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Interval Criterion for Stability Analysis of Discrete-Time
Nonlinear Systems With Partial State Saturation
Nonlinearities

Lubomir Kolev, Simona Filipova-Petrakieva,
and Valeri Mladenov

Abstract: A generalization of sufficient conditions for global asywiit stability of
the equilibrium of discrete-time nonlinear systems wittusation nonlinearities on
part of the states in the case of interval uncertainties rsicered. When using
guadratic form Lyapunov functions, sufficient conditioresed on the positive def-
inite interval matrices are presented. In order to check tarecent proposed method
for determining the outer bounds of eigenvalues rangeseid.us numerical example
illustrating the applicability of the method suggestedalved in the end of the paper.

Keywords: Robust stability analysis, outer bounds on eigenvaluestefval matri-
ces with independent coefficients.

1 Introduction

It is well known that the model of discrete-time dynamical nonlinear systems with
partial state saturation is [1]

x(k+1) =g[Ax(k)], k=0,1,... 1)
X (K) Yi
wherex(k)=1| ... | € X,?lé{y: Y e Ry, € D”Z},
Xir (K) Yii

A=[gj]eR"" n=n+np, D2 ={yeR2: 1<y <1li=1,...n},
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X X
gx)=1| ... |forx=1|...|, x €RM, x; €R"v,
satx ) Xi|
safx)) = [safxy),...,satx;)]",
1, X >1
safxi) =q¢%, —-1<x<1
-1, x<-1

In particular, this general model describes also the discrete-time negtral n
works [2] working on hypercube.

This type of nonlinear systems have been investigated by many resegisdner
e.g. [2-11]). They are stablext = 0 is the only equilibrium of system (1) and in
this case it is globally asymptotically stable. The condition of stability of marix
(i.e. every eigenvalug; of A satisfy|A;i| < 1) does not ensure thag = 0 is a unique
equilibrium, and hence, it does not ensure that 0 is asymptotically stable in
the large. For this reason, necessary and sufficient conditions ofpastically
stability of system (1), are proposed in [1].

When the elements of matri& are intervals there are publications concern-
ing the ranges of its eigenvalues in the case of continuous- and discretsysme
tems [12—14] as well as inner and outer estimates of its bounds [12—-15pnia
cases, the outer estimates may be rather conservative (they overestinraregthe
considerably) and lead to inconclusive stability analysis results, butyalteey
can be consider as sufficient conditions for stability of the systems caoadide

The paper is organized as follows. The problem statement when the elements
of matrix A are independent intervals is described in the next section. A method
for obtaining the outer bounds on the studied eigenvalues is presentedtionSe
3. Numerical example illustrating the applicability of the new method is solved in
Section 4. The paper ends up with concluding remarks in the last Section 5.

2 Problem Statement

Examine system (1). In practice the elements of mairicannot be determined
exactly. Hence we will consider them as independent intervals. (Inrgkertieey

are dependent intervals, but in first case the outer bounds of thevaigemanges

are larger which guarantee the stability of the system studied)A beta reah x n
matrix, A - an interval matrix containing,, andA-, A*, A° andRx - the left end,

the right end, the center and the radiusApfrespectively (throughout the paper,
bold face letters will be used to denote interval quantities while ordinary letters
will stand for their non-interval counterparts).



Interval criterion for stability analysis of discrete-time nonlinear systems 273

2.1 Stability of the central problem

Based on [1] we apply the Corollary 1 of Theorem 1 for the central matjx
i.e. the equilibrium of time-discrete nonlinear systems described by systeis (1)
globally asymptotic stable if

||A%|p < 1, for somep=1,2 . 2)

This result is obtained by choosing a Lyapunov functq®) = |[X||1,2 or e-

Letys = saty) for y € rN and letH denote a positive define matrix. Assume
that

yIHys <y"Hy 3)

foralyc RN, y¢ DN ={ycRV: -1<y <1,i=1,...,N. If quadratic form
Lyapunov function, based on the Assumptigx{2) from [1] is taken, then the
necessary and sufficient condition for stability of central matrix are ectenl with
aN x N positive define matrixd. This matrix satisfies the AssumptioA £ 2) if
and only if

N
hii > |hlj‘7|:175N (4)
Then the Theorem 2 from [1] can be written in the form:

