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Abstract — The paper addresses the stability analysis of
linear circuits and systems under interval parameter
uncertainties. The problem is equivalent of estimating the
eigenvalues of matrices, which elements are nonlinear
functions of interval parameters. A method for obtaining
the exact range of the eigenvalues is suggested. It can be
applied if certain monotonicity conditions are fulfilled. A
method for computing a tight outer bound on the eigenvalue
range is also given. The outer bound is obtained as a
solution of an algebraic nonlinear system. A procedure
based on an iterative method for determining an inner
bound on the eigenvalue range is also proposed. A
numerical example, illustrating the applicability of the
methods suggested, is solved at the end.

Index Terms - robust stability analysis, eigenvalues of
interval matrices with dependent coefficients.

1. INTRODUCTION

he dynamic behavior of lumped parameters time

invariant linear systems can be described by the
state space model. The stability of these systems is
related to the stability analysis of the linear system

z(t) = Az(t) +Lu(?) @))
where z(t)=[z;(t)], i=1L..,n - vector of state space
variables;
u(t)=[u;®)], j=1....m - vector of control signals.

The elements of matrix 4 are, in general, nonlinear
functions of m parameters, which take on their values
within prescribed intervals, i.e.

az/(p):al/(plaapm)a 131:1”’1 (2)

Py EP,S=L..,m . (2a)
System (1) is stable if and only if the eigenvalues of
A(p), p € p,have negative real parts.

Ordinary letters will denote real quantities while bold
face letters will stand for their interval counterparts.
Thus, p and p are real and interval vectors of m
parameters, respectively.

The problem statement for interval matrices with
independent coefficients was defined in [3] (for real
eigenvalues) and in [4] (for the complex case). The main
points of the problem formulation for the case of
dependent coefficients will be briefly presented here. We
consider the following “perturbed” eigenvalue problem:

Apyx=2x, pep. (€)

Each matrix A(p), p € p , is assumed non-singular.
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It follows from (2) and (3) that each eigenvalue A and
its corresponding eigenvector x are implicit forms of p.

In this paper, we are interested in the intervals of the
eigenvalues of (3).

We will estimate only the interval of the maximum
eigenvalue obtained by the (center, nominal) problem

AQP")x = Ix “4)

In general, the methods suggested later can be applied

for any other real eigenvalues.

Let A (p”)=max 4,(p"), k=1,..n (3)
is a maximum eigenvalue while x = [x1, X2,..., X,] is the
corresponding eigenvector. We make the following
assumption (ensuring structural stability of the problem).

Assumption AI: Let A'(p) and x (p), corresponding
toall p e p, remain real.

On account of Assumption A1, the range
A= {Mp)p e p} (6)
is a real interval.
Without any loss of generality we need a second
assumption. If the pair (x°, 2°) is the solution of (4) then
Assumption A2: We assume that the absolute value of

the n-th component ‘xg‘ of vector x” is the largest
component of the other components, i.e.

x! Ji£n (7)

> ‘xlo
If p-th component is the largest component, we need to
interchange the places of the p-th and n-th row in 4
matrix as well as the position of the components x, and
X
Now x° is normalized through

x| =1. (8)

Further, we require that (8) be also valid for

() =1, pep. (82)
We introduce the n-dimensional real vector
Y =LY W) )
with
yi=x{p)i=1 .., (n-1)
Yn=MUp) (10)

Using (10), the eigenvalue problem (3) is rewritten as
G+t Gy ey Y — V)1 T+, =0
B +Yy A )y =YY+, =0
auntapy, t..+ an(n—l )yn—l ~Vn: 1+ Aon = 0

where a; = a;(p), pe p. The system of interest (11) can be
written in matrix form as:

A(p)y =y +A4,(p)=0 , (11a)



where A4(p)is the same as A(p) except for the n-th
column which is zero, 4,(p) is the n-th column of A(p).

It is seen that system (11) is nonlinear only because of
the products y,y;, i =1,2,...,n.

In previous papers of the authors, the problem of
determining outer bound of the maximum eigenvalue of
interval matrix with independent elements was solved
([3] — for the real and [4] — for the complex case). The
inner bound and the exact range for the maximum
eigenvalue of interval matrix with independent elements
were obtained in [5]. This paper is extension of the
previous results for the case where the elements a; and b;
are now dependent intervals (2).

