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Abstract

The paper addresses the stability margin assessment for linear systems
under interval parameter uncertainties. The original robust stability problem is
initially transformed into an equivalent problem of estimating the eigenvalues
ranges of matrices whose elements are non-linear functions of independent
interval parameters.

A new algorithm for finding the exact value of stability margin (within error
bounds) is suggested. It is based on the use of the inner and outer bounds on
the right ends of the eigenvalue considered in order to determine as a narrow
initial uncertainty region as possible. Then the constraint propagation
approach is applied. It consists of two steps. First, one sweep of constraint
propagation, relative to the interval components of the eigenvalue —
eigenvector pair, is carried out, keeping the parameter intervals fixed. Next, a
second sweep of constraint propagation, relative to the components of the
interval parameters, is applied, keeping the reduced intervals of the

eigenvalue — eigenvector pair fixed.



A numerical example, illustrating the applicability of the algorithm suggested,

is solved at the end.

1.INTRODUCTION

Itis well known that stability analysis of linear circuits and systems under
parameter uncertainties can be formulated as the problem of estimating the
range of the eigenvalues of interval matrices (see e.g. [3] — [9]) because the
stability margin of the curcuit studied is equal of the right end of the
eigenvalue which is most to the right from the imaginary axis of the complex
plane.

Let A be a real nx nmatrix, A - an interval matrix containing A, and
A", A", A, and R,—the left end, the right end, the center and the radius of

A, respectively. We consider the following “perturbed” eigenvalue problem:

Ax=Ax, Ae A=[A, A"]=A,+[-R,, R,]. (1)

Ordinary letters will denote real quantities while bold face letters will stand for
their interval counterparts.
Each matrix ae ais non-singular.

For simplicity, the elements 4, of interval matrix A can be considered as

independent interval, but in general, they are non-linear functions of m

parameters, which take their values within prescribed intervals, i.e.

a;(p)=a;(p,....py)s Lj=1,..n

2
p,ep,l=1..m @)

then the eigenvalue problem considered transforms as follows:



A(p)x=Ax, pep. (3)
Each matrix a(p), pe pis non-singular.

Some of the known methods for assessing the stability margin in the above
formulation are based on the solution of the following sub-problems:

(i) find an inner bound on the right end of the range for the eigenvalue
considered,

(ii) find an outer bound on the right end of the range for the eigenvalue
considered as well as outer bounds on the right ends of the components of
the associated eigenvector;

(iii) the final solution of the problem is then found by determining the exact
right end of that eigenvalue range that is most to the right.

Each of these sub-problems is solved for independent interval elements of
matrix A (problem (1)) in [3], [4] and [6], as well as in the case of dependent
interval elements of matrix A (problem (3)) [5].

Using the above inner and outer bounds it is suggested a new algorithm for
obtainding the exact stability margin as a narrow initial uncertainty region as
possible. This algorithm is based on an approach called constraint
propagation.

The present paper discusses the problem of determination the corresponding
exact right ends of the eigenvalues of matrices whose elements are non-
linear functions of independent interval parameters. The problem statement is
defined in Section 2. A new constrain propagation algorithm for obtaining the
exact values of the right ends of the considered intervals is suggested in

Section 3. It is generalization of the constraint propagation approach



suggested in [7]. The algorithm procedure includes two steps. First, it is
applied the constraint propagation technique relative to the interval
components of the eigenvalue-eigenvector pair, keeping the parameter
intervals fixed. Second, the same technique, relative to the components of the
interval parameters, is carried out, keeping the reduced intervals of the
eigenvalue-eigenvector pair fixed. A numerical example, illustrating the
simplicity and applicability of the algorithm suggested, is considered in

Section 4. The paper ends with conclusion remarks in Section 5.

2. PROBLEM STATEMENT
The solution of initial basic eigenvalue problem (3) will be found making the

following transformation. Let the system (3) is written for the central
parameters vector po

A(p”)x=Ax. (4)

We will estimate only the interval of the maximum eigenvalue of

matrix A(p”) . In general, the new algorithm suggested later can be applied

for any other real eigenvalues.

Let

A(p*) =max (2 (p*)), k=1,...n

* T
is @ maximum eigenvalue while X = (Xl, Xos wee s xn) is the corresponding

eigenvector. We make the following assumption (ensuring structural stability

of the problem).



