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   Abstract – It is known that stability analysis of linear time-invariant dynamic systems under 

parameter uncertainties can be equated to estimating the range of the eigenvalues of matrices whose 

elements are intervals. In this paper, first the problem of finding tight outer bounds on the eigenvalue 

ranges is considered. A method for computing such bounds is suggested which consists, essentially, of 

setting up and solving a system of n mildly nonlinear algebraic equations, n being the size of the 

interval matrix investigated. The main result of the paper, however, is a method for determining the 

right end-point of the exact eigenvalue ranges. The latter makes use of the outer bounds. It is 

applicable if certain computationally verifiable monotonicity conditions are fulfilled. The methods 

suggested can be applied for robust stability analysis of both continuous- and discrete-time systems. 

Numerical examples illustrating the applicability of the new methods are also provided.  
 

   Index Terms – Robust stability analysis, eigenvalues of interval matrices, outer bounds, right end-

point of the eigenvalue range.  
 

 

I. INTRODUCTION 

It is well known that stability analysis of linear time-invariant systems under parameter 

uncertainties can be formulated as the problem of estimating the range of the eigenvalues 

of interval matrices (matrices whose elements are independent intervals). The known 

methods for solving this problem (cf. e.g. [1] – [5]) only provide estimates that are outer 

bounds on the exact eigenvalue ranges. In some cases, these estimates may be rather 

conservative (they overestimate the range considerably) and lead to inconclusive stability 

analysis results.  

 In this paper, a method for determining the right end-point of the eigenvalue ranges of 

real interval matrices is suggested. This method (called for brevity exact method) is 
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applicable if certain computationally verifiable monotonicity conditions are fulfilled. It is 

based on the use of an approximate method, which provides tight outer bounds on the 

eigenvalue ranges. 

 The paper is organized as follows. The problem statement is given in Section II. The 

method for obtaining an outer bound on the range of a given eigenvalue is presented in 

Section III. In the next section, the exact method is suggested. Numerical examples 

illustrating the applicability of the new methods are solved in Section V. The paper ends 

up with concluding remarks in Section VI.  

 

II. PROBLEM STATEMENT 

Let A  be a real nn x  matrix, A  - an interval matrix containing A , and −A , +A , 0A  and 

R – the left end, the right end, the center and the radius of A, respectively (throughout the 

paper, bold face letters will be used to denote interval quantities while ordinary letters 

will stand for their non-interval counterparts). We are interested in the stability analysis 

of continuous interval dynamic systems described by 

 0,),()( ≥∈= tAtAxtx A& . (1)  

We make the natural assumption that the nominal system corresponding to 0AA =  is 

(asymptotically) stable, i.e. all the eigenvalues )( 00
Aλλ kk

= , nk ,...,1= , have negative 

real parts  [ ]0Re
k
λ  and that 0

k
λ  have been ordered in decreasing value of  [ ]0Re

k
λ  (i.e., 

[ ] [ ] ...)ReRe 00

21
≥≥ λλ . 

In accordance with the basic approach to investigating the (asymptotic) stability of 

(1) adopted in this paper, we consider the following "perturbed" eigenvalue problem 
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 ],[],[, 0
RRAAAAxλxA −+==∈= +−A . (2) 

Let kλ  denote an eigenvalue of A . As is seen from (2) each 
k
λ  is a function of A , i.e. 

)(Aλλ kk = . Thus, we are led to consider the sets 

 { } nkAAλS
kk

,...,1,:)( =∈= A  (3) 

(where the number index k corresponds to the ordering of 0

k
λ ). In general, kS  may be a 

set of complex eigenvalues )(Aλk . In view of the stability analysis, we introduce the 

(real) intervals 

 [ ]{ } nkAAλλλS kkkkk ,...,1,),(:Re]Re[* =∈=== AI . (4) 

Let ( ) ( )[ ]+−= *** , kkk III . It is well known (e.g. [5]) that the continuous interval dynamic 

system (1) is stable iff (if and only if) 

 ( ) { }nkI k ,...,1,0* ∈∀<
+

. (5) 

Thus, in order to establish the stability of (1), we need a method for computing the right 

end-point of each interval (4). Knowing these points, we can, in fact, determine the true 

margin of stability. 

Remark 1: In practice, the stability margin of (1) can be determined with reasonable 

certainty if we confine ourselves to computing the first few values 

( ) { }'* ,...,1, nKkI k =∈
+

, '
n  being typically equal to 2. 

