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Abstract  

The paper addresses the stability margin assessment for linear systems 

under interval parameter uncertainties. The original robust stability problem is 

initially transformed into an equivalent problem of estimating the eigenvalues 

ranges of matrices whose elements are non-linear functions of independent 

interval parameters. 

A new algorithm for finding the exact value of stability margin (within error 

bounds) is suggested. It is based on the use of the inner and outer bounds on 

the right ends of the eigenvalue considered in order to determine as a narrow 

initial uncertainty region as possible. Then the constraint propagation 

approach is applied. It consists of two steps. First, one sweep of constraint 

propagation, relative to the interval components of the eigenvalue – 

eigenvector pair, is carried out, keeping the parameter intervals fixed. Next, a 

second sweep of constraint propagation, relative to the components of the 

interval parameters, is applied, keeping the reduced intervals of the 

eigenvalue – eigenvector pair fixed.   



A numerical example, illustrating the applicability of the algorithm suggested, 

is solved at the end.  

 

1. INTRODUCTION 

It is  well  known  that  stability  analysis  of   linear circuits and systems under 

parameter uncertainties can be formulated as the problem of estimating the 

range of the eigenvalues of interval matrices (see e.g. [3] – [9]) because the 

stability margin of the curcuit studied is equal of the right end of the 

eigenvalue which is most  to the right from the imaginary axis of the complex 

plane. 

Let A be a real n x n matrix, A - an interval matrix containing A, and 

0, , andA A A R
− +

A – the left end, the right end, the center and the radius of 

A, respectively. We consider the following “perturbed” eigenvalue problem: 

_

0, [ , ] [ , ]Ax x A A A A R Rλ += ∈ = = + − A AA . (1) 

Ordinary letters will denote real quantities while bold face letters will stand for 

their interval counterparts.  

Each matrix A ∈ A is non-singular. 

For simplicity, the elements 
ija  of interval matrix A can be considered as 

independent interval, but in general, they are non-linear functions of m 

parameters, which take their values within prescribed intervals, i.e. 

1( ) ( , ..., ), , 1,...,

, 1, ...,

ij ij m

l l

a p a p p i j n

p l m

= =

∈ =p
. (2) 

then the eigenvalue problem considered transforms as follows: 



( ) ,A p x x pλ= ∈ p . (3) 

Each matrix ( ),A p p ∈ p is non-singular. 

Some of the known methods for assessing the stability margin in the above 

formulation are based on the solution of the following sub-problems:  

(i) find an inner bound on the right end of the range for the eigenvalue  

considered; 

(ii) find an outer bound on the right end of the range for the eigenvalue 

considered as well as outer bounds on the right ends of the components of 

the associated eigenvector; 

(iii) the final solution of the problem is then found by determining the exact 

right end of that eigenvalue range that is most to the right. 

Each of these sub-problems is solved for independent interval elements of 

matrix A (problem (1)) in [3], [4] and [6], as well as in the case of dependent 

interval elements of matrix A (problem (3)) [5]. 

Using the above inner and outer bounds it is suggested a new algorithm for 

obtainding the exact stability margin as a narrow initial uncertainty region as 

possible. This algorithm is based on an approach called constraint 

propagation.  

The present paper discusses the problem of determination the corresponding 

exact right ends of the eigenvalues of matrices whose elements are non-

linear functions of independent interval parameters. The problem statement is 

defined in Section 2. A new constrain propagation algorithm for obtaining the 

exact values of the right ends of the considered intervals is suggested in 

Section 3. It is generalization of the constraint propagation approach 



suggested in [7]. The algorithm procedure includes two steps. First, it is 

applied the constraint propagation technique relative to the interval 

components of the eigenvalue-eigenvector pair, keeping the parameter 

intervals fixed. Second, the same technique, relative to the components of the 

interval parameters, is carried out, keeping the reduced intervals of the 

eigenvalue-eigenvector pair fixed. A numerical example, illustrating the 

simplicity and applicability of the algorithm suggested, is considered in 

Section 4. The paper ends with conclusion remarks in Section 5. 

 

2. PROBLEM STATEMENT 

The solution of initial basic eigenvalue problem (3) will be found making the 

following transformation. Let the system (3) is written for the central 

parameters vector 
0

p  

0
( )A p x xλ= . (4) 

We will estimate only the interval of the maximum eigenvalue of 

matrix
0

( )A p . In general, the new algorithm suggested later can be applied 

for any other real eigenvalues.  

Let  

( ) nkpp k ,...,1,)(max)(
00* == λλ   

is a maximum eigenvalue while ( )
T*

1 2, , ... , nx x x x= is the corresponding 

eigenvector. We make the following assumption (ensuring structural stability 

of the problem). 



Assumption A1: Let )(
*

pλ  and 
*
( )x p , corresponding to all p ∈ p , remain 

real. 

On account of Assumption A1, the range 

{ }*
( ) :p pλ λ= ∈ p  (6) 

is a real interval. 

Without any loss of generality we need a second assumption. If the pair 

0 0
( , )x λ  is the solution of (4) then 

Assumption A2: We assume that the absolute value of the sth component 

0

sx  of vector 
0

x  is the largest component of the other components, i.e. 

