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Abstract:  The paper addresses the stability analysis of linear continuous systems under interval uncertainties. This 
problem initially described by the characteristic polynomial is transformed into a corresponding eigenvalue problem. 
The final analysis is equivalent to estimating the eigenvalues of matrices which elements are nonlinear functions of 
interval parameters. A method for obtaining the exact range of the eigenvalues is used. It can be applied if certain 
monotonicity conditions are fulfilled. The method appeals to computing tight outer bounds on the eigenvalues range. 
The outer bounds are obtained as a solution of an algebraic nonlinear system.  A numerical example, illustrating the 
applicability of the methods presented, is solved in the end of the paper. It is a linear system for fine position of 
object with big weight and inertness. 
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1. INTRODUCTION 

Lets have the linear continuous interval system described by the 
characteristic polynomial 
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Remark 1: Vector p is the column-vector of independent system 
parameters but p is the respective vector with interval components. 
Various interval criteria can be used for check the system stability 
([2] – interval form of Raus criterion and [3] – interval form of 
Frazer-Duncan criterion). Both of them are based on interval 
extensions of nonlinear function which are calculated using 
generalized intervals and affine arithmetic. These interval criteria 
have some disadvantages. 
1. They are insufficient effective for calculating the interval 
extensions studied in the cases with independent and dependent 
coefficients in characteristic polynomial (1). They take up a lot of 
resources but the results are a little better. 
2. They take up a number of calculations when it analyses stability 
of the linear continuous system with known stability margin. 
3. They use interval extensions which are conservative and already 
are wider than the exact ranges of interval functions studied. 
In these reason, it is not suitable and not recommends applying the 
interval form of classic stability criteria in interval form when the 
linear continuous system is described by characteristic polynomial 
(1). Then, in this paper, we propose other approach for analyzing the 
linear continuous systems stability. 
 

2. PROBLEM STATEMENT 

It is well known that based on the characteristic polynomial (1) can 
be define the matrix 
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Then the system described by (1) is stable if and only if the 
eigenvalue of matrix A (see (2)) have negative real part. 
We consider the following “perturbed” eigenvalue problem: 
 p∈= pxxpA ,)( λ . (3) 

Remark 2: Each matrix p∈ppA ),(  is assumed non-singular. 
It follows from (3) that each eigenvalue λ  and its corresponding 
eigenvector x are implicit forms of  p. 
Here, we are interested in the intervals of the eigenvalues of (3).  
We will estimate only the interval of the maximum eigenvalue 
obtained by the (center, nominal) problem 
 xxpA λ=)( 0 . (4) 
Remark 3: In general, the methods suggested later can be applied for 
any other real eigenvalues.  
Let   
 ( ) nkpp k ,...,1,)(max)( 000

max == λλ  (5) 

is a maximum eigenvalue while [ ]T00
2

0
1

0
max ...,, nxxxx = is the 

corresponding eigenvector. We make the following assumption 
(ensuring structural stability of the problem). 
Assumption A1: Let )(max pλ  and )(max px , corresponding to all 

p∈p  remain real. 
On account of Assumption A1, the range 
 { }p∈= pp :)(*

max λλ  (6) 
is a real interval. 
Remark 4: For simplicity, we shall henceforth drop the index max if 
maximum eigenvalue maxλ . 
Without any loss of generality we need a second assumption. If the 
pair ( )00, λx  is the solution of (4) then 
Assumption A2: We assume that the absolute value of the nth 

component 0
nx  of vector 0x  is the largest component of the other 

components, i.e. 

 nixx in ≠≥ ,00  (7) 

Now x0 is normalized through  
 10 =nx . (8) 
Further, we require that (8) be also valid for 
 p∈= ppxn 1,)( .    (8a) 
We introduce the n-dimensional real vector 
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Using (10), the eigenvalue problem (3) is  
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where p∈= ppaa ijij ),( . The system (11) can be written as: 

 0)()( =+− pAyyypA nn
(

, (11a) 

where )( pA
(

is the same as A(p) except for the nth column which is 
zero, An(p) is the nth column of A(p). It is seen that system (11) is 
nonlinear only because of the products .,...,1, niin yy = The solution 
of (11) is the set 
 },0)()(:{)( pp ∈=+−= ppAyyypAyS nn

