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Abstract: The paper addresses the stability analysis of linear continuous systems under interval uncertainties. This
problem initially described by the characteristic polynomial is transformed into a corresponding eigenval ue problem.
Thefinal analysisis equivalent to estimating the eigenvalues of matrices which elements are nonlinear functions of
interval parameters. A method for obtaining the exact range of the eigenvalues is used. It can be applied if certain
monotonicity conditions are fulfilled. The method appeal's to computing tight outer bounds on the eigenval ues range.
The outer bounds are obtained as a solution of an algebraic nonlinear system. A numerical example, illustrating the
applicability of the methods presented, is solved in the end of the paper. It isalinear system for fine position of
object with big weight and inertness.
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1. INTRODUCTION

Lets have the linear continuous interval system described by the
characteristic polynomial

n
q(s,p)= D a(p)s" ", pep. (@)
i=0

Remark 1: Vector p is the column-vector of independent system
parameters but p is the respective vector with interval components.
Various interval criteria can be used for check the system stability
([2] — interval form of Raus criterion and [3] — interval form of
Frazer-Duncan criterion). Both of them are based on interval
extensions of nonlinear function which are calculated using
generalized intervals and affine arithmetic. These interval criteria
have some disadvantages.
1. They are insufficient effective for caculating the interval
extensions studied in the cases with independent and dependent
coefficients in characteristic polynomial (1). They take up a lot of
resources but the results are alittle better.
2. They take up a number of calculations when it analyses stability
of the linear continuous system with known stability margin.
3. They use interval extensions which are conservative and already
are wider than the exact ranges of interval functions studied.
In these reason, it is not suitable and not recommends applying the
interval form of classic stability criteria in interval form when the
linear continuous system is described by characteristic polynomial
(2). Then, in this paper, we propose other approach for analyzing the
linear continuous systems stability.

2. PROBLEM STATEMENT

It is well known that based on the characteristic polynomia (1) can
be define the matrix

_a) o) 4 4]
ap) P awop)  a)
1 0 .. O 0
4wl o 1 . 0 o | @)
o o0 . 1 o0

Then the syst_em described by (1) is stable if an_d only if the
eigenvalue of matrix 4 (see (2)) have negative real part.
We consider the following “ perturbed” eigenvalue problem:

A(p)x=2Ax, pep. €)

Remark 2: Each matrix A(p), p € p isassumed non-singular.

It follows from (3) that each eigenvalue A and its corresponding
eigenvector x areimplicit forms of p.
Here, we are interested in the intervals of the eigenvalues of (3).
We will estimate only the interval of the maximum eigenvalue
obtained by the (center, nominal) problem

A( po)x =Ax. @
Remark 3: In general, the methods suggested later can be applied for
any other real eigenvalues.
Let

ﬂ“%ax (pO) = max(lk(l’o))y k=1...n (5)

is a maximum eigenvalue while xﬁw = xf, xg, x,?]ris the
corresponding eigenvector. We make the following assumption
(ensuring structural stability of the problem).
Assumption Al: Let Apa(p) and xpa(p), corresponding to al
pep remanreal.
On account of Assumption A1, therange

max ={A(p): p € p} )
isared interval.
Remark 4: For simplicity, we shall henceforth drop the index max if
maximum eigenvalue A, -

Without any loss of generality we need a second assumption. If the

pair (xo, /10) isthe solution of (4) then
Assumption A2 We assume that the absolute value of the nth
component x,? of vector x° is the largest component of the other
components, i.e.

x,? Z‘xio‘,i;tn (7)
Now x° is normalized through

x,? =1. 8

Further, we require that (8) be also valid for

x,(p)=1, pep. (8a)

We introduce the n-dimensional real vector



y=bn v2, ,ynr (9)
with yi=x(p) i=L.,n-1 10
yn=2(p)

Using (10), the eigenvalue problem (3) is
A+ apyy+ a1V~ Va1 T @, =0
Aoy +agpVo ot Qo) Vi1~ VY2 + a2, =0 (11)

A1 t+any; +"'+an(n—l)yn—1_yn'l+ann =0

where a;; = a;; (p), p € p. Thesystem (11) can be written as:

A(p)y=yuy+ 4,(p)=0, (11a)

where ;1( p) isthe same as A(p) except for the nth column which is
zero, A,(p) is the nth column of A(p). It is seen that system (11) is
nonlinear only because of the products y,y;, i =1,...,n. The solution
of (11) isthe set

S(p)={y:A(p)y - y,y+4,(p)=0, pep}. (12)
The interval hull of S(p) will be denoted y* and y* will be called
exact range to (11). Any other y such that y* c y" will bereferred

to as an outer bound to (11).

