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Abstract — It is known that stability analysis of linear time-invariant dynamic systems under
parameter uncertainties can be equated to estimating the range of the eigenvalues of matrices whose
elements are intervals. In this paper, first the problem of finding tight outer bounds on the eigenvalue
ranges is considered. A method for computing such bounds is suggested which consists, essentially, of
setting up and solving a system of n mildly nonlinear algebraic equations, n being the size of the
interval matrix investigated. The main result of the paper, however, is a method for determining the
right end-point of the exact eigenvalue ranges. The latter makes use of the outer bounds. It is
applicable if certain computationally verifiable monotonicity conditions are fulfilled. The methods
suggested can be applied for robust stability analysis of both continuous- and discrete-time systems.
Numerical examples illustrating the applicability of the new methods are also provided.

Index Terms — Robust stability analysis, eigenvalues of interval matrices, outer bounds, right end-
point of the eigenvalue range.

I. INTRODUCTION

It is well known that stability analysis of linear time-invariant systems under parameter
uncertainties can be formulated as the problem of estimating the range of the eigenvalues
of interval matrices (matrices whose elements are independent intervals). The known
methods for solving this problem (cf. e.g. [1] — [5]) only provide estimates that are outer
bounds on the exact eigenvalue ranges. In some cases, these estimates may be rather
conservative (they overestimate the range considerably) and lead to inconclusive stability
analysis results.

In this paper, a method for determining the right end-point of the eigenvalue ranges of

real interval matrices is suggested. This method (called for brevity exact method) is



applicable if certain computationally verifiable monotonicity conditions are fulfilled. It is
based on the use of an approximate method, which provides tight outer bounds on the
eigenvalue ranges.

The paper is organized as follows. The problem statement is given in Section II. The
method for obtaining an outer bound on the range of a given eigenvalue is presented in
Section III. In the next section, the exact method is suggested. Numerical examples
illustrating the applicability of the new methods are solved in Section V. The paper ends

up with concluding remarks in Section V1.

II. PROBLEM STATEMENT

Let A beareal n x n matrix, A - an interval matrix containing A,and A~, A", A° and
R — the left end, the right end, the center and the radius of A, respectively (throughout the
paper, bold face letters will be used to denote interval quantities while ordinary letters
will stand for their non-interval counterparts). We are interested in the stability analysis
of continuous interval dynamic systems described by

x(t) = Ax(t), Ae A, t20. (1)
We make the natural assumption that the nominal system corresponding to A=A’ is

(asymptotically) stable, i.e. all the eigenvalues /1? =), (A%, k=1,.,n, have negative
real parts Rel/lfl and that 2’ have been ordered in decreasing value of Re[if] (..,
Re[2’]>Re[2’]>..).

In accordance with the basic approach to investigating the (asymptotic) stability of

(1) adopted in this paper, we consider the following "perturbed" eigenvalue problem



Ax=Ax, Ae A=[A",A"]=A"+[-R,R]. 2)
Let 4, denote an eigenvalue of A. As is seen from (2) each 4, is a function of A, i.e.
4, =2, (A) . Thus, we are led to consider the sets
S ={A(A):Aec A}, k=1,...n 3)
(where the number index k corresponds to the ordering of /lf ). In general, S, may be a
set of complex eigenvalues/, (A). In view of the stability analysis, we introduce the
(real) intervals
I; =Re[S, 1=1{Re[\ ]: 2, =4, (A), Ac A}, k=1,...n. 4)
Let I, = [(I :)_, (I Z)+] It is well known (e.g. [5]) that the continuous interval dynamic
system (1) is stable iff (if and only if)
() <o, Vke{L....n}. (5)
Thus, in order to establish the stability of (1), we need a method for computing the right
end-point of each interval (4). Knowing these points, we can, in fact, determine the true
margin of stability.
Remark 1: In practice, the stability margin of (1) can be determined with reasonable

certainty if we confine ourselves to computing the first few values
# |+ ' ' . .

(Ik) , ke K= {1,...,n }, n being typically equal to 2.
In the next section, we shall first obtain outer bounds I, on the interval I, . In Section

IV, it will be shown how, using these bounds, the right end-point of the exact interval 1 ,:

can be determined, provided that certain monotonicity conditions are fulfilled.