0 0
,s ix x i s≥ ≠  (7) 

Now 0x  is normalized through  

0
1sx = . (8) 

Further, we require that (8) be also valid for 

( ) 1,sx p p= ∈ p .    (8a) 

We introduce the n-dimensional real vector 

( )
T

1 2, , ... , ny y y y=  (9) 

with  

( ), 1,..., ,

( )

i i

s

y x p i n n s

y pλ

= = ≠

=
 (10) 

Using (10), the eigenvalue problem (3) is 

 



1

1

( ) ( ) 0, 1,..., ,

.

( ) ( ) 0

n

ij j s i is
i
i s

n

sj j s ss
i
i s

a p y y y a p i n i s

a p y y a p

=
≠

=
≠

− + = = ≠

− + =

∑

∑
 (11)

 

Then we obtain the exact value of the stability margin considered applying the 

constraint propagation approach to the non-linear system (11). (The essence 

of this approach is described in [1] and [7].) 

In the framework (11), the constraint propagation technique consists in 

successive satisfaction of some constraints, given as equalities, and 

reduction of the initial region (box) of uncertain interval parameters. In the 

context of the problem considered, the constraints are given by the 

components of the interval eigenvalue problem under consideration. 

  

3. A NEW CONSTRAIN-PROPAGATION ALGORITHM 

This algorithm find the exact value of the stability margin within error bounds. 

It based on the fact that stability margin is equal of the right end of the 

eigenvalue range that is most to the right.  

Let the elements of matrix ( )A p  are non-linear function of independent 

interval parameters , 1,...,lp l m=  following (2). We write them in the 

following linear form with respect to the elements of vector p [2]: 

( ) ,ij ij ija p p pα= + ∈b p  (12) 

and substitude in system (11) 



1 1 1

1 1 1

0, 1,..., ,

0

n m m

ij ijl l j s i is isl l
i l l
i s

n m m

sj sjl l j s ss ssl l
i l l
i s

p y y y p i n i s

p y y p

α α

α α

= = =
≠

= = =
≠

   
+ − + + = = ≠      

   
+ − + + =      

∑ ∑ ∑

∑ ∑ ∑

b b

b b
. (13) 

Then we simplify the non-linear system (13) with respect to the components 

of parameter vector p and get the following system 

1

, , 1,...,
m

il l i l l

l

p p i n
=

= ∈ =∑ g f p
, (14) 

where 

. 

1

1

1

, 1,...,

, 1,..., ,

n

il isl ijl j

j
j s

n

i is ij j s i

j
j s

n

s ss sj j s

j
j s

i n

i n i s

α α
=
≠

=
≠

=
≠

= + =

= − − + = ≠

= − − +

∑

∑

∑

g y

f b b y y y

f b b y y

 (14a) 

The system (14) is linear with respect to the components of the parameter 

vector p. The known methods solved the non-linear system with interval 

coeffcians (11) with respect to the components of interval vector y [5, 7]. Now 

we will suggest the algorithm, based on constraint propagation approach,  to 

obtain the same components of y using the linear parameter system (14) yet. 

It consists of two iterative procedures which call each others recursively. It 

can be described with the following way. The main procedure includes 3 

steps. 



 

Procedure 1 

 

Step1: We start with the initial uncertainty region – interval vector (see Steps 

1 and 2 in [7]) 

outyyy == (0)
, (15) 

where outy  is an interval vector whose components are the outer bounds of  

( ),y p p∈ p , calculated by the method suggested in [5]. 

We substitute the sth component of  y with interval 

( ) ( ) 





==

++ out
s

in
sss yy ,zy

, (16) 

where ( )+in

sy  and ( )+out

sy  are the right ends on the   inner and outer bounds 

on the exact range *

sy , calculated by methods suggested in [5]. 

 

Step 2: We apply the constraint propagation procedure (Procedure 2 from [5]) 

to obtain the components of the interval vector y consists of the eigenvalue 

considered and the components of the respective eigenvector, keeping the 

parameter intervals fixed.   

The stop criteria is two serial values of the interval components of vector y  to 

be close enough. 

 

Step 3: We consider the components of vector y as an independent intervals 

and apply the constrain propagation to the linear system (14) with respect to 



the independent components of parameter vector p. Thus we calculate the 

new components of the interval vector p as follows:  

 For i = 1 to n do 

1

( )

( )

, 1...,

m

i il l

l
l qi

q

iq

i

q q q

q n

=
≠

 
 −
 
  

= =

∩

∑f g p

p
g

p = p p

 (17) 

   End 

The stop criteria is two serial values of the interval components of vector p to 

be close enough. 

 

Go to Step 2. 

 

In the first iteration of the procedure we start with initial vector 
(0)y , calculated 

by (15) and (16), but in the other iterations we use the components of interval 

vector y obtained as a result in the end of the Step 3. 

The Procedure 1 is valid for all eigenvalues of interval matrix ( ),A p p∈ p  but 

to simplify the presentation we described it only for the maximum one.  

