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ABSTRACT

A generalization of sufficient conditions for global
asymptotic stability of the equilibrium x, =0 of
discrete-time neural networks described by systems which
have saturation nonlinearities on part of the states in the
case of interval uncertainties is considered. When using
quadratic form Lyapunov functions, sufficient conditions
based on the positive definite interval matrices are
presented. In order to check this a recent proposed method
for determining the outer bounds of eigenvalues ranges is
used. A numerical example illustrating the applicability of
the method suggested is solved in the end of the paper.

Key words: robust stability analysis, outer bounds on
eigenvalues of interval matrices with independent
coefficients

1. INTRODUCTION

It is well known that the model of discrete-time dynamical
systems with partial state saturation is [1]:

x(k+1) = g[Ax(k)], k=0,,... 1)
x(k) Y

where x(k)= eX! Ajy=| .. |:y;eR", yye D"+,
Xy (k) Y

Az[al-j]e R™ n=n; +n,,

D" ={y€ R™ :—-1<y, <1, i=1,...,l’l2},

X1 X
g(-x) = for x = |, x; € R™M , Xy € R™
sat (x ) Xy
sat(xy ) = [sat(xl), sat(x,, )]T,
L x;>1
sar(x;) =4 X;, -1<x;<1 -
-1, X; <-1

This general model describes also the discrete-time neural
networks [5] working on hypercube.

This type of nonlinear systems have been investigated by
many researchers (see e.g. [2]-[10]). They are stable if
x, =0 is the only equilibrium of system (1) and in this
case it is globally asymptotically stable. The condition of
stability of matrix A (i.e. every eigenvalue A, of A satisfy

|ﬁi|<1) does not ensure that x,=0 is a unique

equilibrium, and hence, it does not ensure that x, =0 is

asymptotically stable in the large. For this reason,
necessary and sufficient conditions of asymptotically
stability of system (1), are proposed in [1].

When the elements of matrix A are intervals there are
publications concerning the ranges of its eigenvalues in
the case of continuous- and discrete-time systems [11],
[14], [15] as well as inner and outer estimates of its
bounds [11], [13], [14], [15]. In some cases, the outer
estimates may be rather conservative (they overestimate
the range considerably) and lead to inconclusive stability
analysis results, but always they can be consider as
sufficient conditions for stability of the systems
considered.

The paper is organized as follows. The problem statement
when the elements of matrix A are independent intervals is
described in the next section. A method for obtaining the
outer bounds on the studied eigenvalues is presented in
Section 3. Numerical example illustrating the applicability
of the new method is solved in Section 4. The paper ends
up with concluding remarks in the last Section 5.

2. PROBLEM STATEMENT

Examine system (1). In practice the elements of matrix A
cannot be determined exactly. Hence we will consider
them as independent intervals. (In general, they are
dependent intervals, but in first case the outer bounds of
the eigenvalue ranges are larger which guarantee the
stability of the system studied). Let A be a real n x n
matrix, A - an interval matrix containing A, and A", A, A°
and R, — the left end, the right end, the center and the
radius of A, respectively (throughout the paper, bold face
letters will be used to denote interval quantities while
ordinary letters will stand for their non-interval
counterparts).

2.1. STABILITY OF THE CENTRAL PROBLEM
Based on [1] we apply the Corollary 1 of Theorem 1 for

the central matrix A° , 1.e. the equilibrium x, =0 of time-

discrete neural networks described by system (1) is
globally asymptotic stable if

J4+°

<1, for some p=12,00. 2
4

This result is obtained by choosing a Lyapunov function
Vix)= ||x||1’20r‘>o .

Let y, =sat(y) for ye RY and let H denote a positive
define matrix. Assume that



vy Hy, <y Hy 3)
for all yeR', yeD'={yeR¥: 1<y <li=l..N. If
quadratic form Lyapunov function, based on the

Assumption (A-2) from [1] is taken, then the necessary
and sufficient condition for stability of central matrix

A° are connected with a N x N positive define matrix H.
This matrix satisfies the Assumption (A-2) if and only if
N

hpz Y|l =N (4)
j=1,j#i
Then the Theorem 2 from [1] can be written in the form:
Theorem 1: The equilibrium x, =0 of system (1) for A°

is globally asymptotically stable, if A is stable and if

there exist positive definite matrices H,; € R™*" and

H, € R®™" with H, satisfying (4) (with N =n,),

0 _ o)\l 0 . .. .
such that Q" =H —|A"] H A" is positive semidefinite,
H, 0
H= . (@)
0 Hy