III. OUTER BOUNDS ON THE EIGENVALUE RANGE

Consider again (2). It is seen from (2) that both 4 and x are functions of A, i.e.
A=A(A) and x=x(A). Let x®(A)=(x“(4), x“(A), .. , xY(A) be an
eigenvector, corresponding to 4, (A) for a fixed ke K (T stands for transpose). Now let
the pair (/10, xo) be the solution of the nominal (centre) problem
A'x=Ax. (6)
To simplify the presentation of the method for obtaining outer bounds, we will first
consider the case where the first K components 4, of the eigenvalue vector A° are real.
We need the following assumption (ensuring structural stability of the problem).
Assumption Al: Forke K all 4, (A) and x"“’(A) remain real for all Ae A.
On account of Assumption Al, the sets S, from (3) for ke K will, in this case, be
real intervals
I, ={},(A):Aec A}, ke K. (7
Thus, I,f is, in this case, the range of 4, (A), when Ae A.
For notational simplicity, we shall henceforth drop the index k. We are interested in

finding an outer bound I onI",i.e. an interval I = (I R ) with the property
I'cl. ®)

Thus, the problem at hand is the following

Problem P1: Find an outer bound I on I, i.e. an estimation I having the inclusion

property (8).



We now suggest a method for finding a "tight" outer bound I on I, i.e. a bound with

a small overestimation. To simplify the presentation of the method, we assume that the

>‘x0

I e

x! , i=1,..,n—1 (this

nth component x. of x” has the largest absolute value, i.e.

assumption is trivial and can be always achieved by reordering the components of x°).

We normalize the vector x’ (dividing x° by x) to have
2 =1. (9a)
Assumption A2: We assume that (9a) is also valid for x, (A),i.e.
x,(A)=1 Ae A. (9b)
At this point, introduce the n -dimensional real vector

y:(ypyz’---?yn)T’ yi=xi(A)’ l=1 ::::: I’L—l, yn=/1(A) (10)

Using (10) and (9), (2) is rewritten as

n—1 n-1

Zal‘-iyj—ynyi—i-amzo, i=L.,n—-1, Ay =Yy +ta,, =0, (11a)
j=1 j=1

a,ea,=la;, al, (11b)
where a; and a; are the elements of matrices A and A", respectively. System (11a) is

a nonlinear (more precisely, an incomplete quadratic) system because of the products

v, Y; in the first n—1 equations in it.

Let y, denote the range of the i th component y,(A), A€ A of the solution y to (11).
Let y  be the vector made up of y, . Consider the following problem.

Problem P2: Find an outer solution y to (11), i.e. a solution enclosing the range

vector y :



y cy. (12)
Obviously, the nth component of the solution y to Problem P2 is a solution to the

original Problem P1.
We now proceed to solving Problem P2. The approach adopted is based on ideas

suggested recently in [6], [7]. If z=z,+tuez and r=t,+vet, with z and ¢ being

intervals whose centers are zp and ¢y, respectively, then

e =zt izt zot -1, 1.1 ] (13)
where r,and r, are the respective radii. After letting
=4 =0 P i=
a,=a;+u;, y,=y, +v,,i,j=1..,n (14)

where a; are the elements of the centre matrix A° and y, are computed from (10) with

A= A", we apply (13) to express the products in (11a). On substitution of (14) into (11a),

having in mind that the centers a; and y/ satisfy system (I1la) and following the

techniques of [6], we get the system

0 0 0 0 0. _ 3 :_ 0 0 0 _
a; vyt (@ —y)v et ag, v, —yiv, =b, i=1..n—1, apv +a,v, +..ta,, v, —v, =b, (15a)

where b, i=1,..,n are intervals. These intervals are to be chosen in such a way that the
solution set to (15a), displaced by y”, should contain the solution set to the original
system (11). It can be easily checked that the radii of b, are

R(b,) = S‘y?}l’(’” +R, +HZ_1‘,R@,~’} +r,r, i=12,..,n-1,
j=1 j=1

n—l1 n—1
R(b,) =Y |[YIR,+R,, + Y R,m,
j=1 Jj=l1

where R, are the elements of R while r, = R(v,) is the radius of the unknown interval v,.

(15b)

Now system (15) can be written in compact form

Ayv=b, beb (16)



where ;XU is the real coefficient matrix in (15a). Now we need the following assumption.
Assumption A3: The matrix ;XU is non-singular.