In the next section, we shall first obtain outer bounds kI on the interval *

kI . In Section 

IV, it will be shown how, using these bounds, the right end-point of the exact interval *

kI  

can be determined, provided that certain monotonicity conditions are fulfilled. 
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III. OUTER BOUNDS ON THE EIGENVALUE RANGE 

Consider again (2). It is seen from (2) that both λ  and x  are functions of A , i.e. 

)(Aλλ =  and )(Axx = . Let ( )T)()(

2

)(

1

)( )(,...,)(,)()( AxAxAxAx
k

n

kkk =  be an 

eigenvector, corresponding to )(Aλk  for a fixed Kk ∈  (T stands for transpose). Now let 

the pair ( )00 , xλ  be the solution of the nominal (centre) problem 

 xλxA =0 . (6) 

To simplify the presentation of the method for obtaining outer bounds, we will first 

consider the case where the first K components kλ  of the eigenvalue vector 0
λ  are real. 

We need the following assumption (ensuring structural stability of the problem). 

Assumption A1: For Kk ∈  all )(Aλk  and )()( Ax k  remain real for all A∈A .  

On account of Assumption A1, the sets kS  from (3) for Kk ∈  will, in this case, be 

real intervals 

 { } KkAAλkk ∈∈= ,:)(* AI . (7) 

Thus, *

kI  is, in this case, the range of )(Aλk , when A∈A . 

For notational simplicity, we shall henceforth drop the index k . We are interested in 

finding an outer bound I  on *I , i.e. an interval ( )+−= II ,I  with the property 

 II ⊂* . (8) 

Thus, the problem at hand is the following 

Problem P1: Find an outer bound I  on *I , i.e. an estimation I  having the inclusion 

property (8). 
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We now suggest a method for finding a "tight" outer bound I  on *I , i.e. a bound with 

a small overestimation. To simplify the presentation of the method, we assume that the 

nth component 0

nx  of  0
x  has the largest absolute value, i.e. 00

in xx ≥ , 1,...,1 −= ni  (this 

assumption is trivial and can be always achieved by reordering the components of  0
x ). 

We normalize the vector 0
x  (dividing 0

x  by 0

nx ) to have 

 10 =nx . (9a) 

Assumption A2: We assume that (9a) is also valid for )(Axn , i.e. 

 A∈= AAxn ,1)( . (9b) 

At this point, introduce the n -dimensional real vector 

 T

21 ),...,,( nyyyy = ,    )(,1,...,1),( AλyniAxy nii =−== . (10) 

Using (10) and (9), (2) is rewritten as  

 ∑∑
−

=

−

=

=+−−==+−
1

1

1

1

0,1,...,1,0

n

j

nnnjnj

n

j

ininjij ayyaniayyya , (11a) 

 ][ +−=∈
ijijijij

aaa a , (11b) 

where −

ij
a  and +

ij
a  are the elements of matrices −A  and +A , respectively. System (11a) is 

a nonlinear (more precisely, an incomplete quadratic) system because of the products 

in yy  in the first 1−n  equations in it. 

Let *

iy  denote the range of the i th component A∈AAyi ),(  of the solution y  to (11). 

Let *y  be the vector made up of *

iy . Consider the following problem. 

Problem P2: Find an outer solution y  to (11), i.e. a solution enclosing the range 

vector *y : 
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 yy ⊂* . (12) 

Obviously, the n th component of the solution y  to Problem P2 is a solution to the 

original Problem P1. 

We now proceed to solving Problem P2. The approach adopted is based on ideas 

suggested recently in [6], [7]. If z∈+= uzz 0  and t∈+= vtt 0 , with z and t being 

intervals whose centers are z0  and t0, respectively, then  

 ],[0000 tztz rrrrtzzttzzt −+++−∈  (13) 

where zr and tr  are the respective radii. After letting  

 
ijijij

uaa += 0 , 
iii

vyy += 0 , i, j = 1,…, n  (14) 

where 0

ij
a  are the elements of the centre matrix 0A  and 0

iy  are computed from (10) with 

0AA = , we apply (13) to express the products in (11a). On substitution of (14) into (11a), 

having in mind that the centers 0

ij
a  and 0

i
y  satisfy system (11a) and following the 

techniques of [6], we get the system  

nnnnnnnininniiniii vvavavanivyvavyava bb =−+++−==−++−++ −−− 1
0

1-,2
0
21

0
1

0
1

0
1,

00
,1

0
,1 ...,1,...,1,...)(...  (15a) 

where nii ,...,1, =b  are intervals. These intervals are to be chosen in such a way that the 

solution set to (15a), displaced by 0y , should contain the solution set to the original 

system (11). It can be easily checked that the radii of ib  are 

 

