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ABSTRACT 

A generalization of sufficient conditions for global 

asymptotic stability of the equilibrium 0=ex  of  

discrete-time neural networks described by systems which 

have saturation nonlinearities on part of the states in the 

case of interval uncertainties is considered. When using 

quadratic form Lyapunov functions, sufficient conditions 

based on the positive definite interval matrices are 

presented. In order to check this a recent proposed method 

for determining the outer bounds of eigenvalues ranges is 

used. A numerical example illustrating the applicability of 

the method suggested is solved in the end of the paper. 
 
Key words: robust stability analysis, outer bounds on 

eigenvalues of interval matrices with independent 

coefficients 
 

1. INTRODUCTION 

It is well known that the model of discrete-time dynamical 

systems with partial state saturation is [1]: 
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This general model describes also the discrete-time neural 

networks [5] working on hypercube. 

This type of nonlinear systems have been investigated by 

many researchers (see e.g. [2]-[10]). They are stable if  

0=ex  is the only equilibrium of system (1) and in this 

case it is globally asymptotically stable. The condition of 

stability of matrix A (i.e. every eigenvalue iλ of  A satisfy 

1<iλ ) does not ensure that 0=ex  is a unique 

equilibrium, and hence, it does not ensure that 0=ex  is 

asymptotically stable in the large. For this reason, 

necessary and sufficient conditions  of  asymptotically 

stability of system (1), are proposed in [1]. 

When the elements of matrix A are intervals there are 

publications concerning the ranges of its eigenvalues in 

the case of continuous- and discrete-time systems [11], 

[14], [15] as well as inner and outer  estimates of its 

bounds [11], [13], [14], [15]. In some cases, the outer 

estimates may be rather conservative (they overestimate 

the range considerably) and lead to inconclusive stability 

analysis results, but always they can be consider as 

sufficient conditions for stability of the systems 

considered.  

The paper is organized as follows. The problem statement 

when the elements of matrix A are independent intervals is 

described in the next section. A method for obtaining the 

outer bounds on the studied eigenvalues is presented in 

Section 3. Numerical example illustrating the applicability 

of the new method is solved in Section 4. The paper ends 

up with concluding remarks in the last Section 5. 

 

2. PROBLEM STATEMENT 

Examine system (1). In practice the elements of matrix A 

cannot be determined exactly. Hence we will consider 

them as independent intervals. (In general, they are 

dependent intervals, but in first case the outer bounds of 

the eigenvalue ranges are larger which guarantee the 

stability of the system studied). Let A be a real n x n 

matrix, A - an interval matrix containing A, and A
-
, A

+
, A

0
 

and RA – the left end, the right end, the center and the 

radius of A, respectively (throughout the paper, bold face 

letters will be used to denote interval quantities while 

ordinary letters will stand for their non-interval 

counterparts). 

 

2.1. STABILITY OF THE CENTRAL PROBLEM 

Based on [1] we apply the Corollary 1 of Theorem 1 for 

the central matrix 0
A , i.e. the equilibrium 0=ex  of time-

discrete neural networks described by system (1) is 

globally asymptotic stable if 

 ∞=< ,2,1somefor,10
pA

p

. (2) 

This result is obtained by choosing a Lyapunov function 

∞
=

or2,1
)( xxV . 

Let )(ysatys =  for NRy ∈  and let H denote a positive 

define matrix. Assume that  
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for all { }NiyRyDyRy i
NNN ,...,1,11:, =≤≤−∈=∉∈ . If 

quadratic form Lyapunov function, based on the 

Assumption (A-2) from [1] is taken, then the necessary 

and sufficient condition for stability of central matrix 
0A are connected with a N x N positive define matrix H. 

