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Robust stability  assessment of linear electrical circuits and control systems under interval parameters 

uncertainties can be equated to estimating the eigenvalues of interval matrices. This estimation can be made 

using inner and outer bounds or the exact solution for the range of the eigenvalues. In this paper, the 

problem of determining inner bounds and the exact solution for the eigenvalues ranges is considered. A 

method for computing such bounds is suggested. If certain monotinicity conditions are fulfilled, it can be 

extended to provide the exact solution for the eigenvalues range. 

An example illustrating the applicability of the methods suggested is provided. 

 

1. Introduction 

The problem of estimating the range of the eigenvalues of matrices is closely related to stability 

analysis of linear control systems under interval uncertainties of the parameters. There are a lot of 

methods for its solution (see [3] – [7]) in the literature. Recently, a method has been  proposed for 

computing outer bounds on the eigenvalues of matrices with interval components (the real and the 

complex case)  and these estimations are relatively less  conservative as compared  to other  methods 

[1, 2]. 

In this paper, two new methods for handling the interval eigenvalues problem is suggested. The 

first provides tight inner bounds. The second determines the exact range of the eigenvalues of the 

interval matrix considered. It is however applicable only if certain monotonicity conditions in interval 

form are fulfilled. The interval monotonicity conditions are checked using the outer bounds suggested 

in [1, 2]. 

The two new methods can be applied for both real and complex eigenvalues, but for simplicity 

we will discuss only the real eigenvalue case. 

 

 



2. Problem statement 

The problem statement is defined in [1]. For a clearer presentation of the new methods, the 

main points of the problem formulation will be briefly presented here again. Let A be a real n x n 

matrix, A - an interval matrix containing A, and A 
-
, A 

+
, A0 and RA – the left end, the right end, the 

center and the radius of A, respectively. (Here and henceforth, ordinary font letters will denote real 

quantities while bold face letters will stand for their interval counterparts.) We consider the following 

“perturbed” eigenvalue problem: 

(1) A.x = λ.x, A∈ A = [ A-
, A

+
] = A0 + [ -R(A), R(A)]  

Note: Each matrix A ∈ A , is non-singular. 

Let λ*
(A) denote such a real eigenvalue while x

(k)
(A) = (x1

(k)
(A), x2

(k)
(A), … , xn

(k)
(A)) be the 

corresponding (real) eigenvector, k = 1, ... , n’, n’ ≤  n. For simplicity of solving the problem we will 

make the following assumption (ensuring structural stability of the problem). 

Assumption A1: For any k ∈ K = 1, ... , n’, all λ(k)
(A) and x

(k)
(A), corresponding to all 

A∈ΑΑΑΑ, remain real. 

For simplicity, we shall henceforth drop the index k. On account of Assumption A1, the range 

(2) λλλλ*
 = { λ(A): A ∈ Α Α Α Α}  

is a real interval. 

The  interval hull of  the interval vector of the eigenvalues of matrix A ∈ Α Α Α Α will be note λλλλ*
  and  

λλλλ*
  will be called exact (interval hull) solution to the interval vector of the eigenvalues of  (1). Any 

other interval eigenvalue vector λλλλout such that λλλλ*
 ⊂ λλλλout will be referred to as an outer interval vector of 

the eigenvalues of  (1). Similarly, an interval vector of eigenvalues of matrix A ∈ Α Α Α Α - λλλλin with the 

property λλλλin ⊆ λλλλ*
  will be referred to as inner solution to (1). 

 In this paper, we suggest two methods for finding an inner bound and exact solution of λλλλ*
. 

 To simplify presentation of the method (without any loss of generality), we need a second 

assumption. Let the pair (x
0
, λ0

) be the solution of the (center, nominal) problem 

(3) A0.x
0
 = λ0

.x
0
  

Assumption A2: We assume that the absolute value of the n-th component 0

nx  of x
0
 is the largest 

component of the other components, i.e. 