Theorem 1 The equilibriumxe = 0 of system (1) forA? is globally asymp-
totically stable, ifA? is stable and if there exist positive definite matri¢ise
R™*M andH, € R2*" with H,, satisfying (4) (withN + n), such that igQ° =
H — (A%)THAC positive semidefinite, where

H 0
H:{ol H”] )

2.2 Stability of the interval problem

When the elements of matrix A are independent intervalsAi€A , in accordance
with the approach [1] to investigating the asymptotic stability of (1), we consider
the two "perturbed” eigenvalue problems first, for stability of interval mafrix A

Ax=Ax, AcA=[A" A"|=A"+[-Rq R ©)
and second-for positive definite interval mat@xQ € Q,
Q=H—-(ATHA, AcA )

Qx=Ax, AcA=[A", A" =A%+ [-Ra, Ra], (8)
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where matrixH has the same structure defined by (5). Itis seen from (8) that matrix
Q is implicit function of A.

Based on [1] it can be formulated the following interval criterion for asytipto
stability of (1) if A€ A:

Theorem 2: The equilibrium of the discrete nonlinear system describét)) by
is asymptotic stable if

e nterval matrixAis stable, i.e. all of its eigenvalues satisfied the condition

IAMA) <1, AcA, i=1,..,n (9)
and

e interval matrix@is positive semidefinite, i.e. all of its eigenvalues satisfied
the condition

A%(A)>0, AcA i=1,....n (10)

For simplicity of the presentation in next sections we will note the ranges of
eigenvalues of matrices and matrixQ, with I* and its outer bounds - with

3 Outer Bounds on the Ranges for the Eigenvalues of Interval Mair
ces

There are a variety of methods for obtaining the outer bounds on the rexayds
for the eigenvalues of interval matrices with independent elements ( [126])5
In this paper, the method proposed in [16] - for real case and [15] edmplex
case, is used because it provides the tight and cheap outer boundsrahges
considered.

3.1 Outer bounds of the ranges of the eigenvalues of interval matriA

Consider again (6). It is seen from (6) that bdttandx are functions ofa, i.e.
A = A(A) andx = x(A). Letx®(A) = (xa®(A),x2®(A),...,x(A)" be the
eigenvector, corresponding (A), k=1,...,n.

Now let the pairA°, x°)b e the solution of the nominal (centre) problem

A% = Ax (11)

Assume thatY < n of the componentgy of the eigenvalue vectox® are real
while the remainingh — n’ eigenvalues are complex. To simplify the presentation
of the method for obtaining outer bounds, we start by first consideringabe of
real eigenvalues d@A.
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A. Real eigenvalues &t A

We need the following assumption (ensuring structural stability of the prob-
lem).

Assumption A1For anyk € K’ = {1,...,r, all A (A) andx (A) remain real
forall Ac A

On account of Assumption A1, the intervajfsfor k € K’ will, in this case, be
real intervals

i = {A&(A):AeA}, keK (12)

Thus, I} is the range oAk (A) whenA € A.

For notational simplicity, we shall henceforth drop the inéexn this subsec-
tion, we are interested in finding an outer bodrmh 1*, i.e. an interval with the
property

I*Cl (13)

Thus, the problem at hand is the following

Problem P1 Find an outer bountlonl*, i.e. an estimatioh having the inclu-
sion property (13). We now suggest a method for finding a "tight” outemidd
onl*, i.e. a bound with a small overestimation. To simplify the presentation of the
method (without loss of generality), we need an additional assumption rconge
the real eigenvecto® related to the real eigenvalug’ considered.

Assumption A2 We assume that theth componentC ofx° has the largest
absolute value, i.6.x3 > X0 |,i=1,...,n

Remark 1 In the general case where the index of the largest component is
we just substitutas for nin all the relationships involved.

Now x° is normalized (dividing® by x9) to have

X=1 (14a)
Further, we require that (14a) be also valid fgfA), i.e.
XA =1 AcA (14b)

Condition (14b) simplifies the new method for computintp be presented
below. We first introduce the-dimensional real vector

y= (ylayZ) .. -Yn)T (15a)
with
—%(A), i=1,...n-1
yl Xl ( )7 | 9 ) n (15b)
Yn=A(A)
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Using (15) and (14), (6) is rewritten as

n-1
> ajyi—Y¥i+an=0, i=1...n-1
=1
n-1 k) (16a)
D @njYj —Yn+ann
=1
where
ajeaj=laj, ajl, (16b)

a; andaﬁ being the elements of matricAs andA™, respectively. System (16) is a
nonlinear (more precisely, an incomplete quadratic) system becausepobthects
ynyi in the firstn — 1 equations in (16a).

