transition behavior restricted to compact regions.

We call G a causal group over M with carrier space H if it has a causal transition map.
In this case we call the subgroup generated by all U(f, g) the causal transition group
with transition map U. Although it is the latter that is relevant in the applications, it
does not really matter if the causal group is far bigger since the applications always involve
explicitly the transition maps and the causal group only serves to define these.

The same causal group may be causal with respect to multiple causal transition maps. For
example, we may define

Ug.e(f,9):=QU(f +e,g+e)Q" (19)

with invertible () € G and arbitrary e € H, and find that each Uy is also a causal transition
map. Thus a causal group may contain many causal transition maps and hence many causal
transition groups.

From (13) we find for g = ¢’ = f that
Ulf.f)=1, (20)

and then for ¢/ = f
U(f,9)~ =Ulg, f)- (21)

Given an arbitrary map S : H — G, the map U : H x H — G defined by (12) satisfies (13).
Conversely, given (13), the map S, : H — G defined for any fixed element e € H by

Se(f) = U(f,e) (22)

determines U through (12) with S = S, since (13) implies

Se(f)Se(g) " =U(f,e)U(g,e)"' =U(f,9)-

Restricted to an arbitrary path f : R — H, the transition operators U(f(s), f(t)) define a
time-dependent flow on G.

16



Causal groups over d-dimensional elliptic, parabolic, and hyperbolic spacetimes with d < 4
are relevant for Euclidean, nonrelativistic, and relativistic (classical and quantum) field the-
ories, respectively. A very detailed survey of algebraic quantum field theory in Minkowski
space was given by STREATER [39]. A survey of algebraic quantum fields on globally hy-
perbolic manifolds was given by HOLLANDS & WALD [22]. The traditional perturbative
point of view on quantum field theory is expounded in many books, perhaps explained
most thoroughly in WEINBERG [41]. For an introduction to quantum field theory from
a mathematician’s point of view, see ZEIDLER [43]; this book draws connections to many
topics of contemporary mathematics, and points out basic unresolved mathematical issues
in quantum field theory. These sources together provide complementary perspectives on the
subject.

For the purposes of this paper, we define a local quantum field theory to be a unitary
highest weight representation of a causal group on a FEuclidean vector space Q. (Its com-
pletion is the Hilbert space of physical state vectors in the folium of the representation
in the sense of von Neumann algebras.)

The causality condition (14) arose historically for the case where the causal space is Minkow-
ski spacetime, in the context of the causal S-matrix theory for quantum field theory by
BOGOLIUBOV & SHIRKOV [5]. It was first stated by BocoLiuBov & SHIRKOV [5, §17.5]
(1959) in the slightly vague verbal form

If there are two functions g"(y) and ¢'(y) which coincide with each other for y° smaller
than a certain t, then the product S(g")ST(g') must not depend on the state of the system
fory® < t.”

To interpret this, we note that the unitarity of the S(g) implies that

Ulg".g') = 5(g")S"(g") = S(g")S(g) "

is a transition map, and we may take their statement to mean that if ¢” — ¢’ vanishes for
y® < t then U(g”, ¢') does not change when both ¢” and ¢ are shifted by the same function
with support in y° < ¢. This is the parabolic version of the causality relation (14).

Using (12) to express the transition map in terms of S, (14) may be viewed as a condition
S(f+e)Slg+e) ' =5(f)S(g)" ifervg—f (23)

restricting the possibilities for S. Fully formal versions equivalent to (23) were given inde-
pendently by EPSTEIN & GLASER [16, (C.C.)] (1973) and SravNov [37, (6)—(7)] (1977).
This relation is the basis of causal perturbation theory (see, e.g., [30]), now a quite
extensive branch of algebraic quantum field theory.

3.2 Examples of causal groups

(i) On the parabolic space M = Z x S discussed in Subsection 2.2, the group Can(H) of
canonical transformations of the sequence space H is by Theorem 2.1 a causal group over
M with carrier space H.
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(ii) Any smooth homomorphism S from the additive group of a causal function space H to
a multiplicative abelian group G may be used to define a causal transition map by

U(f,9):=5S(f —9);

condition (14) is automatically satisfied. In particular, any time-dependent flow on G defines
a causal group with carrier space R.

(iii) Let M be a causal space and H be a causal function space with base M. Let w be a
real symplectic form on H such that

w(f,g)=0 if fAVg. (24)

(For example, this is always the case for w(f, g) := AIm f*g with fixed real A\.) Then the
Heisenberg group G, (H), consisting of all W, (f) with o € R, f € H with product

Wa(f)Wﬁ(g) = WaJrﬁ*w(f’g)(f +9), (25)

is a causal group with carrier space H and causal transition map

U(f,9) == Wuiaf —9)

The transition relation follows from the multiplication law (25) and the causality relation
follows from (24).