This matrix satisfies the Assumption (A-2) if and only if 
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Then the Theorem 2 from [1] can be written in the form: 

Theorem 1: The equilibrium 0=ex  of system (1) for 0A  

is globally asymptotically stable, if  
0A  is stable and if 

there exist positive definite matrices  11 x nn
I RH ∈  and 

22 x nn

II RH ∈  with IIH  satisfying (4) (with 2nN = ), 

such that ( ) 0T00
AHAHQ −=  is positive semidefinite, 
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0
. (5) 

 

2.2. STABILITY OF THE INTERVAL PROBLEM 

When the elements of matrix A are independent intervals, 

i.e. A∈A , in accordance with the approach [1] to 

investigating the asymptotic stability of (1), we consider 

the two "perturbed" eigenvalue problems – first, for 

stability of interval matrix A  

 [ ] [ ]AAA RRAAAAxAx ,,, 0 −+==∈= +−λ  (6) 

and second–for positive definite interval matrix Q, Q∈Q  

 ( ) A∈−= AAHAHQ ,
T

, (7) 

 [ ] [ ]AAA RRAAAAxQx ,,, 0 −+==∈= +−λ , (8) 

where matrix H  has the same structure defined by (5). It 

is seen from (8) that matrix Q is implicit function of  A.  

Based on [1] it can be formulated the following interval 

criterion for asymptotic stability of (1) if A∈A : 

Theorem 2:The equilibrium of the discrete neural network 

described by (1) is asymptotic stable if    

i) interval matrix A is stable, i.e. all of its 

eigenvalues satisfied the condition 

  niAA
A
i ,...,1,,1)( =∈< Aλ   , (9) 

and 

ii) interval matrix  Q is positive semidefinite, 

i.e. all of its eigenvalues satisfied the condition 

 niAA
Q
i ,...,1,,0)( =∈≥ Aλ . (10) 

For simplicity of the presentation in next sections we will 

note the ranges of eigenvalues of matrices A and matrix Q, 

with I
*
 and its outer bounds – with I. 

 

3. OUTER BOUNDS ON THE RANGES FOR THE 

EIGENVALUES OF INTERVAL MATRICES 

There are a variety of methods for obtaining the outer 

bounds on the exact ranges for the eigenvalues of interval 

matrices with independent elements ([11], [12], [13]). In 

this paper, the method proposed in [12] – for real case and 

[13] – for complex case, is used because it provides the 

tight and cheap outer bounds of the ranges considered.  

3.1. OUTER BOUNDS OF THE RANGES OF THE 

EIGENVALUES OF INTERVAL MATRIX A 

Consider again (6). It is seen from (6) that both λ  and x  

are functions of A , i.e. )(Aλλ =  and )(Axx = . Let 

( )T)()(
2

)(
1

)(
)(,...,)(,)()( AxAxAxAx

k
n

kkk
=  be the eigenvector, 

corresponding to )(Aλk , nk ...,,1= . Now let the pair 

( )00
, xλ  be the solution of the nominal (centre) problem 

 xλxA =0 . (11). 

Assume that nn ≤'  of the components λk of the 

eigenvalue vector λ0  are real while the remaining '
nn −  

eigenvalues are complex. To simplify the presentation of 

the Method for obtaining outer bounds, we start by first 

considering the case of real eigenvalues of A. 

 

A. Real eigenvalues of  A 

We need the following assumption (ensuring structural 

stability of the problem). 

Assumption A1: For any { }'' ,...,1 nKk =∈ , all λk(A) and 

x
(k)(A) remain real for all A∈A . 

On account of Assumption A1, the intervals *
kI  for 

'
Kk ∈  will, in this case, be real intervals 

 { } '*
,:)( KkAAkk ∈∈= AI λ . (12) 

Thus, *
kI  is the range of  λk(A) when A∈A . 

For notational simplicity, we shall henceforth drop the 

index k. 

In this subsection, we are interested in finding an outer 

bound I on I
*
, i.e. an interval I with the property 

 II ⊂
* . (13) 

Thus, the problem at hand is the following 

Problem P1: Find an outer bound I on I*, i.e. an 

estimation I having the inclusion property (13). 

We now suggest a Method for finding a "tight" outer 

bound I on I
*
, i.e. a bound with a small overestimation. To 

simplify the presentation of the Method (without loss of 

generality), we need an additional assumption concerning 

the real eigenvector x
0
 related to the real eigenvalue 0

kλ  

considered. 

Assumption A2: We assume that the nth component 0
nx  of 

x
0
 has the largest absolute value, i.e. 

nixx in ,...,1,
00

=≥ .   