2.2. STABILITY OF THE INTERVAL PROBLEM
When the elements of matrix A are independent intervals,
ie. Ae A, in accordance with the approach [1] to
investigating the asymptotic stability of (1), we consider
the two "perturbed" eigenvalue problems - first, for
stability of interval matrix A

Ax=Ax, AcA=|a", A*|=A"+[-R,. R,] (©
and second—for positive definite interval matrix @, Q€ Q

where

0=H-(a ) HA Aca, %)
Ox=Jv, AcA=|A", A*|=A°+[-R,. R,]. ®
where matrix H has the same structure defined by (5). It
is seen from (8) that matrix Q is implicit function of A.
Based on [1] it can be formulated the following interval
criterion for asymptotic stability of (1) if A€ A:
Theorem 2:The equilibrium of the discrete neural network
described by (1) is asymptotic stable if
1) interval matrix A is stable, i.e. all of its
eigenvalues satisfied the condition

|/1;*(A)|<1, AcA, i=l..n , )

and
i)  interval matrix @ is positive semidefinite,
i.e. all of its eigenvalues satisfied the condition
2(A)20, Ac A, i=1,...n. (10)
For simplicity of the presentation in next sections we will
note the ranges of eigenvalues of matrices A and matrix Q,
with I and its outer bounds — with I.

3. OUTER BOUNDS ON THE RANGES FOR THE
EIGENVALUES OF INTERVAL MATRICES
There are a variety of methods for obtaining the outer
bounds on the exact ranges for the eigenvalues of interval
matrices with independent elements ([11], [12], [13]). In
this paper, the method proposed in [12] — for real case and
[13] — for complex case, is used because it provides the

tight and cheap outer bounds of the ranges considered.

3.1. OUTER BOUNDS OF THE RANGES OF THE
EIGENVALUES OF INTERVAL MATRIX A
Consider again (6). It is seen from (6) that both A and x

are functions of A, ie. A=1(A) and x=x(A). Let

x(k)(A):(xl(k)(&, xg‘)(A), s xflk)(A))T be the -eigenvector,
corresponding to 4, (A), k=1,..,n. Now let the pair
(/10, xo) be the solution of the nominal (centre) problem

A'x=)x. (11).
Assume that n <n of the components 4, of the

eigenvalue vector A° are real while the remaining n—n
eigenvalues are complex. To simplify the presentation of
the Method for obtaining outer bounds, we start by first
considering the case of real eigenvalues of A.

A. Real eigenvalues of A
We need the following assumption (ensuring structural
stability of the problem).

Assumption Al: For any ke K = {1n} all 4(A) and
x®(A) remain real forall Ac A.
On account of Assumption Al, the intervals I Z for

ke K will, in this case, be real intervals
I, ={4,(A): Ac A}, ke K .
Thus, 1 ,: is the range of A;(A) when A€ A.

For notational simplicity, we shall henceforth drop the
index k.

In this subsection, we are interested in finding an outer
bound I on I, i.e. an interval I with the property

I"cI.

12)

13)

Thus, the problem at hand is the following

Problem PI: Find an outer bound I on I', ie. an
estimation I having the inclusion property (13).

We now suggest a Method for finding a "tight" outer
bound I on I*, i.e. a bound with a small overestimation. To
simplify the presentation of the Method (without loss of
generality), we need an additional assumption concerning

the real eigenvector x° related to the real eigenvalue /lko
considered.

Assumption A2: We assume that the nth component x,? of

X has the

0 o| .
n 2|x,- |, i=1,..,n.

largest absolute value, ie.

X

Remark 1: In the general case where the index of the
largest component is s, we just substitute s for # in all the
relationships involved.

Now x° is normalized (dividing X by x,? ) to have

(14a)

Further, we require that (14a) be also valid for x,(A), i.e.
x2(A)=1, Ac A. (14b)

Condition (14b) simplifies the new Method for computing

I to be presented below.
We first introduce the n-dimensional real vector

v

0 _
x, =1.