(iv) The direct product of causal groups is causal.

(v) The free causal group on H is a group defined by generators and relations. The
generators are the symbols U(f, g) with f,g, € H, and the defining relations are (13) and
(14). Every causal group is a homomorphic image of the free causal group with the same
carrier space.

(vi) Certain causal groups defined by generators and relations also arise via (23) as ingre-
dients for the construction of dynamical C*-algebras in the recent work by BuCcHHOLZ &
FREDENHAGEN [12, 13, 14] for bosonic fields. and BRUNETTI et al. [8, 9] for fermionic
fields and fields in curved spacetimes. In their treatments, the free causal group is subject
to additional relations related to a specific Lagrangian.

There are many more causal groups, some of which will probably be described in the final
version of the paper.

3.3 Locality and quantum fields

3.1 Proposition.
[U(f,9),U(f.9)]=0 ifg —fxg—Ff (27)

Proof. Suppose that ¢ — f AV g — f and write e := ¢’ — f. Then ¢’ = e+ f and by (12) and
(14),

Ulf,9)=U(f+eg+e)=Ulg.d+9—f)=5)S¢ +9—f)"
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hence

U(f. U (f.9) =S(£)S(d)U(f.9) =S())S(g' +9—f) " =U(f.d +9— /).
This implies (26). If ¢ — f x g — f then (26) implies

UL (f9)=Ufd +9- ) =Ulf.g+4d = f)=Uf.9U(f.9),
hence (27). O

A domain of M is a nonempty, open subset O of M with compact closure. A local net of
groups over a causal space M is a collection of subgroups G(O) of a group G, one for each
domain O of M, such that

G(O) CGO) ifOCO (28)

and G(O) and G(O') commute whenever O x O'.

3.2 Proposition. Let f € H. Then the collection of groups G ;(O) generated by all U(f, g)
with Supp g C O is a local net of groups.

Proof. (28) is obvious. Assuming that O x O, Proposition 3.1 implies that G;(O) and
G#(O') commute. 0

This generalizes the locality properties of the causality relation first investigated by SLAV-
NOV [37] and IL'IN & SLAvNOV [23].

There is a generic construction (detailed, e.g., in BUCHHOLZ et al. [11, p.273]) that as-
sociates to any group a C*-algebra containing the given group as a group of operators of
spectral norm 1. In particular, we may associate to each G;(O) a C*- algebra A(O) con-
taining G;(O) as a group of operators. For any group state (e.g., for the trivial unit state),
one obtains a unitary representation of this C'*-algebra and from it by another standard on-
struction a von Neumann algebra. These form a local nets of C*-algebras or von Neumann
algebras in the sense of HAAG & KASTLER [20].

The Haag—Kastler axioms are axioms on local nets of C*-algebras or von Neumann algebras
that codify conditions for an algebra of fields that their nice unitary representations provide
examples of relativistic quantum field theories over Minkowski space. The additional con-
ditions are related to Poincaré invariance, which are inadequate for quantum field theories
over more general causal spaces.

If M is a curved hyperbolic spacetime, a relative vacuum state is a state satisfying the
microlocal spectrum condition of BRUNETTI et al. [10]. For Minkowski space, this
condition is equivalent to the ordinary spectral condition required by the Haag-Kastler
axioms. These condition can be translated into a condition to be satisfied for a local net
of groups so that the associated net of algebras satisfy the microlocal spectrum condition.

3.4 Physical states and Wightman functions

We now assume that the causal group G is a Lie group and the transition map U(f,g) is
continuously differentiable in g.
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We call the algebra U(G) of linear differential operators on C*°(G) the universal group
algebra of G. (It is isomorphic to a semidirect product of G and the universal enveloping
algebra of the Lie algebra of G, but this is not relevant here.)

We may treat U(f,g) as multiplication operator in the universal group algebra U(G). For
f,g,e € H we define

Af(e) = U (f t7e.g)|_UF0)7 (29)

dr T=

The transition relations shows that this is indeed independent of g.

The A¢(e) are linear operators on C*(G) generating the field algebra of a local quantum
field theory. Using distribution-valued quantum fields

Ay(z) = @%U(ﬂ 9, (30)

familiar from causal perturbation theory, where the quotient on the right denotes functional
differentiation we may rewrite (29) as

Afe) = [ doe(a) g (a).

In terms of (12), (30) reads
As(z) == Zcé?((g))

a formula going back to the early days of causal perturbation theory.