(4) n,x 00

n ≠≥ ixi   

Note: If p-th component is the largest component, we need to interchange the places of the p-th 

and n-th row in A matrix as well as the position of the components xp and xn.  

Now x
0
 is normalized by letting  

(5) 1x0

n =   

Further, we require that (5) be also valid for 

(5’) A∈∀= AAx 1,)(n   

Condition (5’) simplifies the method which will be presented in the next section. 

We introduce the n-dimensional real vector 

(6) y = (y1, y2, … , yn)   

with 



(7) yi = xi(A), i = 1, ... , (n-1)  

 yn = λ(A)   

Using (7), (1) is rewritten as 

(8) 
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where    

(9) aij ∈ Aij = [Aij
-
, Aij

+
]   

System (8) is a non-linear (more precisely, a quadratic) interval system because of the products yn.yi in 

the first (n-1) equations in (8). Let yi
*
 denote the range of the i-th component yi (A), A ∈ A, of the 

solution to (8). Let Y
*
 be the vector made up of yi

*
. Consider the following problems: 

 Problem P1 and P2: Find an inner  bound and exact solution to (8), for 

n,...,1;n,...,1, ==∈∀ jia ijij A . 

 

3. Inner bounds 

To obtain inner bounds of the eigenvalues we rewrite system (8) in the form: 
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 We differentiate systems (10a) with respect to alm to get n
2
 nonlinear systems: 
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where δil is the  Kronicker symbol i.e. δil = 1 for i = l and δil = 0 otherwise while γim = 1 for m < n and  

γim = 0 if m = n. Now we fix all aij and yi , ym , yn in (11) at their centers and solve the resulting system 
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for the derivative 

lm
a

y

∂

∂ n  . We repeat this n
2 

times for all l, m = 1,…,n. Afterwards we form two 

matrices A’ and A” in the following way: Let dlm denote 

lm
a

y

∂

∂ n . Then the elements alm’ and alm” of  A’ 

and A” are defined as follows: if 0≥
lm

d  then alm’ = alm
-
, alm” = alm

+
, otherwise alm’ = alm

+
, alm” = alm

-
. 

Finally we solve two eigenvalue problems: 

(13a) A’.x = λ.x  

(13b) A”.x = λ.x  

The solution λ’ of (13a) determines the lower endpoint and the solution λ” of (13b) gives the 

upper endpoint of the inner bound sought λλλλin. 

 

4. Exact solution 

In order to determine the exact solution for the range of the eigenvalues of  (1) we need to find 

outer bounds  on the derivative 

lm
a

y

∂

∂ n when all aij and yi , ym , yn in (11) are intervals. The intervals for 

aij are known since Aij are given intervals. To find the intervals yk corresponding to yk, k = 1,...,n, we 

have to find an outer solution to (1). We compute such a solution using the method from [1] (or [2] in 

the case of  complex eigenvalue). Then we solve a linear interval system which results from (11) when 

aditionally 
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The system obtained is: 
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We solve system (13) using the linear version of the method from [1] (or [2]). Thus we obtain the 

intervals n,...,1, =i
i
lm

D . We are interested only in n
lm

D denoted for simplicity 
lm

D . Since 
lm

D  is 

obtained from (14) as an outer solution, it is guaranteed to contain the corresponding “point” derivative 

dlm for any 
k

y∈∈
k

yija ,
ij

A , i.e.  
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On account of  (15) if 

 (16a) 0≥−
lm

D   

then the derivative dlm is monotoniously increasing, also if 

(16b) 0≤+
lm

D   

the derivative dlm is monotoniously decreasing. Now we need the following assumption: 

Assumption 3: Either (16a) or (16b) is valid for all     l, m  = 1,...,n. 