T (15)



yi =x;(A), i=1..,n-1

with ! . (15a)
Vo = AA)
Using (15) and (14), (6) is rewritten as
n—1
Zaijyj -y, ta;, =0, i=1..,n-1
o . (16a)
anjyj —YVa T Ay, =0
j=1
where a;ea; =la,-;, a,;J, (16b)
a; and a being the elements of matrices A” and A¥,

respectively. System (16) is a nonlinear (more precisely,
an incomplete quadratic) system because of the products
¥, Y; in the first n-1 equations in (16a).

Let y: denote the range of the ith component
y;(A), Ae A of the solution y to (16). Let y" be the

vector made up of y;

Problem P2: Find an outer solution y to (16), i.e. a
solution enclosing the range vector y':
ycy. 17)
Obviously, the nth component of the solution y to
Problem P2 is a solution to the original Problem P1.
We now proceed to solving Problem P2. The
approach adopted is based on ideas suggested recently in
[14], [15]. If z=z,4+ue z and t=t, +vet, withz and

. Consider the following problem.

t being intervals whose centers are z, and #,, respectively,
then
€ —zZotg + 1oz + Zpt + 1.7,

, 1.1 (18)

where r, and r, are the respective radii. After letting

19

_ 0
ag =a; tu;, y; =

i y, +v;,0,j=1,.

where ag- are the elements of the centre matrix A° and

y,Q are computed from (15) with A=A and

u; =[-R(ay;), R(ay)l, v;=[-r(y;), r(y;)]. We
apply (18) to express the products in (16a). On
substitution of (19) into (16a), having in mind that the
centers a,-(}
techniques of [13], we get the system

and y? satisfy system (16a) and following the

(a), =y v, +apy, +..+a), v, ,—yv, =b,

ayy, +(a, =y, +.. +az”1 —Yv, =b,

.............................................................. (20a)
0 0 0

nl lv +an12v + +(anln71yn)vnfl _yn-lvn :bn-l

av+av+ +a v

nl nn-1"n-1

vn = bn

where b; are intervals. It can be easily checked that their
radii are

R®)= Z\Wi +R, +ZR]r +rp, i=12,—1 (20b)

nl

R®,)= Z| Y (20¢)

n]

where R;; are the elements of R, while , = R(v,) is the

radius of the unknown interval v;. Now system (20) can be
written in compact form

v=A"'b, beb @1)
where Ao_ ' is the real coefficient matrix in (20a).
Assuming A" s invertible, let C=|Ag'|. If

T
r= (rl R R rn) and r, denotes a column vector

with components from (20b) and (20c), then from (21)

r= Crb . (22)

Now we introduce the matrix: R which is the same as R
except for the last column whose elements are now zeros.
Using (20b), (20c) and the new notation, (22) can be put
in the form
r= CR|x0| + CRr +Cg(r) (23)
where x° is the normalized eigenvector and g(r) is a
nonlinear function with components g,(r)=rr,,
i=1,.,n-1, g,(r)=0. Thus, (23) becomes
r=d+Dr+Cg(r) (24a)
with
d= CR|x0 | D=CR. (24b)

The matrix equation (24a) is a nonlinear real-valued (non-
interval) system of n equations in n unknowns r;:

n-1
n=dt 3 dyr Zcu,, i=ln, 25
=1

The smallest positive solutions r; of (25) solve Problem
P2. Indeed, if r;> 0, we can introduce the intervals

yi=y?+[—rl-, rl-], i=1..,n (26)
It can be proved that
y, Cy.i=l..n @27

i.e. the intervals (26) are really outer bounds on the ranges

yi* for all i. Hence, the interval

y, =y, +l-r, 1] (28)
is the solution to the original Problem P1 since it is, in
fact, a bound I on I satisfying the inclusion (13). More
precisely, we have the following theorem.

Theorem 3: If the nonlinear system (25) has a positive

. 0 .
solution r = (r , rn) that can be attained by

1° 7

22
the simple iteration Method with initial vector r%=0, then
the interval (28) is an outer bound on the range I' of the
real eigenvalue 4(A) considered (for a given k from K .
The present Method for solving the original Problem P1
will be referred to as Method M1. As shown above, it
comprises, essentially, the following computations. First,
the “nominal” eigenvalue problem (11) is solved. Then,
for each k€ K, the nonlinear system (25) is set up and
the simple iteration Method is applied to find the solutions
r;, i=1,..,n.If all r; are positive, the outer bound I on

the corresponding eigenvalue 4, (A), A€ A, is obtained
by the interval (28). Since, in practice, R4 are only small



0

percentage of a;; , system (25) is mildly nonlinear and its

solution does not present any difficulties.