∑∑

∑∑
−

=

−

=

−

=

−

=

++=

−=+++=

1

1

1

1

0

1

1

1

1

0

)(

,1,...,2,1,)(

n

j

jnjnnnj

n

j

jn

in

n

j

jijinij

n

j

ji

rRRRyR

nirrrRRRyR

b

b

 (15b) 

where
ij

R  are the elements of R  while )(
ii

Rr v=  is the radius of the unknown interval 
i

v . 

Now system (15) can be written in compact form  

 b∈= bbvA ,
~

0  (16) 
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where
0

~
A  is the real coefficient matrix in (15a). Now we need the following assumption. 

Assumption A3: The matrix 
0

~
A  is non-singular.  

Let 1

0

~−= AC . If ( )T

21
,...,,

n
rrrr =  and 

b
r  denotes a column vector with 

components from (15b), then from (16) 

 
b

Crr = . (17) 

Now we introduce the matrix R
(

 which is the same as R  except for the last column 

whose elements are now zeros. Using (15b) and the new notation, (17) becomes 

 )(rCgrRCxCRr
0 ++=

(
 (18) 

where 0
x  is the normalized eigenvector and )(rg  is a nonlinear function with 

components 
nii

rrrg =)( , 1,...,2,1 −= ni , 0)( =rg
n

. Finally  

 )(rCgDrdr ++= , (19a) 

 0
xCRd = ,  RCD

(
= . (19b) 

The matrix equation (19a) is a nonlinear real-valued (non-interval) system of n  

equations in n  unknowns 
i

r : 

 nircrrddr
n

j

jij

n

j

njijii ,...,1,
1

1

1

1

=++= ∑∑
−

=

−

=

. (20) 

The smallest positive solutions 
i

r  to (20) solve Problem P2. Indeed, if 0>
i

r , we can 

introduce the intervals 

 nirry
iiii

,...,2,1],,[0 =−+=y . (21) 

It can be proved that 

 ni ,...,2,1,
*

=⊂
ii

yy , (22) 
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i.e. the intervals (21) are really outer bounds on the ranges 
*

i
y  for all i. Hence 

  ],[0

nnnn
rry −+=y  (23) 

is a solution to the original problem P1 since it is, in fact, a bound I on *I satisfying the 

inclusion (8). More precisely, we have the following theorem. 

Theorem 1:  If the nonlinear system (20) has a positive solution ( )T

21
,...,,

n
rrrr = , 

then the interval (23) is an outer bound on the range *I  of the real eigenvalue λk(A) 

considered (for a given k  from K ). 

The proof of Theorem 1 is based on the general approach of [7]. 

The present method for solving the original Problem P1 will be referred to as Method 

M1. As shown above, it comprises, essentially, the following computations. First, the 

“nominal” eigenvalue problem (6) is solved. Then, for each Kk ∈ , the nonlinear system 

(20) is set up and solved. If all 
i

r  found are positive, the outer bound I  on the 

corresponding eigenvalue A∈AAλ
k

),( , is obtained by the interval (23). Since, in 

practice, the values of the 
ij

R  are small relative to the magnitudes of the 0

ij
a , system (20) 

is mildly nonlinear and its solution does not present any difficulties. 

Remark 2: In our implementation, the simple iteration method, the method  fsolve 

from MATLAB (using the initial vector 00 =r )  as well as the method from [6] have 

been applied to solve (20).  

Method M1 can be easily extended to the case of complex eigenvalues kλ . Indeed, for 

a fix k let 

 
ImRe

jλλλ +=  ,  nijxxx
iii

,...,2,1,
Im,Re,

=+= . (24) 

We introduce the 2n-dimensional real vector y with components 
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 1,...,1),(),()),(),( Im2Im,ReRe, −===== + niAλyAxyAλyAxy niinnii . (25) 

We then apply the approach of Method M1 to obtain a nonlinear system of the type (19a) 

(the only difference is that now r has 2n components). If r is a positive solution the 

interval  

 ],[0

nnnn
rry −+='y  (26) 

determines an outer bound on the range of  [ ])(Re Akλ .  