The present paper addresses the problem of determining the outer
bounds and the exact range of the solution of (11). First, a direct
method for computing a tight and cheap outer bound y' is presented
in Section 3. It is based on the approach suggested in [4]. In Section
4, the exact range y” to (11) is determined for the case when certain
monotonicity conditions, regarding the derivatives of y; with respect
to p;, are fulfilled. It is based on the use of the outer solution method
from the previous section. An illustrative example is considered in
Section 5. The paper ends up with concluding remarks in the last
Section 6.

3. OUTER BOUNDS OF THE EXACT RANGE
The functions defined by (11) can be written in the following form:

n-1
filp.y)= Za,-j(p)yj = Vu¥i—ay(p), i=1.., n-1

j=1
n-1 ! (13)

Sulpy)= Zanj(p)y_,- ~Vu—ap(p), PEP, YEY
j=1
Theinterval hull of fi(p,y), i=1...n is S;(p.y), pep, yey.
On account of the inclusion property
filp.y)eS;(p.y), pep. yey (14)
the linear interval formsof S (p,y) are:

L;(p)= Z%‘kpk +8j» DPr € Pk (15)
k=1
From (14) it follows
ajj (p)e L; (p), pep. (158)
To find the outer bound of y =A(p), pep we present the

elements a; as linear functions of independent system parameters,
i.e
m
a;(p) = Za[jkpk +8ij» Pk € Pr- (16)
k=1
We apply (16) to (11) and we get the system:

n=1 m m
ZZ[aijkpk +8ylyj = yayi+ zamkpk +&in | =0

j=1 k=1 k=1
i=1..,n-1 : 17
n=1 m m
ZZ[anjkpk +gnj]yj YTt zannkpk +8&m |= 0
j=1 k=1 k=1
We subgtitute the interval variablesin (17) with
0 0 0
Pi=DPctu, y,=y;+tv,, & =8,+t1L;. (18)

On account of (18) we get the following system
0.0 0 0 0
(ar =y +avo + .t a1y — V1V, = By
0 0 0 0 0
a1+ (a3 =y, )va + ot Ao 1)Vt~ VoV = Bo
i T . "
A1), 21+ A1), 2 + -+ (A1) (1-1) = Vn Vi1~ (19)

0
“Vn-1)Vn = B4
0 0 0 =B
Gt apvp t..t Ay (n-1)Vn-1"VYn = By

where y?, J =1...,n isthe solution of the system (17) for the

centers po of the interval vector p while the meaning of the

remaining symbols are the same as [4].
Now system (19) can be written in a compact form

Ay =B (20)
where ZO is the real coefficient matrix in (17) for p = po. Let
C= ZO’ 1, thus, (20) can be written in the form:

k=1 k=1

NP o B e {i(cﬁk »}

—CTv+Cy,v — i(CH Z)uk -cr’ (21
k=1

where

— - n-1

G, = [Gik]T = Zai/’ky? ;T:[tt[/']; H = [amk]Ti
j=1

T
n—1

H,=[H,) =Y ay | iij=Les k=L
j=1

)70 and V are the same as vectors yo and v, respectively, expect

for the last element which is now zero; T, is the last column of
matrix 7. We note system (21) by the radii

r=d+Dr+|Clr,F (22)
with
d =36 by~ =S (CHp Ju, T, (229
k=1 k=1
D= —[i(cﬁk)uk}cr (22b)
k=1



The matrix equation (22) is a nonlinear real value (noninterval)
system of n equations of n unknowns r;:
-1
" Hleglrns i =L n. (23

r—d+ZDr+ranl~
jl'l

I
=1 g-J J

We solve system (23) for #; and, based on the component 7, , the

outer bounds of the maximum eigenvalue y,, i

yo=vo+l-r. 7 ] 24
The main result of this section is the theorem.
THEOREM I: Assume the solution » of system (23) is positive. Then

the outer bound /?.r'nax
eigenvalue L(p) of (3) when pe p is

on the range /?.;ax of the maximum

Amax =V =Yy +1y (25)

where
rl’; :[_rn!rn] (253.)