Lety; denote the range of théh component;(A), A € A of the solutionyyto
(16). Lety* be the vector made up gf. Consider the following problem.

Problem P2 Find an outer solutiog to (16), i.e. a solution enclosing the range
vectory*:

y'cy (7)
Obviously, thenth component of the solution y to Problem P2 is a solution to the
original Problem P1.
We now proceed to solving Problem P2. The approach adopted is based o
ideas suggested recently in [13,14]zH z5+u € zandt =ty + Vv €t, with zand
t being intervals whose centers ageandty, respectively, then
zt € —zpto +toz+ 2ot + [—rzr1, raf] (18)
wherer, andr; are the respective radii. After letting
aj=a)+uj, yi=YW+v, i,j=1...n (19)
whereaﬂ are the elements of the centre matkandy® are computed from (15)
with A= A% anduij = [-R(aj), R(&j)], vj = [-r(yj), r(y;j)]. We apply (18) to
express the products in (16a). On substitution of (19) into (16a), hamingnd
that the centeraj andy? satisfy system (16a) and following the techniques of [8],
we get the system
(8 —ypva+alva+ -+ + ag,n—anfl —YiVa =by
0 0 0 _
advi+ (8 — Yoo+ + Bn-1Vn-1— YoV =by
(20a)
agfl,lvl + agfl,ZVZ +eet (agfl,nflyg)vn—l —Yh_1Vn =bp1
amVi+aVa+ -+ +a) 1V 1— Vo =by
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whereb; are intervals. It can be easily checked that their radii are
n-1

n-1
Rbi) = WIRj+Ra+ Y Rjrj+rari, i=12..,n-1 (20b)
=1 =1

n—-1 n—-1
Rbn) = 5 ¥jIRej +Rant 3 Rt (20c)
=1 =1

whereR;j are the elements dRa while rj = R(v) is the radius of the unknown
intervalv;. Now system (20) can be written in compact form

v=Asb, beb (21)

wherev = A;! is the real coefficient matrix in (20a). Assuming= A, is in-
vertible, letC = |AyY|. If r = (ry,r2,...,ry)T andry, denotes a column vector with
components from (20b) and (20c), then from (21)

r=Cry (22)

Now we introduce the matrix® which is the same &R except for the last column
whose elements are now zeros. Using (20b), (20c) and the new no@®)rgan
be put in the form

r = CRX°| +CRr+Cg(r) (23)

wherex? is the normalized eigenvector ag¢r) is a nonlinear function with com-
ponentsy;(r) =rirn, i =1,...,n—1,gn(r) =0. Thus, (23) becomes

r=d+Dr+Cg(r) (24a)

with
d=CRx’|, D=CR (24b)

The matrix equation (24a) is a nonlinear real-valued (non-interval) system
equations im unknownsf

n—-1 n—-1
ri:di+Zdijrj+ranijrj, i=1...,n (25)
=1 =1

The smallest positive solutions of (25) solve Problem P2. Indeed,rif> 0, we
can introduce the intervals

yi=y+[-ri,r], i=1,..,n (26)
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It can be proved that
y'Cy, 1i=1,...,n (27)

i.e. the intervals (26) are really outer bounds on the raggésr all i. Hence, the
interval

Yn = Y2+ [~rn, ] (28)

is the solution to the original Problem P1 since it is, in fact, a bduod!* satis-
fying the inclusion (13). More precisely, we have the following theorem.

Theorem 3Ifthe nonlinear system (25) has a positive solutiea(ry, ra, ..., rm)"
that can be attained by the simple iteration method with initial veer 0, then
the interval (28) is an outer bound on the rangeof the real eigenvaludy(A)
considered (for a givek from K’). The present method for solving the original
Problem P1 will be referred to as method M1. As shown above, it compeses
sentially, the following computations. First, the "nominal” eigenvalue probleth (1
is solved. Then, for eadhe K’, the nonlinear system (25) is set up and the simple
iteration method is applied to find the solutiansg = 1,...,n. If all r; are positive,
the outer bound on the corresponding eigenvaldgA), A € A, is obtained by the
interval (28). Since, in practic®a are only small percentage q?j , System (25) is
mildly nonlinear and its solution does not present any difficulties.