 

IV. DETERMINATION OF THE RIGHT END-POINT OF THE EIGENVALUE RANGE 

In this section, we are interested in determining the right end-points of the ranges *

k
I   

defined by (7) and (4), respectively. A method capable of finding these points will be 

suggested here. For the sake of simplicity, it will be presented only for the case of (7) 

(when the eigenvalues )(Aλ
k

 corresponding to all A∈A  remain real).  

A. Basic method. As in Section III, after dropping the index k  and introducing vector 

(10), we rewrite system (2) in the form 

 ijijn

j

nnnjnjjijn

n

j

ininjijjiji

a

ayyayaf

niayyyayaf

a∈

=+−=

−==+−=

∑

∑
−

=

−

=
,

0),(

1,...,1,0),(

1

1

1

1 . (27) 

Let the derivative ),...,2,1,,( nmlp
a

y

lm

p =
∂

∂
 be denoted )( p

lm
d . We are interested only in )(n

lm
d  

denoted for simplicity 
lm

d . From (27) 
lm

d  depend on 
ij

a , i.e. )(Add
lmlm

= . Suppose that 

an outer bound 
lm

d  on 
lm

d  is known when A∈A , i.e. 

 Ad ∈∀∈ AAd
lmlm

,)( . (28) 

At this point, we need the following assumption. 

Assumption A4: The outer bound ],[ +−=
lmlmlm

ddd  is either positive or negative, i.e. 

 0≥−

lm
d   (29a) 

or 
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 0≤+

lm
d  (29b) 

for all nml ...,,1, = . 

On account of (29) and (28), if (29a) is valid, then 
n

y  is monotonously increasing in 

lm
a  for all possible A∈A ; also if (29b) holds, then 

n
y  is monotonously decreasing in 

lm
a  

for all possible A∈A . Therefore, the right end-point of range *

n
y  can be determined in 

the following way. First, we form the matrix 'A  whose elements '

lm
a  are 

 




≤

≥
=

+−

−+

0if,

0if,'

lmlm

lmlm

lm
da

da
a . (30) 

We then solve the eigenvalue problem 

 λxxA ='  (31) 

to obtain the eigenvalues '
λ  (corresponding to the k th real eigenvalue, Kk ∈ ). Finally, 

the right end-point of the range *
I  considered is determined by the following theorem. 

Theorem 2: If the monotonicity conditions (29) are valid, the elements of the matrix 

'A  are defined as in (30) and the eigenvalues niλi ,...,1,' =  , are computed from (31), then 

the right end-point of the range *

kI  is given by the eigenvalue '
kλ . 

The proof of Theorem 2 is straightforward and is based on the monotonicity 

conditions from Assumption A4. 

To apply Theorem 2, we need the outer bounds 
lm

d . They can be found in the 

following manner. We differentiate (27) with respect to 
lm

a  to get 2
n  systems 

 nmlni
a

y

y

f

a

f n

p lm

p

p

i

lm

i ,...,1,,,...,1,0
1

===
∂

∂

∂

∂
+

∂

∂
∑

=

. (32) 

For fixed indices l  and m , (32) is written as 
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 1,...,1,
1

1

−=−−=
∂

∂
−

∂

∂
−

∂

∂
∑

−

=

niy
a

y
y

a

y
y

a

y
a

mjmilnmil

lm

n

i

lm

i

n

n

j lm

j

ij
γδδδ , (33a) 

 
mnmnlnmnl

lm

n

n

j lm

j

nj
y

a

y

a

y
a γδδδ −−=

∂

∂
−

∂

∂
∑

−

=

1

1

 (33b) 

where δil is the  Kronecker symbol while γim = 1 for nm <  and  γim = 0 if nm = . 

Consider the above system. To find an outer bound 
lm

d  on the derivative  
lm

n

a

y

∂

∂
, we first 

have to let 
ij

a , iy , 
m

y  and 
n

y  vary within their respective intervals  

 ijija a∈ , 
pp

y y∈ , npji ,...,1,, = . (33c) 

The intervals 
p

y  in (33c) are computed using Method M1 from Section III. The resulting 

complete system (33a) to (33c) is, in fact, a linear interval system (see, e.g., [5] and the 

references cited therein) which is written as 

 bB =z . (34) 

We find the outer solution z  to (34) using the linear version of Method M1 (with 0=g  

in (18)). Finally, the outer bound 
lm

d  sought (on the derivative 
lm

n

a

y

∂

∂
) is determined as the 

n th component 
n

z  of the outer solution z  to the linear interval system (34). The above 

method for finding the right end-point of the range for the real eigenvalue will be referred 

to as Method M2 or exact method.  

