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Abstract: - The paper addresses the stability analysis of linear continuous systems under interval uncertainties.
A new implementation of the interval Frazer-Duncan criterion is suggested to estimate the stability of the

system considered. It is based on obtaining the interval extensions of the coefficients ¢, and «a, in the

characteristic polynomial as well as the determinant A | from the Hurwitz matrix. In general, each of them is

nonlinear function of independent system parameters. The interval extensions studied are determined by using
modified affine arithmetic. Two sufficient conditions on stability and instability of the linear system considered
are obtained. Numerical example illustrating the applicability of the method suggested is solved in the end of

the paper.
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1 Introduction
It is well known that the linear system described by
the characteristic polynomial

q(s)=ays" +a;s"" +..+a, s+a, (1)
is stable if and only if the roots of the respective
characteristic equation

q(s)=0 2
have negative real part [1]. The necessary condition
for system stability is to have positive coefficients
in characteristic polynomial (1), i.e.

a,>0,i=0,1l,.,n. 3)

It is well known [1] that Hurwitz formulates
necessary and sufficient conditions for the stability
of linear systems described by characteristic
polynomial (1). He defines the matrix

‘a, a; as a, .. 0 0 |

a, a, a, ag 0 0

0 a a a5 ... 0 0
H(s)=|0 a, a, a, 0 0 4

0 0 a,,; 0

0 0 n-2 Gy

Based on (4), he introduces A,(s) which is the

determinant of the h™ minor on the main diagonal
of the Hurwitz matrix H(s).

Remark 1: If h=n, then A, (s) is the
determinant of the Hurwitz matrix H(s) and
A,_,(s) denote the determinant derived from H(s)
by deleting the last row and column of H(s) (the
so-called Hurwitz determinants of order » and n-1).

The Hurwitz criterion of stability is based on the
following theorem.

Theorem 1: A necessary and sufficient
condition for stability of the system described by
the characteristic polynomial (1) is:

VA,(s)>0, h=12,.,n. )

In general, all the coefficients a;, i=0,1,...,n
in the characteristic polynomial (1) are nonlinear
functions of independent parameters
P j=12,...,m. Thus, if we evaluate the

uncertainty in real systems, each of it takes their
values in prescribed independent
intervals p ;s J=12,..,m. Then the interval form

of the Hurwitz criterion for stability requires the
verification of all n conditions (5) in interval form.
A better possibility is formulated by Frazer and
Duncan in the following theorem [2]:



Theorem 2: Necessary and sufficient conditions
for stability of the system described by the
characteristic polynomial (1) are:

1) there exists a p=p'ep such that the

characteristic polynomial
4.2 =a (P )s" +a(p)s" +..+a, (P )s+a, ()
(6a)
is stable and

2) the coefficients a,, a, and the Hurwitz

determinant of order n-1 are different from zero
over the parameter box, that is

ay(p)#0
a,(p)=0 , pep. (6b)
An—l (p ) #0

Based on the above theorem and some well-
known facts related to the stability of the
polynomials — positiveness of the polynomial
coefficients (necessary condition, e.g. [1]),
positiveness of all Hurwitz determinants (necessary
and sufficient condition, e.g. [1]) — the following
result is straightforward [2]:

Theorem 3: Necessary and sufficient conditions
for stability of the system described by the
characteristic polynomial (1) are:

1) the nominal system (1) (with p° being the
centre of p) is stable and

2) the coefficients a,, a, and the Hurwitz

determinant of order n-1 are all positive in p, i.e.
a,(p)>0
a,(p)>0 ,3a pep. @)
Anfl(p) > O

Since the verification of Condition 1 of
Theorem 2 presents no difficulties we shall
henceforth assume that it is fulfilled and we shall
concentrate on checking Condition 2.

2 Problem formulation
Let f(p) denote any of the functions a,(p),
a,(p) and A, (p). Thus, we have to solve for

each of these functions the following problem:
Problem P1: Check that

f(p)>0, pep. ®)
There are various ways to verify (8). The
simplest approach is to use some interval extension

F(p)= [E f] of the function f(p) in p.
Theorem 1.1 [2] states that the interval extension
F(p) always contains the range f(p)=[/f " 7*]
of the function f(p)

F(p)= f(p). €))

Hence (8) is satisfied if £ >0.

Based on Theorem 2 and inclusion property
(9), the following results are obvious:

Corollary 1: (Sufficient condition for stability)
If for all end-points £, >0 of the functions f, (p)

F,>0, g=123,.., (10)

then the system considered is stable.

Corollary  2: (Sufficient condition for
instability) If at least one of the endpoints

F,<0, g=1,2,3,..., (11)
then the system considered is not stable.