B. Complex eigenvalues Af A

In this subsection, we are interested in the complex eigenvalues of (6), i.e. in

finding outer bounds on the rangkf)a, with k € K” = {n+1,...,n}. In order to
enclosg(l;)a, we need to introduce additionally the ranges

(hore = {D[A(A)] : Ac A} (29a)
(hoim = {0[A(A)] : A€ A} (29b)

To simplify notation, we again drop the indé&eand consider the intervalg)re,
(I)im and(l1)a. The corresponding outer bounds will be dendtgg | andl .
So

15 Clre, lim Clim (30a)

1:Cl, (30Db)
If Ireandl |, are found, then the bourd can be computed as

la= /13,412, (31)

Thus, if suffices to solve the following problem.

Problem P3 Find an outer bountke onl k. and an outer boundy, onlyi,. In
this subsection the method M1 will be extended to solve Problem P3. Thisajener
method will be referred to as method M2.



Interval criterion for stability analysis of discrete-time nonlinear systems 279

Let
A =Aret jAim, Xi =X Ret Xim, i=1...,n (32)
As in the case of method M1, we appeal to Assumption A2 and normalize the

complex eigenvalug® (corresponding to a fixekle K”) through dividing all com-
ponents o0& by x2

n,Re
X re= lquady,, = a. (33)
Further, we require that (33) be also valid forAlE A, i.e.

XrelA) =1, Xum(A)=a, AcA (34)

We introduce the 2n-dimensional real vector y with components

Vi=XRred), i=1..,n-1
= AreA
Yn Re(A) _ (35)
Yoti =X m(A), i=1,...,n-1
Yon = )\Im(A)
On substitution of (32) into (6), using (35), (6) becomes
n—1
D aijyj—Yn¥i+an+Yynynii =0, i=1...n-1
=1
n—1
D @njYj—Yn+amn+yna =0
=1
o1 (36a)
D &jYnij —YnYnti+&8n—Yanyi =0, i=1....n—1
=1
n—1
D @njYnij —YnQ +8mn—Yn =0
=1
where
aj € aj. (36b)

Lety; denote the range of thigh componeny;(A), A € A, of the solution to (36);
lety* be the vector made up gf. Consider the following problem:
Problem P4 Find an outer solutiog to (36), i.e. a solution enclosing the range
vectory*:
y cy (37)

Obviously, thenth and 2ith components of the outer solution y to (36) provide the
solution to the original Problem P3.



280 L. Kolev, S. Petrakieva, and V. Mladenov:

To solve Problem P4, we paf; andy; in the centred form (19), i.e.
aj=aj+uj, i,j=1...,n (38a)

yi=y+vi, view, i=1....2n (38b)

and apply the same approach as in the real case (method M1). Now thesyste
corresponding to system (20), is

(@1 —yovi+ad o+ -+ a(l),nfanfl — YV + yg+1V2n =b;
i+ (A —yp) 4+ + ag,n—lvnfl — YVn+ y2+2V2n =by
ar(Ll,lVl + a271,2V2 T+t (agflmfl — Ya)Vn-1— Y3 1Vn+ Y3 1Van =bn_1
avi+apVa+ - +ah, 1Vn-1—Vn+ aVaq =bny

(3(1)1 - Yg)VnH +aoVnio+ -+ a(1)7n_1V2n—1 — y2+1vn — y2V2n =bn1

Vi1 + (832 — Ya)Vnp2 + -+ +@°2,n— 1von_1 — Y3, oV — YaVon = by

al(’zfl,lvn-‘rl + agfl,ZVn-i-Z +o Tt (agfl,nfl — Ya)Van-1—Y3n 1V —Yon_1Van = bzn 1
anyVi +aQVa + -+ +a 1V 1 — OV — Vanbzn
(39)
It can be easily checked that the radiuspis

n—-1 n—1
r(bi):ZRi,-!y?HZRijr,-+F2an+rnri+rznrn+1, i=1,...,n—1 (40a)
=1 =1

n-1 n—-1
r(bn) = Z RnJ|Y?‘+Z Rnjrj + Ran (40b)
=1 =1
n—-1 n—-1
r(bnyi) = z Ri,-]yﬂ+j|+ Z Rijrnsj+Rn+rnrfnsi+ronri, i=1,...,n—1 (40c)
j=1 =1
n-1 n-1
r(bzn) = 3 Rojl¥iijl+ 3 Rojfnej + Ran (40d)
=1 =1