If Assumption 1 is true then we proceed in the same way as in the previous section. We form two 

matrices A’ and A” whose elements are expressed by either Alm
-
 or Alm

+
 depending on whether (16a) or 

(16b) takes place for l, m combination. We solve the corresponding problems (13a) and (13b) to get 

two solutions λ’ and λ”. Finally, the exact range λλλλ*
      of the eigenvalue considered is determined as: 

(17) λλλλ*
  = [λ’, λ”]  

 

5. Numerical example 

The applicability of the methods will be illustrated by the following example with n = 2: 
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and 

(18b)  R(A) = [Rij (A) = 0.1], i = 1, 2; j = 1, 2.   

First, we determine the centre of the eigenvalues Λo
 = [-3, –5]

T
  from (3) for centers of matrix A 

from the equation 

(18c) det (A
0
.x – λ.x) = 0  

and    

(18d) 
i

i )}(Amax{ 0

)(

max λλ =
  

For this example, the index k corresponding to λmax is k = 1 and for simplicity we’ll drop it. The 

corresponding normalized vector of the centres of  the variables from (4) and (5) is: 

 X
0
 = [1 x2

0
]

T 
 

And following the of Assumption 2 we change the places of p = 1 and n = 2 components of 

vector X0 so vector Y from (3) become in form:  

(19) 











=












=

λ

x

y

y
Y

2

2

1
  

so for A
0
 vector Y
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So the nonlinear system according to (8) (resp. (18)) is: 
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We calculate the derivatives 
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using system (12). It can be checked that the derivatives are positive so matrices A’ and A”  can be 

written in form: 
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The eigenvalues of matrix A’ and A” are:  

λ’ = - 3,21118,    λ” = - 2,79  

So the inner bounds on the eigenvalue λ0
 = -3 are: 

(25) λλλλin  = [λ’ , λ “] = [- 3,21118,  - 2,79]  

We can obtain the exact solution of the system (15) if we estimate the sign of the interval 

derivatives lmD . These derivatives were computed as explained in Section 4 and they all turned out to 

be positive. Thus, for this example the exact range of the eigenvalue centred at λ0
 = -3 is also given by 

the interval (25). 

We can compare these results from (25) with results of [1], which gives outer bounds on the 

range of the  eigenvalue: 

(26) λλλλout  = [− 3,259118,  − 2,74]  

As expected, the range (25)is contained in the outer bound (26). 

 

6. Conclusion 

A method for computing an inner bound on the range of an eigenvalue of interval matrices has 

been suggested. It consist of setting up and solving the real system (12) n
2
 times for lmlm

lm

dd
a

y
==

∂

∂ nn . 

Using the sign of dlm, the two eigenvalue problems (13a) and (13b) are formed. The corresponding 

solutions λ’ and λ “ of the above problems give the inner bound sought. 

A method for computing the exact range of the eigenvalue considered has also been proposed. It 

is based on the interval solutions Dlm of systems (14). The method is applicable if Assumption 3 is 

valid. 

A two dimensional example (18) has been solved which illustrates the applicability of the above 

methods. 



In order to improve the assessment of the robust stability, the approach herein suggested will be 

extended in a subsequent paper to the case where the elements aii in (1) are functions of independent 

parameters. 
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Оценяване на робастна устойчивост посредством външни и точни 

оценки на областта на изменение на собствените стойности на 

интервални матрици 

 

Р е з ю м е 

 

Робастната устойчивост на линейни електрически вериги и системи за управление при 

интервална неопределеност на параметрите може да се определи чрез оценка на собствените 

стойности на матрици с интервални коефициенти. Тази оценка може да се намери чрез определяне 

на външни или вътрешни оценки както и на точната стойност на лявата и дясната гранични 



стойности на собствените числа на интервалните матрици. В настоящата статия са разгледани 

задачите за определяне на вътрешни оценки и оценки на точното решение за диапазона на 

изменение на собствените числа. Предложен е метод за определяне на вътрешните оценки. Той 

може да бъде приложен и за намиране на точното решение, ако е изпълнено условието за 

монотонност за целия интервал на изменение на параметрите.  

Практическата приложимост на предложените методи е илюстиранa чрез числов пример. 
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