(
. (12) 

The interval hull of S(p) will be denoted y* and y* will be called 
exact range to (11). Any other y’ such that '* y y ⊂  will be referred 
to as an outer bound to (11).  
The present paper addresses the problem of determining the outer 
bounds and the exact range of the solution of (11). First, a direct 
method for computing a tight and cheap outer bound y’ is presented 
in Section 3. It is based on the approach suggested in [4]. In Section 
4, the exact range y*

 to (11) is determined for the case when certain 
monotonicity conditions, regarding the derivatives of yi with respect 
to pj, are fulfilled. It is based on the use of the outer solution method 
from the previous section. An illustrative example is considered in 
Section 5. The paper ends up with concluding remarks in the last 
Section 6. 
 

3. OUTER BOUNDS OF THE EXACT RANGE 

The functions  defined by (11) can be written in the following form: 
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The interval hull of niypfi 1,...,),,( =  is ),( yp
ifS , yp ∈∈ yp , . 

On account of the inclusion property 
 ypS ∈∈∈ y,pypypf

ifi ),,(),(    (14) 

the linear interval forms of ),( yp
ifS  are: 
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From (14) it follows 
 pL ∈∈ pppa ijij ,)()( . (15a) 

To find the outer bound of p∈= ppyn ),(λ  we present the 
elements aij as linear functions of independent system parameters, 
i.e. 
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We apply (16) to (11) and we get the system: 
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We substitute the interval variables in (17) with  

 ijijijjjjkkk tgvyup +=+=+= 000 ,, gyp . (18) 

On account of (18) we get the following system 
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where njy j ,...,1,0 =  is the solution of the system (17) for the 

centers 0p  of the interval vector p while the meaning of the 
remaining symbols are the same as [4].  
Now system (19) can be written in a compact form 

 BvA =0
~

   (20) 

where 0A~  is the real coefficient matrix in (17) for 0pp = . Let 
1

0
~−= AC , thus, (20) can be written in the form: 
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0y(  and v(  are the same as vectors 0y  and v, respectively, expect 
for the last element which is now zero; Tn is the last column of 
matrix T. We note system (21) by the radii 
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The matrix equation (22) is a nonlinear real value (noninterval) 
system of n equations of n unknowns ri: 
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We solve system (23) for ir  and, based on the component nr , the 

outer bounds of the maximum eigenvalue '
ny  is: 

 [ ]nn
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The main result of this section is the theorem. 
THEOREM 1: Assume the solution r of system (23) is positive. Then 

the outer bound '
maxλ  on the range *

maxλ  of the maximum 

eigenvalue λ(p) of (3) when p∈p  is 

 '0''
max nnn y ry +==λ    (25) 

where  
 ],[ nnn rr−='r  (25a) 
This theorem is valid for all the eigenvalues but to simplify the 
presentation we formulate the theorem only for the maximum 
eigenvalue.  
Remark 5: The proof of the above theorem is the same as the proof  
of  Theorem 2.1 in [4].  
Thus, it has been shown that the problem of finding an outer bounds 

'
maxλ  on the range *

maxλ  reduces to solving the non-linear 
(incomplete quadratic) system (23). Since system (23) is only mildly 
non-linear, because of the products niyy in ,...,1, = , its solution 
does not present any problem. 

4. THE EXACT RANGE 

In this section, the outer bounds on the solution of system (11) will 
be applied in a method for computing the interval hull (exact range) *y . It is assumed that )( paij  are continuously differentiable 
functions in p. The method suggested is applicable only if certain 
monotonic conditions are fulfilled and when the coefficients in the 
system (11) are dependent. 
We are interested in expressing the derivative of iy
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lp , mlni ,...,1;,...,1 == . With this in mind, we differentiate 

(11) in lp and get the system 
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We solve the system (26) using the method proposed in Section 3 to 
determine the outer bounds ilD of the derivatives   
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Next we will make the following assumption: 

Assumption A3: We assume that each estimation 
mlniil ,...,1,,...,1, ==D  satisfies either the condition 

 0≥ilD  (29)  
or 
 0≤ilD  . (30) 
On account of inclusion property (29) the fulfillment of Assumption 
A3 guarantees that iy is monotonic with respect to each lp . Now 
we define two vectors as follows 
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We get the exact range *y of (11) using the following theorem. 