Remark 3: Method M2 is directly applicable to determine the right end-point of the 

range *

Re
I  for the real part of a complex eigenvalue. The only difference is that now the 

size of all systems involved is doubled. 
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B. Improved method. An improved version of Method M2 will be presented here 

which may find the end-point sought even in the case where some of the monotonicity 

conditions (29) are violated. The elements lma , for which conditions (29) hold, are fixed 

at their end-point values '

lm
a . The remaining elements are treated as entries of an interval 

matrix ρA  of reduced size. Now Method M2 is applied to ρA . If all monotonicity 

conditions (29), related to ρA , are satisfied, the problem is solved. Otherwise, ρA  is again 

reduced and a new iteration is initialized. This scheme of repeated application of Method 

M2 to reduced matrices of smaller and smaller size will be referred to as Method M3. 

 

IV. NUMERICAL EXAMPLES 

Example 1: In this example, 2=n  and the interval matrix A  of the dynamic system 

studied is [ ]RRA ,0 −+=A  with  

 2.4,6.0,6.1,8.3 0

22

0

21

0

12

0

11 −===−= aaaa , (35a) 

 2,1,,17.0)( == jiRij A . (35b) 

For this example T0 ]5,3[ −−=λ  and we will confine ourselves to finding an outer bound 

I  on the range *
I  for the first eigenvalue 30

1 −=λ  (since it is closer to zero). The 

eigenvector ),( 0

2

0

1

)1(,00
xxxx ==  associated with 0

1λ  is T0 ]447214.0,894427.0[=x . 

Since 0

2

0

1
xx > , the normalized vector is T0 ]5.0,1[=x . Thus, the vector 0

y  is 

TT0

2

0T0

2

0

1

0 ]5.0,3[],[],[ −=== xλyyy  and T

2

T

21
],[],[ xλyyy == . So for this example 

system (11a) becomes 

 0,0 2122221121211 =−+=−+ yyyaayyaa . (36) 



 13 

On account of (36), the system (20) now is  

 21122111 5000.01275.01913.0,8000.02380.03570.0 rrrrrrrr ++=++= . (37) 

The solution to (37), obtained by the simple iteration method, has the components 

 5941.0,3323.0 21 == rr . (38) 

As both radii are positive, by Theorem 1 and (38) the outer bound I  sought is  

 ]2.6677-,3323.3[],[ 11

0

11 −=−+== rryyI . (39) 

Thus, in view of (39), we conclude that the continuous dynamic system (1), whose 

interval matrix A  is defined by (35), is stable. From (39) the stability margin M  

obtained by Method M1 is ( ) 6677.2=−= +IM . 

This example has been solved in [2] and [4], and the corresponding results for the 

margin M  are 5931.2=M  and 3098.2=M , respectively. It is seen that the present 

paper’s method M1 provides a more accurate estimate on the stability margin. 

Example 2: We take up Example 1 where the components of the radius matrix R  are 

however all equal to 0.1. We now want to find the right end-point of the exact range *
I  

associated with )(
1

Aλ . We apply Method M2 to solve the problem. The interval 

derivatives 2,1,, =mllmd  were computed as explained in Section IV and they all turned 

out to be positive. So the matrix 'A  can be written in the form 








−

−
=+=

1.47.0

7.17.3
0'

RAA .  

The eigenvalue '
kλ  of matrix 'A , corresponding to 1=k ,  is 7909.2

'
1 −=λ . By Theorem 2, 

the right end-point of the exact range for  A∈AAλ ),(
1

, is ( ) 7909.2* −=
+

I . We also 

applied Method M1 to find the right end-point +I  of the outer bound I  on A∈AAλ ),(
1

, 
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which is 7761.2−=+I . It is seen that ( ) ++
< II * ; hence the exact (within the computation 

errors) stability margin is ( ) 7909.2* =−=
+

IM . 