Let Cz‘gn’l‘. If r=(r, r, ... ,r)" and r, denotes a column vector with

b
components from (15b), then from (16)

r=Cr,

.. (17

Now we introduce the matrix R which is the same as R except for the last column
whose elements are now zeros. Using (15b) and the new notation, (17) becomes
r=CR|x'|+ CRr + Cg(r) (18)
where x° is the normalized eigenvector and g(r) is a nonlinear function with
components g, (r)=rr,,i=12,..,n—1, g (r)=0. Finally

r=d+Dr+Cg(r), (19a)

d=CR}x’|, D=CR. (19b)

The matrix equation (19a) is a nonlinear real-valued (non-interval) system of n

equations in n unknowns r;:
n-1 n-1
I :di+2dijrj+rn2cﬁ1f,., i=1,...,n. (20)
j=1 j=1

The smallest positive solutions 7, to (20) solve Problem P2. Indeed, if >0, we can
introduce the intervals

y, =y +[-r, rl, i=12,..,n. (21)
It can be proved that

y, €y, i=12,..n, (22)



1.e. the intervals (21) are really outer bounds on the ranges yi* for all i. Hence

0

Y, =y, =, 1] (23)
is a solution to the original problem P1 since it is, in fact, a bound I on I” satisfying the
inclusion (8). More precisely, we have the following theorem.

Theorem 1: If the nonlinear system (20) has a positive solution r = (rl, Tyy e T, )T,

then the interval (23) is an outer bound on the range I" of the real eigenvalue A4i(A)
considered (for a given k from K).

The proof of Theorem 1 is based on the general approach of [7].

The present method for solving the original Problem P1 will be referred to as Method
MI1. As shown above, it comprises, essentially, the following computations. First, the
“nominal” eigenvalue problem (6) is solved. Then, for each k€ K , the nonlinear system

(20) is set up and solved. If all r, found are positive, the outer bound I on the
corresponding eigenvalue 4 (A), Ae A, is obtained by the interval (23). Since, in
practice, the values of the R, are small relative to the magnitudes of the ag, system (20)
is mildly nonlinear and its solution does not present any difficulties.

Remark 2: In our implementation, the simple iteration method, the method fsolve
from MATLAB (using the initial vector »’ =0) as well as the method from [6] have
been applied to solve (20).

Method M1 can be easily extended to the case of complex eigenvalues 4, . Indeed, for
a fix k let

A= doe F Jh s X=X+ Jx, 1=12,0. (24)

We introduce the 2n-dimensional real vector y with components



Vi =X g (A), ¥, = A (A), ¥, = X 10 (A), s, =4, (A), i=1,...,n—1. (25)
We then apply the approach of Method M1 to obtain a nonlinear system of the type (19a)
(the only difference is that now r has 2n components). If r is a positive solution the

interval
y, =y, +[-r, r] (26)

determines an outer bound on the range of Re[/lk (A)] .

IV. DETERMINATION OF THE RIGHT END-POINT OF THE EIGENVALUE RANGE
In this section, we are interested in determining the right end-points of the ranges I,
defined by (7) and (4), respectively. A method capable of finding these points will be
suggested here. For the sake of simplicity, it will be presented only for the case of (7)

(when the eigenvalues 4, (A) corresponding to all A€ A remain real).

A. Basic method. As in Section III, after dropping the index k and introducing vector
(10), we rewrite system (2) in the form

n—1
fi(al:i,yj) = Zaiiyj -y,yi+a,=0,i=1.,n—-1
= ,a;€a;. (27)
fn(a[j’yj) =zanjyj —Yutay, =0
J=1
. . ay7 (p) : s (n)
Let the derivative —* (p,l,m=1,2,...,n) be denoted d,”” . We are interested only in d,’

Im

denoted for simplicity d,, . From (27) d,, depend on a,, i.e. d,, =d,, (A). Suppose that

Im

an outer bound d, on d, is known when A€ A, i.e.

d (Aed,, VAe A. (28)

Im

Im?

At this point, we need the following assumption.

Assumption A4: The outer bound d, =[d, , d, ] is either positive or negative, i.e.

im?

d, 20 (292)

im

or
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d; <0 (29b)

Im

forall Il m=1,...n.
On account of (29) and (28), if (29a) is valid, then y  is monotonously increasing in

a,, for all possible Ae A ; also if (29b) holds, then y, is monotonously decreasing in a,,

for all possible Ae A . Therefore, the right end-point of range y. can be determined in

the following way. First, we form the matrix A whose elements q,, are

: roif d 20

e e (30)
a,,if d; <0

We then solve the eigenvalue problem
Ax=Ix 31

to obtain the eigenvalues A (corresponding to the k th real eigenvalue, k € K ). Finally,
the right end-point of the range I considered is determined by the following theorem.
Theorem 2: If the monotonicity conditions (29) are valid, the elements of the matrix
A are defined as in (30) and the eigenvalues A, i=1,..,n,are computed from (31), then

the right end-point of the range I, is given by the eigenvalue £, .