B. Complex eigenvalues of A
In this subsection, we are interested in the complex
eigenvalues of (6), i.e. in finding outer bounds on the

range I,f > with ke K”={n'+1,...,n}. In order to
enclose (I Z )a, we need to introduce additionally the
ranges
(1] ). = Rela (A)]: Ac A}, (292)
(1), = fmla, (4)]: A€ A} (29b)
To simplify notation, we again drop the index k and
consider the intervals (I :)Re, (I :)Im and (I ' )a. The

corresponding outer bounds will be denoted I, I}, and
I,. So

Ip.clg,, Iy, 1y, (30a)

I, cl,. (30b)

If Ig. and I, are found, then the bound I, can be
computed as

1, = Iz +1, 31

Thus, if suffices to solve the following problem.
Problem P3: Find an outer bound Iy, on Iy, and an

outer bound I, on Iy, .

In this subsection the Method M1 will be extended to
solve Problem P3. This general Method will be referred to
as Method M2.
Let

)“:)“Re + j/llm > X (32)
As in the case of Method M1, we appeal to Assumption
A2 and normalize the complex 0

eigenvalue x
(corresponding to a fixed ke K') through dividing all

i =Xige t Ximm» i=Lo,n.

components of x” by X,?,Re
=a. (33)

Further, we require that (33) be also valid for all A€ A,
i.e.

0 _ 0
xn,Rc =1 ’ xn,Im

X,re(A) =1L x, (A=, Ac A. (34)

We introduce the 2n-dimensional real vector y with
components

Vi = Xige(A), i=1..,n—1

Yn = Age (A)) i
Yori = Xim(A), i=1L..,n—1 (35)
Yon = )“Im (A)

On substitution of (32) into (6), using (35), (6) becomes

n-1
Zal-jyj =y Ha, + ¥, 4 =0, i=1...,n—1
=
n-1
Zanjyj Y +alm +y2na=0
j=1
! (36a)
n-1
ZaijynJrj T YnIn+i +ain ~Yondi = 0, i=1..n-1
=]
n-1
ZanjynJrj YOty =Yy, = 0
j=1
where a;ea;. (36b)

Let y;” denote the range of the ith component yi(A),
A€ A of the solution to (36); let y* be the vector made
up of y;” . Consider the following problem:
Problem P4: Find an outer solution y to (36), i.e. a
solution enclosing the range vector y ":

y cy. 37
Obviously, the nth and 2nth components of the outer
solution y to (36) provide the solution to the original
Problem P3.
To solve Problem P4, we put a; and y; in the centred form
(19), i.e.

(38a)
(38b)

and apply the same approach as in the real case (Method
M1). Now the system, corresponding to system (20), is

_ 0 .
aij—al-j+ul-j,l,]—1,...,n

yi:y?+vi, Vievi,i=1,...,21’l

00 0 0 0 o _
(@1 =YV + a3 F oo F Gy Vg = NVt YpaVan =by
0 0 0 0 0 0o _
G+ (@ = V) ot Gy Vo~ Y2V F ViV, =0,
0 0 0 0 0 0 _
Gt W+ G P2+t @t = Y Vet — VpetVn + VantVon =B
0 0 0 _
Ay +aVy +otdy, vV, =V, + Y, =D, . (39
P | Z90 0 —p
17 YVt T OV Toot G Vop = YotV = N Von =0t
0 00 0 0 0 _
Gt (@ = Y Wsa +oeF Qo Vayg = YnsaVn = ¥2Von =Dy
0 0 0 0 0 0 _
Gy Vpt + Gy Pz F oot (G g = YVt = VanetVn — YanatVon =Dy
0 0 0 _
AWy + V) + oA Gy 1V, — 08, — Vo, =hy,