S(H

The standard causal commutation rules for the quantum fields (30) follow by differentiation
from the commutation rule (27).

3.5 Tomonaga—Schwinger structures

A Tomonaga—Schwinger structure on M consists of
e a causal function space H with base M,
e a Cauchy structure S on M,
e sets Z(X) (X €S) and Z; (f € H), and
o for each ¥ € S and f € H an invertible Mgller operator Q¢(X) : Zy — Z(X),
such that
1 1 Q_(f) if X AV Supp f,
2o(2) (%) = {m(f) if Supp f AV 5. (31)

The maps Q4 (f),Q_(f) : Z; — Zy are uniquely determined by (31). H is called the carrier
space of the Tomonaga—Schwinger structure. The transition maps

Up (X, %) := Qp(E)Q(2) 1 Z(8) — Z(X)

describe the many-fingered time flow from Z(X) to Z(¥'). Moller operators first ap-
peared in M@LLER [27] (1945) for nonrelativistic quantum mechanics and in SCHWINGER
[35] (1948) for relativistic quantum field theory.
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3.3 Theorem. Every Tomonaga—Schwinger structure with carrier space H determines on
the group Sym(Zy) of bijections of Zy a causal transition map whose carrier space is the
subspace Hl.. consisting of all functions in H with compact support.

Proof. As in the proof of Theorem 2.1 we use the factorization idea of BoGoLJUBOV &
ScHIRKOW [4]. It is sufficent to give the proof for f = 0; the general case is obtained by
shifting all arguments by f.

Suppose that e, f, g have compact support and the prior relation e AV g — f holds. Then
S := Supp(e) U Supp(f) U Supp(g) is compact, and

P :=Supp(h), F :=Supp(g— f)

are closed subsets of S with P AV F'. By definition of a Cauchy structure, there are Cauchy
slices ¥, ¥, and ¥ such that (3) and (4) hold. As a product of bijections, the map

S(f) = ()" Zo — Zo,
is a bijection of Zj, hence belongs to the group Sym(Z). By (31),

S(f) = QuH-(f)" = Qo(B4) 1 Qp(Z )2 (2-) 71 Q0(X)
Qo(Z4) 1 (B4 )2 (Z0) ™2 (Z0) 2 (22 ) 71 20(2-)
= (D) U (B, B0) U (Do, B2)Q20(31)

= Ry (f)R-(f),

where

R+(f) = Qo(z+)_1Uf<E+,20) : Z(Eo) — ZO7
R_<f) = Uf(ZO,E_)Qo(E_) t Ly — Z(EQ)
The same holds with g in place of f. Therefore
S(f) =Ry (f)R-(f), S(g9) = Ri(9)R-(9),

Now
e(x)=0 ifxgP, flx)=g(x) ifcgF
by definition of P and F'. Therefore
Ri(f+e)=Ri(f), Ri(g+e)=LRi(g),

R_(f+e)=R_(g+e), R_(f)=R(g).
Hence the transition maps defined by (12) satisfy

Ul f+egt+e) = S(f+e)Sg+e)!
= Ri(f+e)R(f+e)R (g+e) ' Ri(g+e)”
= Ri(f+e)Ri(g+e)" = Re(N)Ri(9)™
= Ri(f)R-(/)R-(9)'R(9)™ = S(£)S(9)~" =U(f,9).
Thus the causality relation (14) holds. Therefore U is a causal transition map. O

Tomonaga—Schwinger structures can be constructed from certain classes of ordinary or par-
tial differential equations with uniquely solvable initial value problem.
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We assume that S is a Cauchy structure on the causal space M and H is a causal function
space with base M. Suppose that M and the value spaces F, ', F ;.5 are smooth manifolds,
P:C>®(M,F) —» C®°(M,F) and F': C*°(M,F) x H — C*®°(M, F}ys) are smooth local maps,
i.e., (Pu)(z) and F(u, f)(x) depend only on u(x), f(z) and their derivatives. We only state
the principle; to be really useful for 4-dimensional spacetimes, one probably needs to weaken
the assumptions made.

3.4 Theorem. Suppose that for every ¥ € S, every f € H, and every uy € C*(%,F), the
equations

F(u, f) =0, uls =muo (32)
have a solution v € C*°(M,F), and any two such solutions have the same Pu. Then
Z(¥):=C%(,F) for¥eSs,
Zy:={Pul|ue C*M,F), F(u, f) =0} for feH,
Qp(X)[z] :=z2|g forze Zy

defines a Tomonaga—Schwinger structure on M with carrier space H.