Assumption AT: Let A (p) and x (p), corresponding to all p€ p, remain

real.

On account of Assumption A1, the range

A" ={A(p): pe p} (6)

is a real interval.
Without any loss of generality we need a second assumption. If the pair

«°, A is the solution of (4) then

Assumption A2: We assume that the absolute value of the sth component

0
X

0, .
of vector X is the largest component of the other components, i.e.

0
X

N

Ll iEs (7)

i

Now x° is normalized through

x; =1, ®)
Further, we require that (8) be also valid for

x,(p)=1,pep. (8a)
We introduce the n-dimensional real vector

y=(3 s s 20) (©)
with

y,=x;(p),i=1,...,n, n#s
y, = A(p)

Using (10), the eigenvalue problem (3) is



2.a;(p)y; =y yi+a(p)=0,i=L..,n, i#s
=1

I#s

ios (11)

Then we obtain the exact value of the stability margin considered applying the
constraint propagation approach to the non-linear system (11). (The essence
of this approach is described in [1] and [7].)

In the framework (11), the constraint propagation technique consists in
successive satisfaction of some constraints, given as equalities, and
reduction of the initial region (box) of uncertain interval parameters. In the
context of the problem considered, the constraints are given by the

components of the interval eigenvalue problem under consideration.

3. ANEW CONSTRAIN-PROPAGATION ALGORITHM
This algorithm find the exact value of the stability margin within error bounds.
It based on the fact that stability margin is equal of the right end of the

eigenvalue range that is most to the right.
Let the elements of matrix A(p) are non-linear function of independent

interval parameters p;, [=1,...m following (2). We write them in the

following linear form with respect to the elements of vector p [2]:
aij(P)Zaijp‘Fbija PEPD (12)

and substitude in system (11)



n

=

n

I#S

m

Zbg+204jzpz}yj—ysy,-+{b +2 szpz}=0ai=1,---an,i¢8
=1

=1

. (13
; Z szl}yj ¥, { Z szpz} 19
i;ts_

Then we simplify the non-linear system (13) with respect to the components

of parameter vector p and get the following system

;gﬂpl =f. pep,i=l..n (14)

where

@, Z a,y,, i=1..n

];ts

S, =-b, —Zbl.jyj +y.y, i=lL..,n, i#s

J=1
J#ES

(14a)

fs :_bss _stjyj +ys
j=1

Jj#S

The system (14) is linear with respect to the components of the parameter

vector p. The known methods solved the non-linear system with interval

coeffcians (11) with respect to the components of interval vector y [5, 7]. Now

we

will suggest the algorithm, based on constraint propagation approach, to

obtain the same components of y using the linear parameter system (14) yet.

It consists of two iterative procedures which call each others recursively. It

can

be described with the following way. The main procedure includes 3

steps.



Procedure 1

Step1: We start with the initial uncertainty region — interval vector (see Steps

1 and 2in [7])

y=y"=y", (15)
where y* is an interval vector whose components are the outer bounds of
y(p), PE€ p, calculated by the method suggested in [5].

We substitute the sth component of y with interval
. +
— — in out
ys_zs_|:(ys) ’ (S ) :| (16)

in

- ut Y
where (ys ) and ()’f t) are the right ends on the inner and outer bounds

on the exact range y’, calculated by methods suggested in [5].

Step 2: We apply the constraint propagation procedure (Procedure 2 from [5])
to obtain the components of the interval vector y consists of the eigenvalue
considered and the components of the respective eigenvector, keeping the
parameter intervals fixed.

The stop criteria is two serial values of the interval components of vector y to

be close enough.

Step 3: We consider the components of vector y as an independent intervals

and apply the constrain propagation to the linear system (14) with respect to



the independent components of parameter vector p. Thus we calculate the
new components of the interval vector p as follows:

Fori=1tondo

fi _Zgilpl
[=1
() Iq
p, = , q=1...,n
‘ g, (17)
p,=p,Np,

End
The stop criteria is two serial values of the interval components of vector p to

be close enough.

Go to Step 2.

In the first iteration of the procedure we start with initial vector y(o), calculated

by (15) and (16), but in the other iterations we use the components of interval

vector y obtained as a result in the end of the Step 3.
The Procedure 1 is valid for all eigenvalues of interval matrix A(p), p€ p but

to simplify the presentation we described it only for the maximum one.

