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Robust stability assessment of linear electrical circuits and control systems under interval parameters
uncertainties can be equated to estimating the eigenvalues of interval matrices. This estimation can be made
using inner and outer bounds or the exact solution for the range of the eigenvalues. In this paper, the
problem of determining inner bounds and the exact solution for the eigenvalues ranges is considered. A
method for computing such bounds is suggested. If certain monotinicity conditions are fulfilled, it can be
extended to provide the exact solution for the eigenvalues range.

An example illustrating the applicability of the methods suggested is provided.

1. Introduction
The problem of estimating the range of the eigenvalues of matrices is closely related to stability
analysis of linear control systems under interval uncertainties of the parameters. There are a lot of
methods for its solution (see [3] — [7]) in the literature. Recently, a method has been proposed for
computing outer bounds on the eigenvalues of matrices with interval components (the real and the
complex case) and these estimations are relatively less conservative as compared to other methods
[1,2].

In this paper, two new methods for handling the interval eigenvalues problem is suggested. The
first provides tight inner bounds. The second determines the exact range of the eigenvalues of the
interval matrix considered. It is however applicable only if certain monotonicity conditions in interval
form are fulfilled. The interval monotonicity conditions are checked using the outer bounds suggested
in[1,2].

The two new methods can be applied for both real and complex eigenvalues, but for simplicity

we will discuss only the real eigenvalue case.



2. Problem statement
The problem statement is defined in [1]. For a clearer presentation of the new methods, the
main points of the problem formulation will be briefly presented here again. Let A be a real n x n
matrix, A - an interval matrix containing A, and A -, A ¥, Ay and R, — the left end, the right end, the
center and the radius of A, respectively. (Here and henceforth, ordinary font letters will denote real
quantities while bold face letters will stand for their interval counterparts.) We consider the following

“perturbed” eigenvalue problem:

(1) Ax=Ax, AcA=[A, A" = Ay + [ -R(A), R(A)]

Note: Each matrix A € A , is non-singular.

Let /1*(A) denote such a real eigenvalue while x(k)(A) = (xl(k)(A), xz(k)(A), e xn(k)(A)) be the
corresponding (real) eigenvector, k = 1, ... , n’, n’ < n. For simplicity of solving the problem we will
make the following assumption (ensuring structural stability of the problem).

Assumption Aj: For any k e K = 1, ... , n’, all K(k)(A) and x(k)(A), corresponding to all

A€ A, remain real.
For simplicity, we shall henceforth drop the index k. On account of Assumption A, the range
2) A={MA):Ae A)
is a real interval.
The interval hull of the interval vector of the eigenvalues of matrix A € A will be note 4™ and
A" will be called exact (interval hull) solution to the interval vector of the eigenvalues of (1). Any
other interval eigenvalue vector Ay such that A" Ao will be referred to as an outer interval vector of
the eigenvalues of (1). Similarly, an interval vector of eigenvalues of matrix A € A - A;, with the
property Ain € A~ will be referred to as inner solution to (1).
In this paper, we suggest two methods for finding an inner bound and exact solution of 4.
To simplify presentation of the method (without any loss of generality), we need a second
assumption. Let the pair (x°, 1% be the solution of the (center, nominal) problem
(3) Apx’ = A0x°

Assumption A;: We assume that the absolute value of the n-th component of x" is the largest

X,

component of the other components, i.e.

) [x0| ="
Note: If p-th component is the largest component, we need to interchange the places of the p-th

and n-th row in A matrix as well as the position of the components x,, and Xp.
Now x’ is normalized by letting

,1#n

(5) =1

Further, we require that (5) be also valid for

(5" xn(A)‘:l, VAe A

Condition (5”) simplifies the method which will be presented in the next section.
We introduce the n-dimensional real vector

(6) y=(Y1, y2’---,yn)
with



7 vi=xi(A),i=1,.., (n-1)
Yo = HA)
Using (7), (1) is rewritten as

aj|yy tap -yt t al,(n—l) Yool ~Yn Yy ta, = 0
(8) app-yp + gy Yy + .t a3 (n=1)Yn-1 ~ Yn-Y2 +ay, =0

where
) aj € A=Ay, Aj')

System (8) is a non-linear (more precisely, a quadratic) interval system because of the products y,.y; in
the first (n-1) equations in (8). Let y,-* denote the range of the i-th component y; (A), A € A, of the
solution to (8). Let Y~ be the vector made up of y; . Consider the following problems:

Problem P; and P,: Find an inner bound and exact solution to (8), for

Va, eAu, i=1..,n; j=1..n.