Now system (39) can be written in a compact form

Aoy =bf (41)
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where A is the real coefficient matrix in (39). Le@' = |(A)~Y andr = (ry,
r2,...,r2n)" with rj = Ry, wherey; are the increments of in (38b) (v € vi). From
(41)

r=Cry (42)

Using exactly the same techniques as in method M1, on substitution of (40) into
(42) we get the nonlinear system

r=d +D'r+Cg(r) (43)
which has a structure similar to system (24). If (43) has a positive solutidrich

can be attained by the simple iteration method, starting i 0, then this solu-
tion solves Problem P4. Indeed, we can introduce the intervals

Y=Y +[-r,n], i=1...,2n (44)

Once again, similarly to Theorem 3, we have

y'Cy, i=1...,2n (45)

Hence, the intervals
Yo =Yn+[—n, n] (46a)
Yon = Y30+ [—T2n, 2n] (46b)

provide the solution to the original Problem P3. More precisely, we havéothe
lowing theorem:

Theorem 4 If the nonlinear system (43) has a positive solutictihat can be
attained by the simple iteration method with initial veatde= 0, then the intervals
(46a) and (46b) determine the outer bouhgisandly, on the rangesg, andlj,,
respectively.

The proof of Theorem 4 is similar to that of Theorem 3. On account obiidma
4, the outer bountl; can be computed as

la = \V I%e"lem (47)

Conclusion If all the outer bound®\A(A)| < 1,a€ A,i=1,...,n, then inter-
val matrixA is stable.
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3.2 Outer bounds on the ranges for the eigenvalues of interval maitt Q

Based on (7) we form the interval matiwith independent elements:

Q: Qo+[_RQ7 RQ]? (483)

where
Q=H - (A%)THA? (48b)
Ro = (Ra)T|H|Ra (48c)

The application of the new method for obtaining the outer bounds of thesaige
Q, described in the previous subsection lead to the following conclusion.
Conclusion If all the outer boundsiiQ(A) >0,AcA,i=1,....ntheninterval
matrix Q is positive definite.
Final conclusion If the interval matrixA is stable and interval matriQ is pos-
itive definite, then the discrete-time nonlinear system considered is asymibyotica
stable.

4 Numerical Example

To demonstrate the applicability of the present method, we will solve the follow-
ing problem. Let the interval matriA of the discrete-time nonlinear system, in
particular neural network, studiedAs= A° 4 [—Ra, Ra] with

(04 —02 ! 0 -02 O05]

-05 -05 ! 02 O 0
o | sa)
0 -03 i —-02 03 04
01 0 : —-01 08 o01
. 0 01 : 005 03 -08]
Ra = 0.01xA° (49b)

wheren; =2,n, =3. Hencen=n;+np, =5

4.1 Stability of the central problem

Stability analysis of system (1) wheh= A is described in details in [1]. The
main points of the investigation will be briefly presented here again. First, we
check condition (2), i.e. iff A || < 1for somep = 1,2, c0. The results show that (2)
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fails for p= 1,2« as a global asymptotical stability test. Then we apply Theorem
1 and choose the matrices

16 -09 06
Hy = [g-g ‘112}, Hi=|-09 16 -06 (50)
°k 06 -06 21

where matrixH,, satisfies (4). We compute matrices (according to (5)) and
Q°=H — (A9)THADL. SinceQVis positive definite, the equilibriun, = 0 of system
(1) is globally asymptotically stable fax= AC.