Various interval extensions can be used in
implementing Corollaries 1 and 2: natural
extension, mean-value form extension, extension
using the global optimization methods [2]. The
natural extensions are determined using the
standard interval arithmetic [3]. Unfortunately this
extension is the widest compared to the other types
of extensions. The improved interval linearization
[5] leads to shorter bounds of the considered
extensions. Better results could be obtained if an
affine arithmetic is applied to calculate the interval
extensions F(p) [4]. The shortest interval

extensions are obtained using the modified interval
arithmetic which will be described briefly in the
next section. This technique has been recently
proposed [11] for the stability analysis of linear
interval systems with generalization of the known
Raus criterion.

The paper is organized as follows. The
modified affine arithmetic is described in the next
section. The method for obtaining the interval
extensions of the functions a,(p), a,(p) and

A,_(p) using G-intervals is presented in Section

4. Numerical example illustrating the applicability
of the new technique for stability analysis of linear
interval systems by Frazer-Duncan criterion is
solved in Section 5. The paper ends up with
concluding remarks in the last Section 6.

3 Modified affine arithmetic

Most often, the functions f(p) are rational
functions. Thus, we will define the main
mathematical operations for these functions. To
maintain completeness we start with the definition
of the basic conception, the so-called generalized
interval.

Definition 1: A generalized (G) interval X of
length £ is defined as follows:



k
X:x0+2xl.el. (12)
i=1
where x;,, i=0,1,..,k, are real numbers while e,
are unit symmetrical intervals, i.e.

e, =[-1,1]. (12a)

Let

~ k'

Y:y0+zyiei (13)
i=1

be a G-interval of length k. To simplify
presentation, we assume that & =k where & is the
length of X (otherwise, we add zero components
cither in X or Y depending on whether £ is

smaller or larger than k).

In general, each of the rational functions can be
composed of the simple mathematical operations as
follows.

Linear combination. Let X and Y be two G-
intervals of length &k given by (12) and (13). Also,

let «,f € R. Then the linear combination of X
and Y, denoted o X + £ Y, is another G-interval

Z of the same length k if its elements z, are
computed as follows:

z;=ax;,+ Py, i=0,1,.,k. (14)

As a corollary we have the definitions of
addition of two G-intervals (a¢=pf=1) and
subtraction of two G-intervals (o =1, f =-1).

Now we shall define the operations of
multiplication and division of G-intervals. Unlike
the linear combination, the operations of
multiplication and division of G-intervals result in a
G-interval of increased length.

Multiplication. The product XY of two G-
intervals X and Y of length £ is a G-interval Z
of length £ + 1 if the components z, of Z are
computed as follows:

M=i|xi|,v=i|yi|,020.5ixiyi, (152)
i=1 =1 i1

Zg = XYVo +C,2; = Xo¥; + YoX; i =1,....k (15b)
Zopsl =uv—|c|. (15¢)
It has to be noted that the multiplication (15)
leads to smaller overestimation as compared with
the multiplication used the standard affine
arithmetic in [6] because of the “correction”

introduced by the additional term c.
To define the operation of division, we have to

consider the operation reciprocal 1/Y of a G-
interval. To do this we need some definitions. The

G-interval X is reduced to the corresponding
(ordinary) interval xz[y_c, x] if the summation
operations in (12) are carried out. By abuse of

language, we shall also say that X does not
contain zero (is positive or negative) if the
corresponding reduced interval x does not contain
zero (is positive or negative).

Reciprocal. Let Y be a G-interval of length &
that does not contain zero. Then the reciprocal
Z =1/Y is another G-interval of length k+1 if its
components z, are computed as follows:

s==Ulyyly =—=1/s,3,==»,  (16a)

Yo, i y>0
Vs = = s (16b)
yi, ¥y<0
S=y, —sy,, 7:1/2—32, (16¢)
fo=05(F+7) 1 =F~1o, (16d)
Z():SyOJrfO) Zi:Syiai:la"'ﬂka (166)
Zm+l:rf (16f)

when y and y are the endpoints of the reduced

interval y.

The above formulae follow directly from the
general approach for enclosing univariate functions
[7]-[10] by a linear interval form.

The division rule given below is based on the
expression

z (Vox; —Xo¥:)e;

X7 =20 = — =
Y
© y et D ye) (17)
i1
—c+l i(x —-cy,)e
f,’ p=) i yl i

if(0e?).

Division. Let X and Y be G-intervals of
length k and 0 ¢ Y . Then the division X /Y isa G-
interval Z of length k+2 whose components z; are
computed as follows:

0=1/Y, (18a)

c=xy/yy, Po=0,

, 18b

pi=x—cy;, i=L.,k (180)

P=Y"pe. (18¢)
i=l

V=0-P, (18d)

Zog=c+Vvy, z; =V, i=L..,k+2 (18e)

It is seen that the division increases the length



of the resulting interval Z by two because of the
reciprocal (18a) and multiplication (18d), each
operation adding one more element to the initial k&

elements of X or Y .