Remark 1: In the general case where the index of the 

largest component is s, we just substitute s for n in all the 

relationships involved. 

Now x
0
  is normalized (dividing x

0
  by 0

nx ) to have 

 1
0

=nx . (14a) 

Further, we require that (14a) be also valid for xn(A), i.e. 

 A∈= AAxn ,1)(0 . (14b) 

Condition (14b) simplifies the new Method for computing 

I to be presented below. 

We first introduce the n-dimensional real vector 

 ( )T21 ...,, nyyyy =  (15) 
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Using (15) and (14), (6) is rewritten as  
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where [ ]+−=∈ ijijijij aaa ,a , (16b) 

−
ija  and +

ija  being the elements of matrices A
- and A

+, 

respectively. System (16) is a nonlinear (more precisely, 

an incomplete quadratic) system because of the products 

in yy  in the first n-1 equations in (16a). 

Let *
iy  denote the range of the ith component 

A∈AAyi ),(  of the solution y to (16). Let y
*
  be the 

vector made up of *
iy . Consider the following problem. 

Problem P2: Find an outer solution y to (16), i.e. a 

solution enclosing the range vector y*: 

 '*
yy ⊂ . (17) 

Obviously, the nth component of the solution y to 

Problem P2 is a solution to the original Problem P1. 

We now proceed to solving Problem P2. The 

approach adopted is based on ideas suggested recently in 

[14], [15]. If z∈+= uzz 0  and t∈+= vtt 0 , with z and 

t being intervals whose centers are z0  and t0, respectively, 

then  

 ],[0000 tztz rrrrtzzttzzt −+++−∈  (18) 

where rz and rt are the respective radii. After letting  

 ijijij uaa +=
0 , iii vyy += 0 , i, j = 1,…, n, (19) 

where 0
ija  are the elements of the centre matrix A

0
  and 

0
iy  are computed from (15) with 0

AA =  and 

)](),([ ijijij aRaRu −= , )](),([ jjj yryrv −= . We 

apply (18) to express the products in (16a). On 

substitution of (19) into (16a), having in mind that the 

centers 
0
ija  and 0

iy  satisfy system (16a) and following the 

techniques of [13], we get the system 
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where bi  are intervals. It can be easily checked that their 

radii are 
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where Rij are the elements of RA while )(
ii

Rr v=  is the 

radius of the unknown interval vi. Now system (20) can be 

written in compact form  

 b∈= −
bbAv ,

~ 1

0
 (21) 

where 1
0

~ −
A  is the real coefficient matrix in (20a). 

Assuming 1
0

~ −
A  is invertible, let 1

0

~ −
= AC . If 

( )T

21
,...,,

n
rrrr =  and rb denotes a column vector 

with components from (20b) and (20c), then from (21) 

 
b

Crr = . (22) 

Now we introduce the matrix: R
(

 which is the same as R 

except for the last column whose elements are now zeros. 

Using (20b), (20c) and the new notation, (22) can be put 

in the form 

 )(rCgrRCxCRr
0 ++=

(
 (23) 

where x
0
 is the normalized eigenvector and g(r) is a 

nonlinear function with components nii rrrg =)( , 

1...,,1 −= ni , 0)( =rgn . Thus, (23) becomes  

 )(rCgDrdr ++=  (24a) 

with 

 0
xCRd = ,  RCD

(
= . (24b) 

The matrix equation (24a) is a nonlinear real-valued (non-

interval) system of n equations in n unknowns ri: 

 nircrrddr
n

j

jij

n

j

njijii ,...,1,
1

1

1

1

=++= ∑∑
−

=

−

=

, (25) 

The smallest positive solutions ri of (25) solve Problem 

P2. Indeed, if  ri > 0, we can introduce the intervals 

 [ ] nirry iiii ,...,1,,
0

=−+=y . (26) 

It can be proved that 

 niii ,...,1,
*

=⊂ yy , (27) 

i.e. the intervals (26) are really outer bounds on the ranges 
*

i
y  for all i. Hence, the interval 

 ],[0

nnnn
rry −+=y  (28) 

is the solution to the original Problem P1 since it is, in 

fact, a bound I on I
* 

satisfying the inclusion (13). More 

precisely, we have the following theorem. 