The solution of (11) is the set
S(p)={y:A(p)y-y,y+4,(p)=0, pepj.(2)

The interval hull of S(p) will be denoted y* and y°
will be called exact range to (11). Any other y' such that
y" <y will be referred to as an outer bound to (11).
Similarly, an interval vector y with the property

¥ < y" will be referred to as an inner bound to (11).

The present paper addresses the problem of
determining the outer and inner bounds and the exact
range of the solution of (11). First, a direct method for

computing a tight and cheap outer bound y' is presented
in Section II. It is based on the approach suggested in [3]
and [4]. In Section III, the exact range p* to (11) is

determined for the case when certain monotonicity
conditions, regarding the derivatives of y; with respect to
p; » are fulfilled. The method suggested is an extension of
the approach from [5] (applicable to linear interval
systems with independent elements) to the general
nonlinear case of dependencies (2). It is based on the use
of the outer solution method from the previous section.

An iterative method for obtaining the inner bound y" on

y" is presented in Section IV. It includes a procedure for

obtaining the lower and the upper ends of the inner
bound. An illustrative example is considered in Section
Iv.

II. OUTER SOLUTION

To apply the approach considered bellow we need the
following preliminary facts [2]. The functions defined by
(11) are

n—1
Si(p.y)= Za,,-(p)y, -y,yi—a,(p), pep, yey

e (13)
fu(p.y) = Za,!, Py, =y,—a,,(p), pep, yey

Jj=1
The interval hull of f;(p,y) is S;(p,y), pep, yey.
On account of the inclusion property

Jip.y)eSs(p,y), pep. yey
the linear interval forms of S, (p, ) are:

(14)

m
Lip)=) aup+8; peepe (1)

k=1
From (14) it follows
a;(p)eLy(p), pep.
To find the outer bound of y, = Ap), pep we will
appeal to the approach suggested recently in [3] for the

case of independent a;;. Let

a;(P)= D @b+ 8 Pi< P (16)
k=1

We apply (16) to (11) and we get the system:

a1 m m
Zz[aijkpk +gij]yj —Vu i +(zainkpk +gm} =0

oo an
Zz[anjkpk +gnj]yj —Va +(zannkpk +g;mJ =0
Jol k=l k=1

We substitude the interval variables in (17) with
p; :p/(c) tup, Y, ZY_? +V;, 8 =gg +1;. (18)

On account of (18) we get the following system

(alol _yl?)vl + alozvz +..t+ alo,(nfl)vn—l _ylo . =B

aglvl + (agz - J’S)Vz +..+ ag,(n—])vn—l - ygvn =B,

a(on—l it afn—l),ZVZ +..t+ (a(on—l)‘(n—l) -y S W, —

0 _
“ViyVa = B

n-1

0 0 0 _
AV + 4,V + ot ay )V, —V, =B

n-1 n

where y?, Jj=1,...,n is the solution of the system (17)

for the centers p° of the interval vector p while the
meaning of the remaining symbols is similar to [3].
Now system (19) can be written in a compact form

Ayv=B (20)
where Zo is the real coefficient matrix in (17) for p=p0.

Let C= ZO" , thus, (20) can be written in the form:

v=CB= —i (G, )u, —cr15° {i (C[:Ik)tk:lv— CTv+
k=1 k=1
vovi - (el —cT"
k=1

2y

n—l

where @k = [éik}r = Z%-/J? s T=[t,]; H{ = [amk ]T§
Jj=1

T
n—1
H, =[H,] {Zaﬁk} ciyj=lenm k=1,..,m;
=
7%and v are the same as vectors y° and v, respectively,

expect for the last element which is now zero; T, is the
last column of matrix 7. We note system (21) by the radii

r=d+Dr+ |C|rn}7 , (22)
with
d=-> (G, —c1 = (cHp Ju —cT7| (220)
k=1 k=1




D= (22b)

— {i(cﬁk )uk} —-CT

The matrix equation (22) is a non-linear real value
(non-interval) system of n equations of n unknowns r;:

(23)

n—1
ri=d.+ > D.r.-+r, Y |c..
! = A nj:l y

We solve system (23) for r; and, based on the component

reo+

b rp,i=1,.,n

C
m

Al
7, the outer bounds of the maximum eigenvalue y,, is:

y;,=y8+[—rn, rn]. (24)
The main result of this section is the following theorem.
THEOREM 2.1: Assume the solution r of system (23) is
positive. Then the outer bound on the range A" of the
maximum eigenvalue A(p) of (3) when pep is
y;l = y,? +r,:, where r,: =[-r,,r,] (25)
This theorem is valid for all the eigenvalues but to
simplify the presentation we formulate the theorem only
for the maximum eigenvalue.
The proof of the above theorem is similar to that of
Theorem 3.1 in [3] and will therefore be omitted.
Thus, it has been shown that the problem of finding an

outer bounds A" on A" reduces to solving the non-linear
(incomplete quadratic) system (23). Since system (23) is
only  mildly  non-linear, because of  the
products y,y; ,i=1,...,n., its solution does not present

any problem.

III. EXACT SOLUTION

In this section, the outer bounds on the solution of system
(11) will be applied in a method for computing the

interval hull (exact range) y*. It is assumed that a; (p)

(see (2), (11)) are continuously differentiable functions in
p- The method suggested is applicable only if certain
monotonic conditions are fulfilled. It is based on the
method suggested in [5], where the coefficients in the
system (11) are independent.

We are interested in expressing the derivative of y; with
respectto p, i =1,...,n; =1, ..., m. With this in mind,
we differentiate (11) in p; and on account of (2) we get:

n-1 n—1

oy; oy, ay;
zaij P ! *GLJ’i*)’naL:*z NV ;i + Nim
7=l P P P =1 (26)

n—1 bl n—1
Vi OVu .
Zan,-—— :—Z Nat ¥ j + Mt » 1= Loy (n-1)
j=1 apl apl j=1
oa,
Ny =——2i=le,n;j=1l.,nl=1.,m
where ' op, 27
da .
Mo = B et i =1y m
op;

We solve the system (26) using the method proposed in
Section II to determine the outer bounds of the

Y _p

derivatives e =Dy, pep (28)
I
So we obtain the intervals DS , h=1,..,n. With
%eDil,pep. (29)
I

We will make the following assumption:

Assumption A3: We assume that each estimation
D;, [ =1,..,m, satisfies either the condition
D;>0or D; <0 . 30)
On account of inclusion (29) the fulfillment of
Assumption A3 guarantees that y; is monotonic with
respect to each p;. Now we define two vectors as follows
pj"’,Di, >0,/ =1,.,m

2D, <0, 0=1,m

2D, 0,0=1,m

gj"),oi, <0,/=1,.,m

) _

p, = i=1..,n (3la)

i=1l..,n. (31b)

The exact range y of (11) can be found using the

following theorem.
THEOREM 3.1: If Assumption A3 holds for all i=1,...,n,

then the n-th component y; :(J’Z»;n) of the solution

vector y" is determined as follows:
1) y* is equal to the n-th component of the following

system solution

n—l1

D 4Py, = v,y +a,(p) =0, i=1,..(n-1)
j=l

(32a)

n—1

Zanj(g)yj_yn +ann(£):0'

j=1
2) )7: is equal to the n-th component of the following
system solution

n—1

D @, (P, =¥,y +a, (P)=0,i=1,..(n-1)
- (32b)

7

an/(p)y/_yn +ain(ﬁ):0'
=1

J

IV. INNER SOLUTION

Here, a simple iterative method for computing an inner
bounds y" on y* will be presented. It is assumed that a;;

in (2) are continuously differentiable functions of p.
We assume that none of the certain monotonicity
conditions (30) are fulfilled. In this case, we have the

following procedure for finding the lower end-point X;

of y;»' , i=1,...,n.

Procedure 4.1. For fixed i = k we start by evaluating
the derivative dy(p)=dy,(p)/dp, for p=p’. Let
dy=dy(p®),  A°=4p"),  n'=n(p’)  and
y0 :y(po). We find the solution d,?, of system (26)
with respect to (28) and using (31) form the vector
P =lpil
Then we solve the system (11) for the new vector p'

[ =1,...,m,(where Dy, is replaced with d,?l ).



n—1 1 1
jZ al'j(P )J’j —yny;+a,(p)=0
n

(33)

[l
LA

T4

1 Iy _
1a,,j(p )y j=yntapm(p)=0

pl EPYVEY i=l..,n
and find the solution y'. If
Vi< H (34)
y; is renamed 1y, pl are renamed po and the

procedure is resumed from the start; otherwise it is

terminate and the lower bound y;( is found.