Proof. This is straightforward. O

In parabolic spacetimes, existence theorems for ODEs in Banach spaces apply. Therefore
ODEs and regular index 1 DAEs should produce in this way Tomonaga—Schwinger structures
on parabolic spacetimes, thus recovering nonrelativistic field theories. In particular, we
recover results by BUCHHOLZ & FREDENHAGEN [14] on nonrelativistic quantum mechanics,
considered as 1 + 0-dimensional quantum field theories.

3.6 Causal groups on coherent spaces

The notion of a coherent space is a nonlinear version of the notion of a complex Euclidean
space (i.e., a complex vector space with a definite Hermitian inner product): The vector
space axioms are dropped while the notion of inner product is kept. Coherent spaces pro-
vide a setting for the study of geometry in a different direction than traditional metric,
topological, and differential geometry. Just as it pays to study the properties of manifolds
independent of their embedding into a Euclidean space, so it appears fruitful to study the
properties of coherent spaces independent of their embedding into a Euclidean space.

We take the following definitions from NEUMAIER [31] and NEUMAIER & GHANI FARA-
SHAHI [32], where further details and many examples can be found.

A coherent product on a set Z is a map K : Z x Z — C such that

(K1) K(z,2')* = K(#,2) for 2,2/ € Z,

(K2) For arbitrary zi,..., 2, € Z, the Gram matrix G with entries
Gjr = K(zj,2z,) forjk=1,...,n

is positive semidefinite.
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In particular, for an arbitrary family of vectors ¢, (z € Z) in a complex Euclidean space,

K(z,2') =,

defines a coherent product on Z. There are many other ways to construct coherent products
form known coherent products. An example:

3.5 Lemma. (NEEB [29, p.48]) Let Z, (¢ € L) be a family of subsets of a set Z such that
any finite subset of Z is contained in one of the Z,. Then K : Z x Z — C is a coherent
product on Z iff each K|z,«z, is a coherent product on Z; . O

A coherent space is a nonempty set Z with a distinguished coherent product K on Z.
A coherent map of a coherent space Z is a map A : Z — Z for which there is a (not
necessarily unique) adjoint map A* : Z — Z such that

K(Az,2')=K(z,A*Z") for 2,2/ € Z. (33)

A symmetry of Z is an invertible coherent map on Z with an invertible adjoint. A coherent
map A is called unitary if it is invertible and A* = A~

A x-semigroup is a semigroup G with an involution * satisfying
A=A, (AB)"=B*A* for A, B e G.

A x-representation of a x-semigroup G is a representation of G on a Euclidean space H
such that
['(A)*=T(A)" for AeG.

Every group is a *-semigroup with the inverse as involution. Every unitary representation
of the group is a x-representation for this involution.

3.6 Theorem. (Main theorem of coherent quantization)

(i) Let T be a x-representation of a x-semigroup G. Then every G-invariant subset Z of H
is a coherent space with coherent product

K(z,7'):=2*%,
and G is a semigroup of coherent maps of Z, with the involution as adjoint.

(ii)) Conversely, let Z be a coherent space Z. Then there is a quantum space of Z, a
Euclidean space spanned (algebraically) by a distinguished set of vectors |z) (z € Z) called
coherent states satisfying

(z|z") = K(z,2") forz,z2 € Z, (34)

where (z| := |2)*. If G is a *-semigroup of coherent maps of Z, with the involution as
adjoint then G has a x-representation I" such that

['(A)|z) =|Az) for AeG, z€ Z.
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Proof. The first part is straightforward, and the second part is a consequence of the Moore-
Aronszajn theorem on reproducing kernels (ARONSZAJN [1, 2], attributed by him to MOORE
[28]) and the coherent quantization results from NEUMAIER & GHANI FARASHAHI [32,
Section 3]. 0

Related to a quantum space Q(Z) is its augmented quantum space Q*(7), the antidualof

Q(Z), which contains the completed quantum space Q(Z), the Hilbert space completion
of Q(2).

This theorem implies that if a causal group G over M is a group of symmetries of a coherent
space then it is also a group of symmetries of the associated quantum space. If M is a
hyperbolic spacetime then this quantum space carries a local quantum field theory in the
sense of HAAG & KASTLER [20],

The point of the theorem is that constructing coherent spaces with interwesting symmetry
groups is much less demanding than constructing *-representations.

3.7 Conjecture.

(i) For every quantum field theory 7T, there is a coherent space Z with a causal group of
symmetries whose classical limit is a classical field theory 7., and whose quantum space
reproduces 7.

(ii) If T, or T. has an explicit construction then Z also has an explicit construction. O
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