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Stability analysis of linear interval parameter 
systems via assessing the eigenvalues range 

Lubomir Kolev, Simona Petrakieva 
 

Abstract – The paper addresses the stability analysis of 
linear circuits and systems under interval parameter 
uncertainties. The problem is equivalent of estimating the 
eigenvalues of matrices, which elements are nonlinear 
functions of interval parameters. A method for obtaining 
the exact range of the eigenvalues is suggested. It can be 
applied if certain monotonicity conditions are fulfilled. A 
method for computing a tight outer bound on the eigenvalue 
range is also given. The outer bound is obtained as a 
solution of an algebraic nonlinear system.  A procedure 
based on an iterative method for determining an inner 
bound on the eigenvalue range is also proposed. A 
numerical example, illustrating the applicability of the 
methods suggested, is solved at the end. 
 
  Index Terms - robust stability analysis, eigenvalues of 
interval matrices with dependent coefficients. 
 

I.   INTRODUCTION  
he dynamic behavior of lumped parameters time 
invariant linear systems can be described by the 

state space model. The stability of these systems is 
related to the stability analysis of the linear system 
 )()( tAztz =& +Lu(t)  (1) 
where nitztz i ,...,1,)]([)( ==  - vector of state space 
variables; 

mjtutu j ,...,1,)]([)( ==  - vector of control signals. 
The elements of  matrix A are, in general, nonlinear 

functions of m parameters, which take on their values 
within prescribed intervals, i.e. 
 njippapa mijij 1,...,,),,...,()( 1 ==  (2) 

 msp ss ,...,1, =∈ p  .   (2a) 
System (1) is stable if and only if the eigenvalues of 

A(p), p∈p , have negative real parts. 
Ordinary letters will denote real quantities while bold 

face letters will stand for their interval counterparts. 
Thus, p and p are real and interval vectors of m 
parameters, respectively. 

The problem statement for interval matrices with 
independent coefficients was defined in [3] (for real 
eigenvalues) and in [4] (for the complex case). The main 
points of the problem formulation for the case of 
dependent coefficients will be briefly presented here. We 
consider the following “perturbed” eigenvalue problem: 
 A(p)x = λx, p∈p . (3)  

Each matrix A(p), p∈p , is assumed non-singular. 
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It follows from (2) and (3) that each eigenvalue λ and 
its corresponding eigenvector x are implicit forms of p. 

In this paper, we are interested in the intervals of the 
eigenvalues of (3).  

We will estimate only the interval of the maximum 
eigenvalue obtained by the (center, nominal) problem 
 A(p0)x = λx (4) 

In general, the methods suggested later can be applied 
for any other real eigenvalues.  

Let nkpp k 1,..., ),(max)( 00* == λλ (5) 
is a maximum eigenvalue while x* = [x1, x2,…, xn] is the 
corresponding eigenvector. We make the following 
assumption (ensuring structural stability of the problem). 

Assumption A1: Let )(* pλ  and )(* px , corresponding 
to all p∈p , remain real. 

On account of Assumption A1, the range 
 λ* = {λ(p): p ∈ p} (6) 
is a real interval. 

Without any loss of generality we need a second 
assumption. If the pair (x0, λ0) is the solution of (4) then 

Assumption A2: We assume that the absolute value of 
the n-th component 0

nx  of vector x0 is the largest 

component of the other components, i.e. 
 nixx in ≠≥ ,00  (7) 

If p-th component is the largest component, we need to 
interchange the places of the p-th and n-th row in A 
matrix as well as the position of the components xp and 
xn. 

Now x0 is normalized through  
 10 =nx . (8) 

Further, we require that (8) be also valid for 
 p∈= ppxn 1,)( .    (8a) 

We introduce the n-dimensional real vector 
 y  = (y1, y2, … , yn) (9) 

with 
 yi = xi(p), i = 1, ... , (n-1)  
 yn=λ(p) (10) 

Using (10), the eigenvalue problem (3) is rewritten as 
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where aij = aij(p), p∈ p. The system of interest (11) can be 
written in matrix form as: 
 0)()( =+− pAyyypA nn

(
, (11a) 



where )( pA
(

is the same as A(p) except for the n-th 
column which is zero, An(p) is the n-th column of A(p). 

It is seen that system (11) is nonlinear only because of 
the products .,...,2,1, niyy in =  

In previous papers of the authors, the problem of 
determining outer bound of the maximum eigenvalue of 
interval matrix with independent elements was solved 
([3] – for the real and [4] – for the complex case). The 
inner bound and the exact range for the maximum 
eigenvalue of interval matrix with independent elements 
were obtained in [5]. This paper is extension of the 
previous results for the case where the elements aij and bi 
are now dependent intervals (2). 

The solution of (11) is the set 
},0)()(:{)( pp ∈=+−= ppAyyypAyS nn

(
.(12) 

The interval hull of )( pS  will be denoted *y  and *y  

will be called exact range to (11). Any other 'y  such that 

'* y y ⊂  will be referred to as an outer bound to (11). 