3. Inner bounds

To obtain inner bounds of the eigenvalues we rewrite system (8) in the form:

n—1
(10a) fi(aij’ yi) = ]Elaij.yj —Yn-yjta, = 0, i=1..,(n-1)
n—1 .
(10b) fi@j.3i)= L aijy = o +amn =0, i=n
]:

We differentiate systems (10a) with respect to a,, to get n” nonlinear systems:

) of;: 0
(an Vi (Vi Pi iy
oa ay; aalm
n-1 9y, dy ady.
J n l —
(11a) §i1'7’im'Ym Z al] aa Vi n3a +5zl§nm 0,i=1,...,(n-1)
Im Im
—1 dy
] —0 i—
(11b) §nl'7im'ym Z alj aa aan +§nl.5nm—0,l—n

Im
where 0§, is the Kronicker symbol i.e. §;; = 1 for i = [ and J; = 0 otherwise while 7;,, = 1 for m < n and

Yim =0 1f m =n. Now we fix all a; and y; , y, , yn in (11) at their centers and solve the resulting system



~ l] . . l' .
(12a)  j=1 aalm aalm aalm
JEIL, i=1,.,(n-1)
n-l o 9 Wn __5 s s 0
(12b) 21 S0 aa,  OnrOnm T OnyYm-Ym
J= Im Im
0
for the derivative ’n . We repeat this n’ times for all [, m = 1,...n. Afterwards we form two
Um
0
matrices A’ and A” in the following way: Let d;,, denote ’n . Then the elements a;,,” and a;,” of A’
a
Im

and A” are defined as follows: if d Im >0 then a;,” = an, Q4w = A, , otherwise ay,’ = ap, ' A = A -

Finally we solve two eigenvalue problems:
(13a) AN.x=Ax
(13b) A”x = Ax
The solution A’ of (13a) determines the lower endpoint and the solution A” of (13b) gives the

upper endpoint of the inner bound sought A;,.

4. Exact solution

In order to determine the exact solution for the range of the eigenvalues of (1) we need to find

. .. 0 . . .
outer bounds on the derivative n_ when all a;; and y; , ¥, , yn in (11) are intervals. The intervals for
a
Im

a;; are known since A; are given intervals. To find the intervals y; corresponding to y, k = 1,...,n, we
have to find an outer solution to (1). We compute such a solution using the method from [1] (or [2] in
the case of complex eigenvalue). Then we solve a linear interval system which results from (11) when

aditionally

(11¢) aijEAij’yke Yk

The system obtained is:



n-1  9y; dy B
J i Yn_ _
élaij' da - (aii ~In) da Vi da, _5il Omn = 5il YimIm
J Im Im l
(14a) j#i i=l,..(m-1)

(14b) a. .. _
=1V aalm aalm

8 Snm =8y Ym-Im

We solve system (13) using the linear version of the method from [1] (or [2]). Thus we obtain the

intervals D! ,i=1,...,n. We are interested only in D" denoted for simplicity D, . Since D, is
Im Im Im Im

obtained from (14) as an outer solution, it is guaranteed to contain the corresponding “point” derivative

djy, for any aij € Aﬁ’yk € yk,i.e.

_p—
(15) d eDlm—[Dl ,D; ]

Im m’> " lm
On account of (15) if

(16a) D, =20

Im

then the derivative dj, is monotoniously increasing, also if

+
(16b) Dlm <0

the derivative d;, is monotoniously decreasing. Now we need the following assumption:

Assumption 3: Either (16a) or (16b) is valid forall [, m =1,....n.

If Assumption 1 is true then we proceed in the same way as in the previous section. We form two
matrices A’ and A” whose elements are expressed by either A, or A;," depending on whether (16a) or
(16b) takes place for /, m combination. We solve the corresponding problems (13a) and (13b) to get
two solutions A’ and 1. Finally, the exact range 4~ of the eigenvalue considered is determined as:

(17) A =\, A7

5. Numerical example

The applicability of the methods will be illustrated by the following example with n = 2:

—Ax, =0

a, X, +a;,.x
(18) 11 712772 ,11 o
A X Ty X = AXy =

Here



0 0

(182) a%)l =-3.8 a%)2 =1.6
ary = 0.6 dny = -4.2
and
(18b) R(A)=[R;j(A)=0.1],i=1,2;j=1,2.