The proof of Theorem 2 is straightforward and is based on the monotonicity

conditions from Assumption A4.
To apply Theorem 2, we need the outer bounds d, . They can be found in the

following manner. We differentiate (27) with respect to a,, to get n’ systems
(32)

- 0
af: +zaa}‘]:‘; aZ” :0, i:l,...,n, l,m:l,”.,n.

aalm p=1

Im

For fixed indices [ and m , (32) is written as
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n—1 a .
S 2y W W s Sy i=lon—1,  (33)

= ij aa . n aa aa il nm ild jmJ m?

Im im

n—1

2o 5,5,-6 33b
zla”] aa a nl™~ nm nl }/nmym ( )

a

Im

where §; is the Kronecker symbol while ¥, = 1 for m<n and v, = 0 if m=n.

. , o 9 ,
Consider the above system. To find an outer bound d,, on the derivative Y , we first
alm
havetolet a;, y;, y, and y, vary within their respective intervals
a,€a;, y,€y,, i,j,p=1..,n. (33¢)

The intervals y, in (33¢) are computed using Method M1 from Section III. The resulting

complete system (33a) to (33c¢) is, in fact, a linear interval system (see, e.g., [S] and the
references cited therein) which is written as
Bz=b. (34)

We find the outer solution z to (34) using the linear version of Method M1 (with g =0

in (18)). Finally, the outer bound d,,

a

m
nth component z, of the outer solution z to the linear interval system (34). The above
method for finding the right end-point of the range for the real eigenvalue will be referred
to as Method M2 or exact method.

Remark 3: Method M2 is directly applicable to determine the right end-point of the

range I for the real part of a complex eigenvalue. The only difference is that now the

size of all systems involved is doubled.
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B. Improved method. An improved version of Method M2 will be presented here
which may find the end-point sought even in the case where some of the monotonicity

conditions (29) are violated. The elements a,, , for which conditions (29) hold, are fixed
at their end-point values a',m . The remaining elements are treated as entries of an interval
matrix A, of reduced size. Now Method M2 is applied toA,. If all monotonicity
conditions (29), related to A ) are satisfied, the problem is solved. Otherwise, A » is again

reduced and a new iteration is initialized. This scheme of repeated application of Method

M2 to reduced matrices of smaller and smaller size will be referred to as Method M3.

IV. NUMERICAL EXAMPLES

Example 1: In this example, n=2 and the interval matrix A of the dynamic system

studied is A = A’ +[- R, R] with
a) =-38, a),=16, a) =06, a),=-42, (35a)
R;(A)=0.17, i,j=1,2. (35b)
For this example A° =[-3, —5]" and we will confine ourselves to finding an outer bound
I on the range I for the first eigenvalue /?10 =-3 (since it is closer to zero). The
eigenvector x” =x"" =(x’, x}) associated with 4’ is x” =[0.894427, 0.447214]".

Since ‘xf‘>‘x§, the normalized vector is x"=[1, 0.5]". Thus, the vector y° is

y =y, v =[A", 51" =[-3, 0.5]" and y=[y,, y,]' =[4, x,]". So for this example
system (11a) becomes

ay+apy, =y =0, ay+ayy, —yy,=0. (36)
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On account of (36), the system (20) now is
1 =0.3570 +0.23807, +0.800077,, r, =0.1913+0.12755 +0.500077, .  (37)
The solution to (37), obtained by the simple iteration method, has the components
r, =0.3323, r, =0.5941. (38)
As both radii are positive, by Theorem 1 and (38) the outer bound I sought is
I=y =y +[-r, n]1=[-3.3323, -2.6677]. (39)
Thus, in view of (39), we conclude that the continuous dynamic system (1), whose
interval matrix A is defined by (35), is stable. From (39) the stability margin M
obtained by Method M1 is M = —(1 " )= 2.6677.

This example has been solved in [2] and [4], and the corresponding results for the
margin M are M =2.5931 and M =2.3098, respectively. It is seen that the present
paper’s method M1 provides a more accurate estimate on the stability margin.

Example 2: We take up Example 1 where the components of the radius matrix R are

however all equal to 0.1. We now want to find the right end-point of the exact range I"

associated with 4(A). We apply Method M2 to solve the problem. The interval

derivatives d, , [,m =1, 2 were computed as explained in Section IV and they all turned

im >

-37 1.7 }

out to be positive. So the matrix A" can be written in the form A = A’ + R = { 07

The eigenvalue 1, of matrix A, corresponding to k=1, is A, =-2.7909. By Theorem 2,

the right end-point of the exact range for /(A), A€ A, is (I*)+ =-2.7909. We also

applied Method M1 to find the right end-point /™ of the outer bound I on 4 (A), A€ A,
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which is 1" =-2.7761. It is seen that (I*‘)+ <I"; hence the exact (within the computation

g . . % |+
errors) stability margin is M = —(I ) =2.7909.