Similarly, an interval vector "y  with the property 
*yy ⊆"  will be referred to as an inner bound to (11).  

The present paper addresses the problem of 
determining the outer and inner bounds and the exact 
range of the solution of (11). First, a direct method for 
computing a tight and cheap outer bound 'y  is presented 
in Section II. It is based on the approach suggested in [3] 
and [4]. In Section III, the exact range *y  to (11) is 
determined for the case when certain monotonicity 
conditions, regarding the derivatives of yi with respect to 
pj , are fulfilled. The method suggested is an extension of 
the approach from [5] (applicable to linear interval 
systems with independent elements) to the general 
nonlinear case of dependencies (2). It is based on the use 
of the outer solution method from the previous section. 
An iterative method for obtaining the inner bound "y  on 

*y  is presented in Section IV. It includes a procedure for 
obtaining the lower and the upper ends of the inner 
bound.  An illustrative example is considered in Section 
IV. 

 
II. OUTER SOLUTION 

To apply the approach considered bellow we need the 
following preliminary facts [2]. The functions defined by 
(11) are 
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The interval hull of ),( ypfi  is ),( ypifS , yp ∈∈ yp , . 
On account of the inclusion property 
 ypS ∈∈∈ y,pypypf ifi ),,(),(    (14) 

the linear interval forms of ),( ypifS  are: 
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From (14) it follows 

 pL ∈∈ pppa ijij ,)()( . 

To find the outer bound of p∈= ppy
n

),(λ  we will 
appeal to the approach suggested recently in [3] for the 
case of independent aij. Let 
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We apply (16) to (11) and we get the system: 
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We substitude the interval variables in (17) with  
 ijijijjjjkkk tgvyup +=+=+= 000 ,, gyp . (18) 
On account of (18) we get the following system 
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where njy j ,...,1,0 =  is the solution of the system (17) 
for the centers p0 of the interval vector p while the 
meaning of the remaining symbols is similar to [3].  

Now system (19) can be written in a compact form 
 BvA =0

~    (20) 

where 0A~  is the real coefficient matrix in (17) for p=p0.  

Let 1
0

~−= AC , thus, (20) can be written in the form: 
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0y( and v( are the same as vectors 0y and v, respectively, 
expect for the last element which is now zero; Tn is the 
last column of matrix T. We note system (21) by the radii 
 rrCDrdr n

(++= ,  (22) 
with 
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The matrix equation (22) is a non-linear real value 
(non-interval) system of n equations of n unknowns ri: 
 ni

n
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n

j jrijDidir 1,...,,
1

1

1

1
=∑

−

=
++∑

−

=
+=    (23) 

We solve system (23) for ri and, based on the component 
rn, the outer bounds of the maximum eigenvalue '

ny  is: 

 [ ]nn
n

n rryy ,0
' −+=  . (24) 

The main result of this section is the following theorem. 
THEOREM 2.1: Assume the solution r of system (23) is 
positive. Then the outer bound on the range λ* of the 
maximum eigenvalue λ(p) of (3) when  p∈ p is 
 'ry nn

'
n y += 0 ,  where ],[ nnn rr−='r  (25) 

This theorem is valid for all the eigenvalues but to 
simplify the presentation we formulate the theorem only 
for the maximum eigenvalue.  

The proof of the above theorem is similar to that of 
Theorem 3.1 in [3] and will therefore be omitted.  

Thus, it has been shown that the problem of finding an 
outer bounds 'λ  on *λ  reduces to solving the non-linear 
(incomplete quadratic) system (23). Since system (23) is 
only mildly non-linear, because of the 
products .,...,1, niyy in = , its solution does not present 
any problem. 

 
III. EXACT  SOLUTION 

In this section, the outer bounds on the solution of system 
(11) will be applied in a method for computing the 
interval hull (exact range) *y . It is assumed that )( paij  
(see (2), (11)) are continuously differentiable functions in 
p. The method suggested is applicable only if certain 
monotonic conditions are fulfilled. It is based on the 
method suggested in [5], where the coefficients in the 
system (11) are independent. 
We are interested in expressing the derivative of  yi with 
respect to pl, i  =1 ,…, n; l = 1, … , m. With this in mind, 
we differentiate (11) in pl and on account of (2) we get: 
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where 
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We solve the system (26) using the method proposed in 
Section II to determine the outer bounds of the 

derivatives  p∈=
∂
∂ pD
p
y

il
l

i ,  (28) 

So we obtain the intervals nhh
il ,...,1, =D . With  
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We will make the following assumption: 

Assumption A3: We assume that each estimation 
mlil ,...,1, =D , satisfies either the condition 

 0≥ilD  or 0≤ilD  . (30) 
On account of inclusion (29) the fulfillment of 
Assumption A3 guarantees that yi is monotonic with 
respect to each pl. Now we define two vectors as follows 
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The exact range *y of (11) can be found using the 
following theorem. 
THEOREM 3.1: If Assumption A3 holds for all i=1,…,n, 

then the n-th component ) ,(
***y nnn yy=  of the solution 

vector *y  is determined  as follows: 

1) *
n

y is equal to the n-th component of the following 

system solution 
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2) *
ny  is equal to the n-th component of the following 

system solution 
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IV. INNER  SOLUTION 
Here, a simple iterative method for computing an inner 
bounds "y  on *y  will be presented. It is assumed that aij  
in (2) are continuously differentiable functions of  p. 