First, we determine the centre of the eigenvalues A° = [-3, -5]" from (3) for centers of matrix A
from the equation

(18¢) det (A’x —A.x) =0

and

Arae = max{A”(A,)}

l

(18d)

For this example, the index k corresponding to A,y is k = 1 and for simplicity we’ll drop it. The
corresponding normalized vector of the centres of the variables from (4) and (5) is:
X0 =11 %"
And following the of Assumption 2 we change the places of p = 1 and n = 2 components of

vector X"so vector Y from (3) become in form:

_ )’1__ Xy
L

0 .
so for A° vector Y is:

o Iyt ] [x¢] fos
20 Y® = = =
o M _wi H

So the nonlinear system according to (8) (resp. (18)) is:

Q1) a,.y,—y,y +a, =0
a,.y, -y, 1+a, =0
We calculate the derivatives
(22) ayz,i=l,2;j=1,2 for a; and y°

E)ai].

using system (12). It can be checked that the derivatives are positive so matrices A’ and A” can be

written in form:



-39 1.5

A'= A —R(A) =
(23) B =105 _a3
(24) A= A" + R(A) = =37 17
Bl 107 -41

The eigenvalues of matrix A’ and A” are:
A =-321118, A”=-2,79
So the inner bounds on the eigenvalue A0 = -3 are:
(25) Ain =[N, A“T=[-3,21118, -2,79]
We can obtain the exact solution of the system (15) if we estimate the sign of the interval

derivatives D,, . These derivatives were computed as explained in Section 4 and they all turned out to

be positive. Thus, for this example the exact range of the eigenvalue centred at A0 = -3 is also given by
the interval (25).

We can compare these results from (25) with results of [1], which gives outer bounds on the
range of the eigenvalue:
(26) Aot =[— 3,259118, —2,74]

As expected, the range (25)is contained in the outer bound (26).

6. Conclusion

A method for computing an inner bound on the range of an eigenvalue of interval matrices has

been suggested. It consist of setting up and solving the real system (12) n* times for Y =d, =d

Im

Im *

Using the sign of d,, the two eigenvalue problems (13a) and (13b) are formed. The corresponding
solutions A’ and A “ of the above problems give the inner bound sought.

A method for computing the exact range of the eigenvalue considered has also been proposed. It
is based on the interval solutions Dy, of systems (14). The method is applicable if Assumption 3 is
valid.

A two dimensional example (18) has been solved which illustrates the applicability of the above

methods.



In order to improve the assessment of the robust stability, the approach herein suggested will be
extended in a subsequent paper to the case where the elements a;; in (1) are functions of independent

parameters.
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OrneHsBaHe Ha poOacTHA YCTOMYMBOCT IOCPEACTBOM BHHITHHA M TOYHH
OIIEHKU Ha 00JI1acTTa HAa U3MEHEHME Ha COOCTBEHUTE CTOMHOCTH HA

WHTEPBAIIHU MAaTPUIA

PeszmowMme

PobacTHara ycTONYMBOCT HA JMHEHHH CJICKTPUYCCKH BEPUTH M CHUCTEMU 3a YIPABICHUC IMPH
HWHTEPBAJIIHA HEOMPEICIICHOCT HA MapaMETPUTE MOXE Ja Ce OIpEACTH 4Ype3 OICHKa Ha COOCTBEHUTE
CTOWHOCTH Ha MaTPHUIM C HHTEPBAIHN KOe(UIINEHTH. Ta3n olleHKa MOXKE J1a c€ HaMepH dpe3 OpeeIsTHe

Ha BBHITHU WM BBTPCUIHU OLCHKMW KAaKTO W Ha TOYHATa CTOMHOCT Ha JIIBaTa U JACHaTa T'paHUIHHA



CTOMHOCTH Ha COOCTBEHHMTE YHCJIa Ha HWHTCPBAJIHUTEC MAaTpHUIH. B macrtosmara cratus ca pasriacaanun
3aJa4YuTC 3a OompeAc/sIHEC Ha BBTPCIHIHUM OLCHKU W OLHCHKM Ha TOYHOTO PCHICHUC 3a JAualla3oHa Ha
M3MEHEHHE Ha COOCTBEHUTE YMCIIA. Hpe,unoxceﬂ € MCTOJ 3a OIPCACIAHC HAa BBTPCIIHUTE OLICHKMU. Toit
MOXKEC Ja 6T),H€ MPUJIOKCH W 3a HaMUpaHE Ha TOYHOTO PCUICHUE, aKO € U3INBbJIHCHO YCJIOBHUETO 3a
MOHOTOHHOCT 3a LCJIMA UHTEPBAJl HAa U3BMCHCHUC Ha MMapaMETPUTE.

[IpakTrdeckata IPUIIOKUMOCT Ha TIPEATIOKEHUTE METOIU € MIIFOCTHPAHa Ype3 YHCIOB IpUMeEp.
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