This theorem is valid for al the eigenvalues but to simplify the
presentation we formulate the theorem only for the maximum
eigenvalue.
Remark 5: The proof of the above theorem is the same as the proof
of Theorem2.1in[4].
Thus, it has been shown that the problem of finding an outer bounds
ﬂ‘max
(incomplete quadratic) system (23). Since system (23) is only mildly
non-linear, because of the products y, v, ,i =1,...,n

does not present any problem.

on the range /?.,*nax reduces to solving the non-linear

, its solution

4. THE EXACT RANGE

In this section, the outer bounds on the solution of system (11) will
be,applied in a method for computing the interval hull (exact range)
fy It is assumed that a,;(p) are continuously differentiable

nctions in p. The method “suggested is applicable only if certain
monotonic conditions are fulfilled and when the coefficients in the
system (11) are dependent.

We are interested in expressing the derivative of ), with respect to

p . i=1..,
(12) in p, and get the system

n—1
S22,
o

n; [ =1,...,m . With this in mind, we differentiate

z”yly/ +int

j=1 (26)
n—1
aq + i=1..nl

zl nj apz ap] Z_;‘qn//y] Mant »
J
oa.

Mg =—2ij=Leonl=1.,m

where = 9 (27)
Oy 1,.. =1
_— ,ji=1.,nl=1.,m .
M njt 617] Jj=

We solve the system (26) using the method proposed in Section 3 to
determine the outer bounds D. of the derivatives
Vi _
-=D,;, pep. (28)
p,

Next we will make the following assumption:

Assumption  A3:  We assume that each  estimation
D,, i=1..,n, [ =1...,m stisfieseither the condition

D, >0 (29)
or

D,<0. (30)

On account of inclusion property (29) the fulfillment of Assumption
A3 guarantees that ), is monotonic with respect to each p, . Now
we define two vectors as follows

D;>01=1..m
. =1, (31a)
P, Dy <0l=1..m

—0 _|py Dy 200 =1om

) ,i=1..,n. 31b
"W Dy <00 =1.m (1)

We get the exact range y* of (11) using the following theorem.
Theorem 2: |f Assumption A3 holdsfor all i =1,...,7 then thenth

*

component  y, =(y ,yn) of the solution vector y is
—n

determined asfollows:

1) y* isequal to the nth component of the system solution:

n—1
D ay(p)y; = vuvi+ay (p) =0, i=Lu,n-1
j=1 . (32a)
n—1
Z a yj (E)y_] —Vn tau, (£) =0.
j=1
2) )7: is equal to the nth component of the system solution:
n-1
D ay(B)yj = vuvi+ay () =0, i=1.,n-1
j=1 . (32b)
n-1
Dy (B = +an () =0.

j=1

5. NUMERICAL EXAMPLE

The system studied is calibration device for high accuracy
acceleration transducers. This requires working over an object,
whose mechanical conditions should be close to those of an inertial
body. Generated vibrations in the surrounding ground from heavy
mechanical factories located near the object studied can be
considered as a disturbance.

Figure 1 gives a physical model of the system studied. The bottom
platform P is supported at each corner by a set of three elements
lying on the ground: a spring, a damper and an electromagnetic force
generator. Another platform B, bearing the calibration device, is
leant on the first one through similar mechanical elements, except
for the absence of active generators.

Two main simplifying hypotheses are assumed in order to obtain a
suitable lumped parameter model of reasonable complexity:

1. The ground and platforms P and B are considered rigid bodies.
Perfect symmetry of the structure and only vertical motion of the
ground are assumed.