We assume that none of the certain monotonicity 
conditions (30) are fulfilled. In this case, we have the 
following procedure for finding  the lower  end-point   "

i
y  

of "yi  ,   i = 1,…, n.  
Procedure  4.1. For fixed i = k we start by evaluating 

the derivative lkkl dppdypd /)()( =  for p=p0. Let  

)( 00 pdd klkl = , )( 00 pAA = , )( 00 pl ηη =  and 

)( 00 pyy = . We find the solution 0
kld of system (26) 

with respect to (28) and using (31) form the vector 
,,...,1,][ 11 mlpp l == (where Dkl is replaced with 0

kld ). 
Then we solve the system (11) for the new vector  p1 
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 niyp ,...,11 =∈∈ y,p,  
and find the solution y1. If   
 01

kk yy ≤  (34) 
1
ky  is renamed 0

ky , 1p  are renamed 0p  and the 

procedure is resumed from the start; otherwise it is 
terminate and the lower bound "

k
y is found.  

We are interested only in "
n

y . 

A similar procedure 4.2. is valid for determining the 

upper end-point "
ky  of "

ky .  
 

V. NUMERICAL EXAMPLE 

The circuit studied is shown in Fig. 5.1. Assuming that 

iiR R∈ , L∈L , C∈C , the vector of parameters is 
( )CLRRRp ,,,, 321=  with [ ]1019931 ,== RR , 
[ ]2021982 ,=R , [ ]H510490 .,.=L , [ ]µF260,240=C . 

Such systems arise in tolerance analysis of linear AC 
electric circuits [1]. 

-

+
R1

L
R2 R3

C

i1(t)
i2(t) i3(t)

e(t)

It is seen from the example that the expressions (2) are 
nonlinear functions of 5 parameters 
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The linearization of  aij(p) is made by the methods 
suggested in [2]. So we get the aij as the affine functions: 
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According to (9) the vector y is: 
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Applying (16) to (11) the nonlinear system (23) is: 
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The solution of (39) is [ ]T0067.10000655.0=r . 
Finally, from (24) we get the outer bound on the 
maximum eigenvalue 
 [ ]2382.172516.19'

2 −−=y  (39) 

We calculate the derivatives li ppy ∂∂ )/( , i=1,2; l=1,..,5 
for p∈p using the system (26). It can be checked that 
the interval derivatives are positive except for the 24D , so 
from (31) for vectors p and p we get 
 p = [99   198   101   0.51   0.00024] (40a) 
 0.00026]0.49101202[101=p  (40b) 

We are interested in the second component of the 
solutions of systems (11) for (40a) and (40b). The exact 
range is: 
 [ ]3127.1721946.19*

2 −−=y  (41) 
On account of (30) the sign of the derivatives 

lkkl dppdypd /)()( = , k=1,2; l=1,…,5 for p = p0 is the 
same as those of  Dkl respectively. So the inner bound of 
the solution of system (11) is the same as the exact 
solution obtained in (41).  

 
VI. CONCLUSION 

In this paper the problem of determining the outer and 
inner bounds and exact range of the solution of nonlinear 
system (11), where in general the coefficients are 
nonlinear functions (2) of system parameters, is 
discussed. A method for determining an outer solution 'y  
has been suggested in Section II. It is based on 
THEOREM 2.1 and it reduces to solving the incomplete 
quadratic system (23). The method is applicable if the 
solution r of system (23) is positive. 

A version of this method for finding the outer solution 
can be used for determining the outer bounds of the 
derivatives m,...,l;n,...,k,kl 11 ==D . If these bounds 
satisfied conditions (30) the method, proposed in Section 
III, can provide the exact solution for the eigenvalue 
range of the maximum eigenvalue. 

In Section IV, two simple iterative procedures for 
determining a lower and upper bound of the inner 
solution "y  of (11) are suggested. The inner solution "y  

is the same as the exact solution *y  because of the 
derivatives klD  are strictly positive or strictly negative 

i.e. ilD∉0 . So the signs of the derivatives 0
kld  are the 

same as respective signs of interval derivatives klD . 
A numerical example for analyzing the stability of 

electrical circuit has been solved in Section V. It 
illustrates the applicability of the above methods to 
determine the outer and inner bounds as well as the exact 
range of the eigenvalues of the system considered. 
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