It can be easily checked that the radius of b; is

n—l n—l
)= R|¥|+ Y Ryt R+ 1 + s i=Lni=1 - (400)
J= J=

n—1 n—l1
rB,)= Y Ryly9|+ D Ryr; + Ry, (40b)
j=l j=l
n—l n—l
f(bm):Zle }’gﬂ’ +Zij’;1+j +Ry, + 1yl + 1ty i=1n—1 (40c)
Jj=1 Jj=1
n—1 n—1
0
Fb)= D Rylyuuj|+ D Ryrus; +R,y  (40d)
j=l j=l
Now system (39) can be written in a compact form
Ayy=b (41)

where on is the real coefficient matrix in (39). Let

, ~ -1
C :‘(AO) and 7 =(r,7y,...,15,)" With 7, =R(¥,)




where v; are the increments of y; in (38b) (v; € v; ). From
41)
(42)
Using exactly the same techniques as in Method M1, on
substitution of (40) into (42) we get the nonlinear system
r=d +D'r+C g(r) (43)
which has a structure similar to system (24). If (43) has a
positive solution r which can be attained by the simple

iteration Method, starting from P = 0, then this solution
solves Problem P4. Indeed, we can introduce the intervals

r=Crny.

yi=y +[-r, 1], i=1,...2n. (44)
Once again, similarly to Theorem 3, we have
y; Cy;.i=1..2n. (45)
Hence, the intervals
y;1:y2+[_rn? rn] (463)
y'2n = ygn + [_an > Top ] (46b)

provide the solution to the original Problem P3. More
precisely, we have the following theorem:

Theorem 4: If the nonlinear system (43) has a positive
solution r that can be attained by the simple iteration
Method with initial vector r°=0, then the intervals (46a)
and (46b) determine the outer bounds Iy, and Iy, on the

ranges I ;e and 1 ;m , respectively.
The proof of Theorem 4 is similar to that of Theorem 3.

On account of Theorem 4, the outer bound I, can be
computed as
I, =13, +1}, . 47

Conclusion: If all the outer bounds |/lf4 (A)| <1, Ae A,

i=1,...,n then interval matrix A is stable.

3.2. OUTER BOUNDS ON THE RANGES FOR THE
EIGENVALUES OF INTERVAL MATRIX Q
Based on (7) we form the interval matrix Q with

independent elements:

0=0"+[-Ry, R, 48)
where 0°=H-(a°) HA", (482)
Ry=(R,)"|H|R,. (48b)

The application of the new Method for obtaining the outer
bounds of the ranges of @, described in the previous
subsection lead to the following conclusion.

Conclusion: If all the outer bounds ‘/IIQ (A)‘ >0 Ae A,

4 =1,...,n then interval matrix Q is positive definite.
Final conclusion: If the interval matrix A is stable and

interval matrix Q is positive definite, then the discrete-
time neural network considered is asymptotically stable.

4. NUMERICAL EXAMPLE
To demonstrate the applicability of the present method,
we will solve the following problem. Let the interval
matrix A of the discrete-time neural network studied is

A=A"+[ Ry, Ry with

04 -02 : 0 -02 05
-05 -05 : 0.2 0 0
oo e e, (49a)
0 -03 : -02 03 04
0.1 0 -01 08 0.1
0 0.1 0.05 03 -038
R, =0.01%A" (49b)
where n =2, n,=3.
Hence n=n; +n,=5.

4.1. STABILITY OF THE CENTRAL PROBLEM

Stability analysis of system (1) when A= A" is described
in details in [1]. The main points of the investigation will
be briefly presented here again. First, we check condition

@), ie. if ||A°||p <1, for some p=12,00. The results

show that (2) fails for p=1,2,00
asymptotical stability test. Then we apply Theorem 1 and
choose the matrices

o |05 06
"“loe 13| Hu=
where matrix Hj; satisfies (4). We compute matrices H

(according to (5)) and QO =H- (AO )TH AY . Since Q0 is
positive definite, the equilibrium x,=0 of system (1) is
globally asymptotically stable for A = A°.

as a global

1.6 -0.9 0.6
-0.9 1.6 -06]" (50)
0.6 -0.6 2.1

4.2. STABILITY OF THE INTERVAL PROBLEM
4.2.1. STABILITY OF INTERVAL MATRIX A
The corresponding eigenvalue problem is
ail.xl +ai2X2 +ai3X3 +ai4X4 +ai5x5 —MI- ZO,
.. . (51
a; €a;, iL,j=1..5 1)

First, we solve (51) where a; =a’ to find the pair

/)
(/10, x° ) In this case

22 =[07497 05052 —08780 —03385+ /00605 —03385-700605]' (52a)

and we will confine ourselves to finding an outer bound 1
on the range I' for the third (k=3) real eigenvalue