We are interested only in y:l .
A similar procedure 4.2. is valid for determining the

upper end-point y}; of yk

V. NUMERICAL EXAMPLE
The circuit studied is shown in Fig. 5.1. Assuming that
R;eR;,LeL,CeC, the vector of parameters is
p=(R,,R,,R;,L,C) with R, = Ry =[99,101],
R, =[198,202], L =[0.49,0.51]H,  C =[240,260]uF .

Such systems arise in tolerance analysis of linear AC
electric circuits [1].
1

) ﬁ \? L iz(t)\bERz i3(t)¢/
R3
T c

~
I
2

It is seen from the example that the expressions (2) are
nonlinear functions of 5 parameters

_R+R 1 1
a=| Lk Li =14 M =T (35)
— - R; 0
Ck R,Ck

The linearization of a(p) is made by the methods
suggested in [2]. So we get the a;; as the affine functions:
ay] = -0.67 pj +0.0001633 p, —1.334 p3 +400.2 py - 200.087 + [~ 0.268 0.268]
ajp = 0.0022232 py —0.004446 p +1.3339 py —1.3338 +10™ *[- 6.78 6.78]
ay| = -4.4484p) +8.896 p3 - 5.34%100 ps +2.669%10% +[-3.1613.161]
ayy = 0.0445 py +0.0445 py +5.347 %10 ps — 40.085 + [~ 0.02234 0.02234]

According to (9) the vector y is:
y
Tl e
) A
o |»21 [x9] T 000366795
resp. Y = 10 = % = [ } 37
y) p) — 18 .244878
Applying (16) to (11) the nonlinear system (23) is:

~0.988/; —0.0000207, —0.00565;7, +0.0000644= 0
45.05016r; —2.02767r, —7.54341;r, +1.00325719=0

The solution of (39) is r=[0.0000655 1.0067]" .

Finally, from (24) we get the outer bound on the
maximum eigenvalue

y, =[-19.2516 -17.2382] (39)

(38%)

We calculate the derivatives 0y,(p)/dp,, i=1,2; I=1,..,5
for p € pusing the system (26). It can be checked that
the interval derivatives are positive except for the D,, , so
from (31) for vectors p and p we get

p=[99 198 101 0.51 0.00024] (40a)
p=[101 202 101 0.49 0.00026] (40b)

We are interested in the second component of the
solutions of systems (11) for (40a) and (40b). The exact
range is:

v, =[-19.21946 —17.3127] (41)

On account of (30) the sign of the derivatives
dy(p)=dvi(p)/dp;, k=1,2; I=1,....,5 for p = p° is the
same as those of Dy, respectively. So the inner bound of
the solution of system (11) is the same as the exact
solution obtained in (41).

VI. CONCLUSION

In this paper the problem of determining the outer and
inner bounds and exact range of the solution of nonlinear
system (11), where in general the coefficients are
nonlinear functions (2) of system parameters, is
discussed. A method for determining an outer solution y'
has been suggested in Section II. It is based on
THEOREM 2.1 and it reduces to solving the incomplete
quadratic system (23). The method is applicable if the
solution r of system (23) is positive.

A version of this method for finding the outer solution
can be used for determining the outer bounds of the
derivatives Dy, k=1,..,n; [ =1,...,m . If these bounds
satisfied conditions (30) the method, proposed in Section
III, can provide the exact solution for the eigenvalue
range of the maximum eigenvalue.

In Section IV, two simple iterative procedures for
determining a lower and upper bound of the inner

solution y" of (11) are suggested. The inner solution "

is the same as the exact solution y° because of the
derivatives Dy, are strictly positive or strictly negative

ie. 0gD,. So the signs of the derivatives djj are the
same as respective signs of interval derivatives Dy, .

A numerical example for analyzing the stability of
electrical circuit has been solved in Section V. It
illustrates the applicability of the above methods to
determine the outer and inner bounds as well as the exact
range of the eigenvalues of the system considered.
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