4 Interval Frazer-Duncan
criterion with G-intervals

In this section, we are interested in solving the
Problem P1 for all the functions a,(p), a,(p) and
A,_(p) . A method capable of finding the interval
extensions F(p) of functions f(p), pep that
uses affine arithmetic will be suggested here. This
method consists of the following:

1) The nonlinear functions a,(p) and a,(p)
are given in explicit form of the vector of system
parameters p.

2) The nonlinear function A, (p) is
dependent on the vector of system parameters p in
implicit form. For this reason, we work out the
determinant A, , and get the expression of the
respective nonlinear function A,_(p) in explicit
form of  the
D;» j=12,...m.

To find the interval extensions considered we

do the following: first, we present the components
of parameter vector p by generalized intervals

p‘/:p?—i_zpjses’ es :[_1’ 1] (19)
s=1

Then we apply the necessary simple mathematical
operations of modified affine arithmetic (described
in previous Section 3) to make a linearization of the
resulting functions f(p). Thus, we get the interval

independent parameters

extensions in the following form:
ﬂf
F(p)=fo+) fre; e;=[-1, 1] (20)
j=l
where the lengths 7, of the respective G-intervals
depend on the type of nonlinearity of the functions
ay,(p), a,(p) and A, (p) with respect to the
independent parameters D> J= 1,2,....,m.
The G-intervals (20) reduce to the
corresponding (ordinary) intervals

F(p)=fy+[-r,, r]=|F F| 1)
where
=3l (2la)
j=1
F=05(f,~r,), 21b)

F=0.5(fy+7,) (21c¢)

if the operations in (20) are carried out.

At the end, we make the following conclusions
based on the Theorem 2 Corollaries:

1) If all F, >0, g=1,2,3, then the system
considered is stable.

2) If at least one of the endpoints
I?q <0, ¢=1,2,3, then the system considered is
not stable.

5 Numerical example

The applicability of the above technique will be
illustrated by an example assessing the stability of
the linear interval parameter system described by
characteristic polynomial (1). In this example the
order n of the associate characteristic polynomial is
n=>5,1e.

q(s)=ays’ +as* +a,s’ +ays® +a,s+as (22)
where

a,(p) =187
a,(p) =80869+0.044p,

a,(p)=0.044p, +2.556p, +10.5p, +4.064*10’

a;(p)=10.5p, +23897p, +340p, +107 p, p; +
+3.638%10°

a,(p)=340p, +2.139%10° p, +107* p, p, +
+0.02p, p, +88.74%10°

as(p)=0.02p, p, +5.218%10° p,

It is seen from (22a) that the vector of
parameters p is 3-dimensional, i.e.

(22a)

pP= [Pl P2 D3 ]T- (23)

The respective vectors of centers and radii are

p° =[14000 10000 480] (23a)
and

R(p)=[3000 3000 100]". (23b)

We formulate the Hurwitz determinant
A,_, =A, of order 4 and substitute (22a) in it. As a

result we get A, as explicit function of the system
parameters p;, j=123.F irst, we determinate the
values of the functions a,(p), a,(p) and A,_,(p)
for p=p°. The results of the calculations are:
ao(p’) =187
a,(p®)=as(p®)=5.2203*10"" . (24)
A, (p")=A,(p°)=8.0770*10*

Then, we apply the simple mathematical
operations “multiplication” and “linear



combination” (in two cases — “addition” and
“substraction”) and get the following left bounds of
interval extensions of the functions a,(p), a,(p)

and A, (p) when pep:
a, =187
a,=as=3.6526%10" . (25)
A, =A, =8.0234%10%

As it is seen from (24) the nominal (p=p°-
the centre of p) system described by the
characteristic polynomial (22) is stable. It follows
from (25) that the left bounds of all determined
interval extensions are positive. Thus, based on
Corollary 1 of Theorem 3 the system described by
the characteristic polynomial (22) is stable.

6 Conclusion

A new interval technique for stability analysis
of linear interval systems described by the
characteristic polynomial (1) has been suggested. It
is based on computing the interval extensions of the
functions a,(p), a,(p) and A, (p) when the
coefficients a,, i=0,1,...,n in the characteristic
polynomial (1) are nonlinear functions of
independent system parameters p;, j=1,..,m
which take their values in prescribed intervals
pi»j=12,...m. The interval extensions
considered are determined using modified affine
arithmetic which provides the shortest outer bounds
of the ranges studied. Two sufficient conditions for

stability of the system considered are defined. A
numerical example is solved at the end of the

paper. In the example, the nominal system ( p = p° -
the centre of p) is stable and all the interval
extensions of the elements of the functions a,(p),
a,(p) and A,_ (p) are positive. Hence the system
under consideration is stable.
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