Theorem 2: If Assumption A3 holds for all ni ,...,1=  then the nth 

component ) ,(
***y nnn yy=  of the solution vector *y  is 

determined  as follows: 

1) 
*
n

y is equal to the nth component of the system solution: 
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2) *
ny  is equal to the nth component of the system solution: 
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5. NUMERICAL EXAMPLE 

The system studied is calibration device for high accuracy 
acceleration transducers. This requires working over an object, 
whose mechanical conditions should be close to those of an inertial 
body. Generated vibrations in the surrounding ground from heavy 
mechanical factories located near the object studied can be 
considered as a disturbance.  
Figure 1 gives a physical model of the system studied. The bottom 
platform P is supported at each corner by a set of three elements 
lying on the ground: a spring, a damper and an electromagnetic force 
generator. Another platform B, bearing the calibration device, is 
leant on the first one through similar mechanical elements, except 
for the absence of active generators. 
Two main simplifying hypotheses are assumed in order to obtain a 
suitable lumped parameter model of reasonable complexity: 
1. The ground and platforms P and B are considered rigid bodies. 
Perfect symmetry of the structure and only vertical motion of the 
ground are assumed. 
2. The four electromagnetic actuators at the corners of the lower 
platform P are driven by the same electric current, according to the 
hypothesis that perfect symmetry gives rise to translation motion of 
the object along the vertical axis only. 
The simplified model of system studied is shown on the figure 2. 
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There i is command variable;  z is position along vertical axis, y is 
controlled output and d is disturbance.  
The structural scheme of closed system studied is: 
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The respective transfer functions are: AksA =)( , 
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The full vector of parameters is 10th dimensional : 

[ ]T212121 ,,,,,,,,, ββτ mmkkkkkp FTA= . For 

simplicity of the calculation and without any loss of generality only 
3 of them can be considered as intervals (see Table 1). 

   Center Radius 
k1 N/m p1 14000 3000 
k2 N/m p2 10000 3000 
β1 Ns/m p3 480 100 

Table 1 
The values of other parameters are shown in Table 2. 

  Value 
kA A/V 8.7 
kT Vs3/m 2*105 
kF N/A 10 
τ s 2 

m1 kg 4250 
m2 kg 440 
β2 Ns/m 1.7*104 

Table 2 
The characteristic polynomial of system considered is: 
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The respective matrix to (40) is 
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We substitute the central vector of parameters  
 [ ]T4801000014000=cp  (35) 
in (43) and based on (42) determine the maximum eigenvalue of A 
 5879.0)(max −=cpλ . (36) 
Next we apply the method described in Section 3 and get the outer 
bounds of the exact range of the maximum eigenvalue 
 [ ]40000.0,77599.0'

max −−=λ . (37) 
The exact range is calculated by applying the method from Section 4 
 [ ]4118.0,7647.0*

max −−=λ . (38) 
 

6. CONCLUSION 

The classical criteria of stability (Raus and Frazer-Duncan criteria) 
in interval form based on the interval extensions of the functions 
studied.  
A method proposed in Section 3 obtains the outer bounds '

maxλ . 
reduces to solving the incomplete quadratic system (22). The method 
is applicable if the solution r of system (22) is positive. 
A version of this method for finding the outer solution can be used 

for determining the outer bounds Dil of the derivatives il
l

i D
p
y

=
∂
∂ . If 

these bounds satisfied monotonicity conditions (30) the method, 
proposed in Section 4, can provide the exact solution for the 
eigenvalue range of the maximum eigenvalue. 
A numerical example for analyzing the stability of calibration device 
for high accuracy acceleration transducers illustrates the 
applicability of the above methods to determine the outer bounds 
and the exact range of the maximum eigenvalue of the system  (33). 
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