The right end of the eigenvalue (the sth component sy ) of the interval vector 

y, which is most to the right is equal to the stability margin of the analyzed 

system. 

 

4. NUMERICAL EXAMPLE 



The circuit studied is shown in Fig. 4.1. Assuming that iiR R∈ , L∈L , C∈C , 

the vector of parameters is ( )1 2 3

T
, , , ,p R R R L C=  with [ ]1 97, 103=R , 

[ ]2 198, 202=R , [ ]3 99.999, 100.001=R , [ ] H4.9999, 5.0001 m=L , 

[ ]238, 267 µF=C . Such systems arise in tolerance analysis of linear AC 

electric circuits. 
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Figure 4.1 

We apply the Procedure 1 to obtain the stability margin of the circuit 

analyzed.  

First, in Step 1 we find the initial interval vector 0y  according to (15) and (16) 

in the following way. 

It is seen from the example that the expressions (2) are non-linear functions 

of 5 parameters 

3

2

3

21

1,

.

1

.

1
.

1

.

R

R
k

kCRkC

kLkL

RR

A +=



















−

−
+

−

=    












=

0

1

LM
. (18) 

The componenets of the initial centre and radii parameter vectors are: 

( )
T

0 -3 -6
100 200 100 5*10 250*10Startp = , (19a) 

( )
T

-3 -6
3 2 0.001 0.01*10 12*10StartRp = . (19b) 



The linearization of  ( )ija p  is made by the method suggested in [2] using (19). 

So we get the ( )ija p  as the affine functions: 

[ ]

[ ]

[ ]

0 67 0.0001633 1.334 400.009 200.087 0.0225 0.0225
11 1 2 3 4

4
0.0022232 0.004446 1.3334 1.3338 10 6.78 6.78

12 2 3 4

6 3
4.4512 8.9024 5.34 *10 2.6703 *10 3.0127 3.0127

21 2 3 5

0.0446 0.0446 0
22 2 3

a - . p p p p -

a p p p

a - p p p

a p p

= + − + + −

−= − + − + −

= + − + + −

= + + [ ]6
.535 *10 40.085 0.0245 0.0245

5
p − + −

 (20) 

  

The numbers of the maximum eigenvalue and the maximum component of its 

eigenvector are  2k =  and 2s = , respectively.   Hence, we are interested in 

the second component of interval vector y. According to (9) the vector y is: 









=








=

λ

x

y

y
y 2

2

1
  (21)  

resp. 

0 0
0.003667950 1 2

0 0 18.244878
2

y x
y

y λ

−
= = =

−

     
           

. (22) 

Applying the method suggested in [5] we get the following outer bounds of the 

eigenvector considered components 

[ ]
[ ]

0.0037587 0.0035775

19.4124 17.08791

out
 − −

=  
− − 

y , (23) 

the right end of the inner bound on the eigenvalue considered 

( ) ( ) ( )2 17.1669
in in in

sy yλ
+ + +

= = = −  (24) 

and the right end of the exact range 

( ) ( ) 17.1669
exact exact

syλ
+ +

= = −  (25) 



Then based on (15) and (16) and using (23) and (24) we get the initial interval 

vector 

[ ]
[ ]

(0)
0.0037587 0.0035775

17.1669 17.08791

 − −
=  

− − 
y . (26) 

Second, we repeat the Steps 2 and 3 from the Procedure 1 until we obtain 

two serial values of the interval components of vector p to be close enough 

with the accurancy 
9

10ε −= . The final componenets of the centre and radii 

parameter vectors are reached on the 6th iteration and they are following: 

( )
T

0 -3 -6
100 200 100 5*10 250*10Finalp = , (27a) 

( )
T

-3 -6
0.01327 0.0066612 0.001 0.01*10 0.00577889*10FinalRp = . (27b) 

Thus the right end of the sth component of the vector y is 

( ) 17.1669sy
+

= −  (28) 

But   

( ) ( ) ( )out out
s sy y λ

+ + +

= =  (29) 

then 

( ) ( ) 17.1668
out out
sy λ

+ +

= = −  (30) 

It is obvious from (25) and (30) that the right ends of outer bound and of the 

exact range considered, calculated by the new algorithm and the method 

from [5], are equal. Therefore, the new method suggested determines the 

right end of the stability margin of the circuit studied. 

The calculation times for this example are shown in Table 1. 



 

Table 1 

Step 1 in Procedure 1 

(methods from [5]) 
Whole the Procedure 1 

0.17 s 0.22 s 

  

5. CONCLUSION 

The new algorithm suggested obtains the exact value of the stability margin 

within error bounds. Some of the known methods for assessing it are based 

on determining the exact ranges and the respective inner and outer bounds of 

the considered eigenvalue-eigenvector pair solving the non-linear system (11) 

with respect to the components of the interval vector y. Unlike this approach, 

a new constraint propagation algorithm which applies to the linear parameter 

system (14) is proposed with respect to the components of the parameter 

vector p. The algorithm suggested obtains directly the right end of the exact 

range of the eigenvalue analyzed and thus determines the exact value of the 

stability margin. 
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