4.2 Stability of the interval problem
4.2.1 Stability of interval matrix A
The corresponding eigenvalue problem is

ai1X1 + @j2X2 + &3X3 + ais + @jsXs —Ax =0

. (51)
ajj € ajj, L,]=1,...,9

First, we solve (51) whera; = aJ to find the pair(A°, x%). In this case
A° = (0.7497 05052 — 0.8780 — 0.3385+- j0.0605 — 0.3385— j0.0605" (52a)

and we will confine ourselves to finding an outer boulireh the rangd* for the
third (k = 3) real eigenvalue\® = A9 = —0.8780 (since its absolutely value is
closer to 1). Therefore the bouhds computed using the method M1. Supporting
that Assumption A1 holds, we normalize the eigenvegfor (x2, x3, x3, x3, x2).
Since|x2| = maxX’), i = 1,...,5, Assumption A2 does not hold. In accordance
with Remark 1, we have to change indexvith the index corresponding to the
maximum value component (in this instance, with 1). So

X0 = (—0.4388 —0.2312 — 0.6601 — 0.728 1) (52b)
Thus, the vectoy? is
y? = (—0.4388 — 0.2312 — 0.6601 — 0.728 08780 " (53a)

and
y=(y1Y2Y3Ya¥s)" = (X1 X2 X3 XaA)" (53b)
Thus for the example considered system (16a) becomes

ai1y1+ appy2 +aizys+aisya+as—Yyiys =0, i=1,...,4

(54)
as1Y1 + aspy2 + As3y3 + Asays +ass — Y5 = 0
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The solution of (25) for the example considered, obtained by the simple iteratio
method, has the components

r=(0.0442 00248 00589 01093 00456)T (55)
As all radii are positive, by Theorem 3 and (52a), the outer bduad
| =y5=Yy2+[—rs, rs] =[0.8324 03923b (56)

From (56), it follows that the interval matri, is stable.

4.2.2 Positive definiteness of interval matrix Q

We substitute the interval matri, defined by (49), in (7) and get the matfXin
interval formQ, where

[ 0319 03540 : 00830 -0.1030 00220
03540 07060 @ 00895 —0.1310 03710
o | 72
0.0830 00895 @ 15048 —0.8215 06570
~0.1030 01310 : -08215 08350 —0.3450
| 00220 03710 @ 06570 03450 07190 |

[0.0661 00578 © 00215 00273 Q0350
0.0578 00666 @ 0315 Q0623 00716

Rq:10_3 (57b)
0.0215 00315 : 0.0191 00538 Q0501

0.0273 00623 : 0.0537 002205 01807
[0.0350 00761 : 0.0501 01807 02293

The eigenvalues of central mati@Q® are:

/\0:(2.4480 09481 00098 04399 02379)T (58)

It is seen that all the eigenvalues from (58) are real. Hence, we appnéthod
M1 fifth times for all of them to obtain the outer bounds of their ranges, whei
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. The results of computations are following:

[2.4408 24483
[0.9479 09483
| = [[0.0095 00100 (59)
[0.4395 04403
[0.2376 02382

Itis seen from (59) that the left bounds of all the components of inter&brl are
positive. Therefore the ranges of all eigenvalues of interval m@rate positive
and finally it follows that matrixQ, whenA € A, is positive semidefine.

Since interval matriXA is stable and interval matri§Q is positive semidefine,
the nonlinear system, in particular neural network, studied (1), AvithA consider
(49), is asymptotically stable.

5 Conclusions

The problem of stability analysis of discrete-time nonlinear system considere
duces to two tasks for assessing the intervals of the eigenvalues of intextra
ces whenmA € A. First, the interval matrixA has to be stable, i.e]A%(a)| < 1,
AcA i=1,...,n. Second, the interval matriQ has to be positive semidefine,
i.e. )\iQ(A) >0,AcA i=1/ldotsn. Both tasks use the same technique. It
consists of obtaining the outer bounds on the ranges for the eigenvéloegsre
cesA andQ(A), whenA € A. A recently proposed method for determining these
outer bounds has been applied. It requires the evaluation of the eligesnand
the corresponding eigenvectors from (11) for the center maftixTwo versions

of the method ( for real and for complex eigenvalues, which are nadvtieénd
M2) are discussed. The methbtll essentially consists of setting up and solving
the system ofi non-linear equations (25) for the positive solutions = 1,...,n.
The solution of the original problerl is then found by the radius, according

to formula (28). The methol12 essentially consists of setting up and solving the
system of & non-linear equations (43) for the positive solutions = 1,...,2n.
The solution (47) of the original probleR8 uses the radii, andr,n according to
(46). The conclusions about bafhandA are similar.
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