2. The four electromagnetic actuators at the corners of the lower
platform P are driven by the same electric current, according to the
hypothesis that perfect symmetry gives rise to trandation motion of
the object along the vertical axisonly.

The simplified model of system studied is shown on the figure 2.



Figure 2

There i is command variable; z is position along vertical axis, y is
controlled output and d is disturbance.

The structural scheme of closed system studied is:

d(s) _ ¥(s)

H(s.p)
i(s)
G(s.p) H A(s.p) H C(sp) }‘—{GT(S,P)

Figure 3
The  respective  transfer  functions  are

A(s)=k4,
Gr(s) =krs(+s7) ™, G(s) = NG ()D (), H(s) = Ny (s)D(s)
where N (s) =k pky "s2(U+ Bok7"s) » Nigls) =L+ Bl 5) QL+ Bk )

D(s) = mymoley 35 + (/B + mp(B+ o) Vg K™+

+ (gt my (ke + ko) + B ok Ta D)% + (B + Bokat)s +1

The full vector of parameters is 10" dimensional

p:[kA' kpy ko T, ko kyy my, om,, B ﬂz]T For

simplicity of the calculation and without any loss of generality only
3 of them can be considered as intervals (see Table 1).

Center Radius
k1 N/m | p1 | 14000 3000
k2 N/m | p» | 10000 3000

il Ns'm | ps 480 100
Tablel
The values of other parameters are shown in Table 2.
Value
ky ANV 8.7
kr | vs¥im | 2*10°
ke | NIA 10
7 S 2
my kg 4250
m2 | kg 440
B | Ngm | 1.7*10*
Table 2
The characteristic polynomial of system considered is:
s, p) =ags® +ags® +ays® +ags® +ays+ag (33)
where
ag =187
a; = 80869+ 0.044p5
ay = 4.064*10" +0.044p, + 2.556p, +1050p; (33a)

a3 = 3638+10° +1050p; +23897p, +340p3 +107* p,ps
ay =8874%10° +340p; + 2.139*10° p, +107* pp, +0.020p,p5
ag =5.21810° p, +0.020p; p,

The respective matrix to (40) is

7@ 7@ a(p) a,p) as(p)

() a4 @) a@)  ap) (34)
1 0 0 0 0
S P 1 0 0 0
0 0 1 0 0
0 0 0 1 0

aa,, = —432.45-2.3529* 10 p,

aa,, = —2.1733*10° - 2.3529*10™* p, - 0.0137 p, — 0.0561p,

aa,, = —0.0561p, —12.779p, —1.8182 p, —5.3476 * 10" p,p, —
—1.9455* 107

aa,, = —4.7455* 10° —1.8182 p, -1144.0p, - 5.3476 * 10" p,p, —
-1.0695*107* p, p,

aa,; = -1.0695* 107" p, p, — 2.7903* 10" p,

We substitute the central vector of parameters

p¢ =[14000 10000 480]" (35)
in (43) and based on (42) determine the maximum eigenvalue of 4
Amax (P€) = —0.5879. (36)

Next we apply the method described in Section 3 and get the outer
bounds of the exact range of the maximum eigenvalue

max = [-0.77599,  —0.40000]. @7
The exact range is calculated by applying the method from Section 4
Amax = [-0.7647, -0.4118]. (39

6. CONCLUSION

The classical criteria of stability (Raus and Frazer-Duncan criteria)
in interval form based on the interval extensions of the functions
studied.

A method proposed in Section 3 obtains the outer bounds gy -

reduces to solving the incomplete quadratic system (22). The method

isapplicable if the solution » of system (22) is positive.

A version of this method for finding the outer solution can be used

for determining the outer bounds D;, of the derivatives SL =Dy . If
Pi

these bounds satisfied monotonicity conditions (30) the method,

proposed in Section 4, can provide the exact solution for the

eigenvalue range of the maximum eigenvalue.

A numerical example for analyzing the stability of calibration device

for high accuracy acceleration transducers illustrates the

applicability of the above methods to determine the outer bounds

and the exact range of the maximum eigenvalue of the system (33).
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