Example 3: We consider a model of type (1) for a hard disk drive. It is 8-dimensional
(n=8) and the nonzero elements of the centre matrix A° are:
a),=43982 a),=-43982 a),=-43983 a),=13823 aj,=-13823
a),=-13823 ay,=25133 a),=-25133 ap,=-25133 a),=-56549 . (40a)
al, =0.00115 ag,=-0.5750 a),=2.3010 ag =82.637 ay,=16.427 ay,=—12.556

The corresponding elements of the radius matrix R are:

r, =21.991 r,=21991 r,=68170 r,=13823 r,=13823
r,, =74.644 r,=12566 1. =12566 r,=11812 r,=32516 .(40b)
ry =2449%10 1, =00419 1, =0.5680 r,=15716 r,=3.1240 r,=13530

For this example, the eigenvalues of the centre matrix are:
A =-12.556, A =-21.991 + j439.27, A’ = -21.991 — j439 .27,
A’ =-69.115 + j13823, /12 =-69.115 — 13823, /1(: =-564.94, (41)

/l(: = —1256 .6 + j25103 , A} = —1256.6 — j25103

First, we will find an outer bound I on the range I for the first eigenvalue

4) =—12.556 (since it is the nearest to zero). The maximum absolute value component
of the corresponding eigenvector x; is in the 8th position. Thus, the system (20) now is

1, =0.05017, +0.0191r, +1.6280%107* 1,1, +22.783*10 7 1, 1,

r, =0.00147, +0.0506r, +22.783%10~* r,r, +0.6500%10 " 1,75,

r, = 0.1000r, +0.00631r, +0.6580 *10° r,r, +0.7230*%10~* 1,1,

r, =0.9083*107*r, +0.10007, +0.7230*%10~* r,r, +0.6580*107 1,1,

r, = 0.05007; +0.05207, +0.3960 107 1,1, +0.3980%10~* 1, ,,,

r, =0.2500%107* r; +0.05007, +0.3980*%10* ryr, +0.1990 %107 r, 1,

r, =0.5880r, +0.0018~,r;,

r, =1.3530+0.00117, +0.07107, +2.0900*10~* r, +0.3380r, +20.643*10 ™" ry +
+11.582r, +12.784r, +0.0013r,7, +0.4000*10™* r, 1, +1.6650*10~* r,r;, +

+0.1510%107 r, 7, +0.00337,7, +0.1640%107 r, r, +0.0297r, 7.

(42)
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The solution to (42) has been obtained by the simple iteration method. All radii are
positive and r, =1.3827 . Therefore, by Theorem 1 the outer bound I sought is

1=1", 1"|=2 +[-r, r,]1=[-13.938, —11.173]. (43)
It can be checked that the perturbations of the real part of 4,(A), A€ A remain to the
left of 7. Thus, in view of (43), we conclude that the continuous dynamic system (1),
whose interval matrix A is defined by (40), is stable. From (43) the stability margin M,
obtained by Method M1 is thus M, =11.173.

Next, we apply Method M2 to find the right end-point of the exact range I~

associated with 4 (A). The interval derivatives d, , [,m=1...8 were computed as

im?>

explained in Section IV and the nonzero values are:

d,>0 d, <0 d,<0 d,,>0 d, ;<0
d,<0 d,>0 d ;<0 d,<0 d,<0 (44)
d,>0 d,<0 d,>0 di,>0 di,>0 di<0

So matrix A" can be formulated using conditions (29). The first component A, of A is

A, =—11.968. By Theorem 2, the right end-point of the range of 4(A), Ae A is

(I *)+ =—-11.968. As expected, (I *)+ <I" and the true stability margin is

M,=—(I") =11.968> M, .

VI. CONCLUSION
Two methods for stability analysis of linear time-invariant interval dynamic systems (1)
have been suggested. They are based on computing estimates for the ranges (4) and (7)

associated with the real parts of the eigenvalues of the system interval matrix A . The first
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Method M1 is an approximate method since it only provides outer bounds on the
respective ranges. The second Method M2 is an exact method. If the monotonicity
conditions (29) are satisfied, Method M2 yields the right end-point of the ranges. An
improved version (method M3) has also been suggested which is capable of solving the
problem even if not all monotonicity conditions are fulfilled. The applicability of the
methods suggested has been illustrated by an 8-dimensional numerical example.

The present methods can be extended to encompass systems in which the elements

a; of matrix A depend on a certain number of interval parameters p;, i=1,...,q. Such a

generalization will be reported in a future publication.
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