Example 3: We consider a model of type (1) for a hard disk drive. It is 8-dimensional 

( 8=n ) and the nonzero elements of the centre matrix 0A  are: 

556.12427.16637.823010.25750.000115.0

49.5653.2513251332513323.138

1382313823983.4382.43982.439

0

88

0

87

0

86

0

84

0

82

0

81

0

77

0

66

0

65

0

56

0

44

0

43

0

34

0

22

0

21

0

12

−====−==

−=−=−==−=

−==−=−==

aaaaaa

aaaaa

aaaaa

. (40a) 

The corresponding elements of the radius matrix R are: 

 

3530.11240.3716.155680.00419.010*449.2

16.3252.11816.12566.1256644.74

3.13823.13828170.6991.21991.21

8887868482

4

81

7766655644

4334222112

======

=====

=====

−
rrrrrr

rrrrr

rrrrr

. (40b) 

For this example, the eigenvalues of the centre matrix are: 

 

251036.1256,251036.1256

,94.564,13823115.69,13823115.69

,27.439991.21,27.439991.21,556.12

00

000

000

87

654

321

jj

jj

jj

−−=+−=

−=−−=+−=

−−=+−=−=

λλ

λλλ

λλλ

 (41) 

First, we will find an outer bound I  on the range *
I  for the first eigenvalue 

556.120

1 −=λ  (since it is the nearest to zero). The maximum absolute value component 

of the corresponding eigenvector 0

1x  is in the 8th position. Thus, the system (20) now is  

 

.0297.010*1640.00033.010*1510.0

10*6650.110*4000.00013.0784.12582.11

10*643.203380.010*0900.20710.00011.03530.1

,0018.05880.0

,10*1990.010*3980.00500.010*2500.0

,10*3980.010*3960.00520.00500.0

,10*6580.010*7230.01000.010*9083.0

,10*7230.010*6580.000631.01000.0

,10*6500.010*783.220506.00014.0

,10*783.2210*6280.10191.00501.0

8786

5

8584

6

83

4

82

4

8176

5

4

43

4

218

8777

86

7

85

4

65

4

6

86

4

85

5

655

84

7

83

4

43

4

4

84

4

83

6

433

82

4

81

4

212

82

4

81

4

211

rrrrrrrr

rrrrrrrr

rrrrrr

rrrr

rrrrrrr

rrrrrrr

rrrrrrr

rrrrrrr

rrrrrrr

rrrrrrr

++++

++++++

++++++=

+=

+++=

+++=

+++=

+++=

+++=

+++=

−−

−−

−−

−−−

−−

−−−

−−

−−

−−

 (42) 
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The solution to (42) has been obtained by the simple iteration method. All radii are 

positive and 3827.18 =r . Therefore, by Theorem 1 the outer bound I  sought is  

 [ ] ]173.11,938.13[],[, 88

0

1 −−=−+== +−
rrII λI . (43) 

It can be checked that the perturbations of the real part of A∈AA),(2λ  remain to the 

left of +I . Thus, in view of (43), we conclude that the continuous dynamic system (1), 

whose interval matrix A  is defined by (40), is stable. From (43) the stability margin 1M  

obtained by Method M1 is thus 173.111 =M . 

Next, we apply Method M2 to find the right end-point of the exact range *
I  

associated with )(
1

Aλ . The interval derivatives 8,...,1,, =mllmd  were computed as 

explained in Section IV and the nonzero values are: 

 

000000

00000

00000

888786848281

7766655644

4334222112

<>>><>

<<<><

<><<>

dddddd

ddddd

ddddd

 (44) 

So matrix 'A  can be formulated using conditions (29). The first component '
1λ  of '

λ  is 

968.11'
1 −=λ . By Theorem 2, the right end-point of the range of A∈AAλ ),(

1
 is 

( ) 968.11* −=
+

I . As expected, ( ) ++
< II *  and the true stability margin is 

( ) 1

*

2 968.11 MIM >=−=
+

. 

 

VI. CONCLUSION 

Two methods for stability analysis of linear time-invariant interval dynamic systems (1) 

have been suggested. They are based on computing estimates for the ranges (4) and (7) 

associated with the real parts of the eigenvalues of the system interval matrix A . The first 
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Method M1 is an approximate method since it only provides outer bounds on the 

respective ranges. The second Method M2 is an exact method. If the monotonicity 

conditions (29) are satisfied, Method M2 yields the right end-point of the ranges. An 

improved version (method M3) has also been suggested which is capable of solving the 

problem even if not all monotonicity conditions are fulfilled. The applicability of the 

methods suggested has been illustrated by an 8-dimensional numerical example.  

The present methods can be extended to encompass systems in which the elements 

ija  of matrix A  depend on a certain number of interval parameters qii ,...,1, =p . Such a 

generalization will be reported in a future publication. 
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