The right end of the eigenvalue (the sth component y,) of the interval vector

¥, which is most to the right is equal to the stability margin of the analyzed

system.

4. NUMERICAL EXAMPLE



The circuit studied is shown in Fig. 4.1. Assuming that R;e R; ,Le L,CeC,
T |
the vector of parameters is p = (R.R,.R;,L,C)" with R, = [97, 103],

R, =[19s, 202], R, =[99.999, 100.001], L =[4.9999, 5.0001]mn

C = [238, 267]MF. Such systems arise in tolerance analysis of linear AC

electric circuits.

I3

Figure 4.1

We apply the Procedure 1 to obtain the stability margin of the circuit
analyzed.

First, in Step 1 we find the initial interval vector y° according to (15) and (16)
in the following way.

It is seen from the example that the expressions (2) are non-linear functions

of 5 parameters

R +R, 1 1
B Lk Lk R, M=|71
A= 1 i k=1+ : 6 (18)
Ck R,Ck

The componenets of the initial centre and radii parameter vectors are:

pgmrt = (100 200 100 5 *10_3 250*10-6 )T ; (1 ga)

Rpg., =(3 2 0001 0.01%10° 12%10°)" . (19b)



The linearization of «;(p) is made by the method suggested in [2] using (19).
So we get the a;(p) as the affine functions:

a1 = -0.67 p+ 0.0001633p2 - 1.334p3 + 400.009[94 -200.087 +[-0.0225 0.0225]

=0.0022232p, —0.004446p, +1.3334p ~1.3338+107%[-6.78 6.78
2 3 4

“12 (20)

ay, =-44512p, +8.9024 p, —5.34*10%5 +2.6703%10° +[-3.0127 3.0127]

dnn = 0.0446p2 + 0.0446p3 +0.535%10° Ps— 40.085 +[—0.0245 0.0245]

The numbers of the maximum eigenvalue and the maximum component of its
eigenvector are k=2 and s =2, respectively. Hence, we are interested in

the second component of interval vector y. According to (9) the vector y is:
_ | YL | *2
YTy, i (1)
0 _ ylo ~ xg | —0.00366795
A BN 50 1| -18.244878 |- (22)

Applying the method suggested in [5] we get the following outer bounds of the

eigenvector considered components

ot [—0.0037587 —0.0035775]
b ’ (23)
[-19.4124 -17.08791]
the right end of the inner bound on the eigenvalue considered
2\t .\t LNt
(2") =(y) =(»¥) =-17.1669 24

and the right end of the exact range

(ﬂexact )+ _ (yexact )+ —_17.1669 (25)

N



Then based on (15) and (16) and using (23) and (24) we get the initial interval

vector

[[-0.0037587 ~0.0035775]
| [-17.1669 -17.08791] | (26)

(0)
y

Second, we repeat the Steps 2 and 3 from the Procedure 1 until we obtain

two serial values of the interval components of vector p to be close enough

with the accurancy £=10". The final componenets of the centre and radii

parameter vectors are reached on the 6th iteration and they are following:

T
)

pgmlz(loo 200 100 5*10° 250*10'6) (27a)
RpFlm,=(O.01327 0.0066612 0.001 0.01¥10° 0.00577889*10'6)T. (27b)
Thus the right end of the sth component of the vector yis

+
(v,) =-17.1669 (28)
But

+ + AT
(o) =) =(2") 29
then
() =(a") =-17.1668 (30)

It is obvious from (25) and (30) that the right ends of outer bound and of the
exact range considered, calculated by the new algorithm and the method
from [5], are equal. Therefore, the new method suggested determines the
right end of the stability margin of the circuit studied.

The calculation times for this example are shown in Table 1.



Table 1

Step 1 in Procedure 1
Whole the Procedure 1
(methods from [5])

0.17s 0.22s

5. CONCLUSION

The new algorithm suggested obtains the exact value of the stability margin
within error bounds. Some of the known methods for assessing it are based
on determining the exact ranges and the respective inner and outer bounds of
the considered eigenvalue-eigenvector pair solving the non-linear system (11)
with respect to the components of the interval vector y. Unlike this approach,
a new constraint propagation algorithm which applies to the linear parameter
system (14) is proposed with respect to the components of the parameter
vector p. The algorithm suggested obtains directly the right end of the exact
range of the eigenvalue analyzed and thus determines the exact value of the

stability margin.
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