2% =10 =-0.8780 (since its absolutely value is closer to
1). Therefore the bound I is computed using the method
MI1. Supporting that Assumption Al holds, we normalize
the eigenvector  x° :[x?];r:lws.Since ‘xg :ma)(x?),

i=1,...5, Assumption A2 does not hold. In accordance

with Remark 1, we have to change index n with the index
corresponding to the maximum value component (in this
instance, with 1). So

x"=[-0.4388 —02312 —0.6601 —0.0728 1]".(52b)

Thus, the vector y0 is
¥ =[-0.4388 -0.2312 -0.6601 -0.0728 0.8780]" (53a)

and y =y, v v v vs) =ln m x o AT (53b)
Thus for the example considered system (16a) becomes
@Yty +a;3Y3 +agyy+as = y;ys =0, i=1,.

4
.(54)
sy Yy +dsyy, +ds3y3 + sy Yy +dss —ys =0



The solution of (25) for the example considered, obtained
by the simple iteration method, has the components
r=[0.0442 0.0248 0.0589 0.1093 0.0456]" . (55)
As all radii are positive, by Theorem 3 and (52a), the
outer bound 1 is
I=ys=y0+[-r5, rs]=[0.8324 0.9235].  (56)
From (56), it follows that the interval matrix A, is stable.

4.2.2. POSITIVE DEFINITENESS OF INTERVAL
MATRIX Q
We substitute the interval matrix A, defined by (49), in (7)

and get the matrix Q in interval form Q, where
03190 03540 @ 00830 —0.1030 00220
03540 07060 :

0.0895 —0.1310 0.3710, (57a)
B
00830 00895 : 15048 —-0.8215 0.6570
-0.1030 -0.1310 : -08215 0.8350 -0.3450
00220 03710 i 06570 03450 07190
00661 0.0578 : 00215 00273 00350
0.0578 0.0666 0.0315 0.0623 0.0716
103 (57b)
0 0.0215 0.0315 0.0191 0.0538 0.0501

0.0273 0.0623

0.0537 0.02205 0.1807

0.0350 00761 : 0.0501 0.1807 0.2293
The eigenvalues of central matrix Q° are:
10 =[2.4480 0.9481 0.0098 0.4399 0.2379] . (58)
It is seen that all the eigenvalues from (58) are real.
Hence, we apply the Method M1 fifth times for all of
them to obtain the outer bounds of their ranges, when
A€ A . The results of computations are following:

[2.4408 2.4483
0.9479  0.9483
I= [040095 o.o1oo] ’ 59
0.4395  0.4403
0.2376  0.2382

It is seen from (59) that the left bounds of all the
components of interval vector I are positive. Therefore the
ranges of all eigenvalues of interval matrix Q are positive
and finally it follows that matrix Q, when A€ A, is
positive semidefine.

Since interval matrix A is stable and interval matrix Q is
positive semidefine, the neural network studied (1), with
Ae A consider (49), is asymptotically stable.

5. CONCLUSIONS

The problem of stability analysis of discrete-time neural
network considered reduces to two tasks for assessing the
intervals of the eigenvalues of interval matrices when
A€ A . First, the interval matrix A has to be stable, i.e.

|4t )| <1, A€ A, i=1,...n. Second, the interval matrix

0 has to be positive semidefine, ie.
A2(A)>0, Ae A, i=1,...n. Both tasks use the same

technique. It consists of obtaining the outer bounds on the
ranges for the eigenvalues of matrices A and Q(A), when
Ae A . A recently proposed method for determining these
outer bounds has been applied. It requires the evaluation
of the eigenvalues and the corresponding eigenvectors
from (11) for the center matrix A’. Two versions of the

Method ( for real and for complex eigenvalues, which are
named M1 and M2) are discussed. The Method M1
essentially consists of setting up and solving the system of
n non-linear equations (25) for the positive solutions
r,, i=1,...,n. The solution of the original problem PI is

then found by the radius r, according to formula (28). The
Method M2 essentially consists of setting up and solving
the system of 2n non-linear equations (43) for the positive
solutions r;, i =1,...,2n. The solution (47) of the original

problem P3 uses the radii 7, and r,, according to (46). The
conclusions about both Q and A are similar.
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