Theorem 3: If the nonlinear system (25) has a positive 

solution ( )T

21
,...,,

n
rrrr =  that can be attained by 

the simple iteration Method with initial vector r
 0

 = 0, then 

the interval (28) is an outer bound on the range I
*
 of the 

real eigenvalue λk(A) considered (for a given k from K 
’
). 

The present Method for solving the original Problem P1 

will be referred to as Method M1. As shown above, it 

comprises, essentially, the following computations. First, 

the “nominal” eigenvalue problem (11) is solved. Then, 

for each '
Kk ∈ , the nonlinear system (25) is set up and 

the simple iteration Method is applied to find the solutions 

niri ,...,1, = . If all ri are positive, the outer bound I on 

the corresponding eigenvalue A∈AAk ),(λ , is obtained 

by the interval (28). Since, in practice, RA are only small 



 

percentage of 0
ija , system (25) is mildly nonlinear and its 

solution does not present any difficulties. 

 

B. Complex eigenvalues of A 

In this subsection, we are interested in the complex 

eigenvalues of (6), i.e. in finding outer bounds on the 

range ( )
ak

*I , with },...,1{
'"

nnKk +=∈ . In order to 

enclose ( )
ak

*I , we need to introduce additionally the 

ranges 

 ( ) [ ]{ }AI ∈= AAλkk :)(Re
Re

* , (29a) 

 ( ) [ ]{ }AI ∈= AAλkk :)(Im
Im

* . (29b)  

To simplify notation, we again drop the index k and 

consider the intervals ( )
Re

*
kI , ( )

Im
*
kI  and ( )

ak
*I . The 

corresponding outer bounds will be denoted IRe, IIm  and 

Ia. So 

 Im
*
ImRe

*
Re , IIII ⊂⊂   (30a) 

 aa II ⊂
* . (30b) 

If  IRe and  IIm are found, then the bound Ia  can be 

computed as 

 2
Im

2
Re III +=a  (31) 

Thus, if suffices to solve the following problem. 

Problem P3:  Find an outer bound IRe  on *
ReI  and an 

outer bound IIm on *
ImI . 

In this subsection the Method M1 will be extended to 

solve Problem P3. This general Method will be referred to 

as Method M2. 

Let  

 ImRe jλλλ +=  , nijxxx iii ,...,1,Im,Re, =+= . (32) 

As in the case of Method M1, we appeal to Assumption 

A2 and normalize the complex eigenvalue x
0 

(corresponding to a fixed "
Kk ∈ ) through dividing all 

components of x
0
 by 0

Re,nx   

 10
Re, =nx , α=0

Im,nx . (33) 

Further, we require that (33) be also valid for all A∈A , 

i.e. 

 A∈== AAxAx nn ,)(,1)( Im,Re, α . (34) 

We introduce the 2n-dimensional real vector y with 

components 
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On substitution of (32) into (6), using (35), (6) becomes 
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 (36a) 

where ijija a∈ . (36b) 

Let yi
*
 denote the range of the ith component yi(A), 

A∈A  of the solution to (36); let y
*
 be the vector made 

up of yi
*
 . Consider the following problem: 

Problem P4: Find an outer solution y to (36), i.e. a 

solution enclosing the range vector y *: 

 yy ⊂
* . (37) 

Obviously, the nth and 2nth components of the outer 

solution y to (36) provide the solution to the original 

Problem P3. 

To solve Problem P4, we put aij and yi in the centred form 

(19), i.e.  

 ijijij uaa += 0 , i, j = 1,…, n (38a) 

 iii vyy += 0 , iiv v∈ , i = 1,…, 2n (38b) 

and apply the same approach as in the real case (Method 

M1). Now the system, corresponding to system (20), is 
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It can be easily checked that the radius of  bi is 
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Now system (39) can be written in a compact form 

 ''
0

~
b=yA  (41) 

where 
'

0

~
A  is the real coefficient matrix in (39). Let 

( ) 1'

0
' A

~
C

−
=  and T

221 ),...,,( nrrrr =  with )( ii Rr v=  



 

where iv  are the increments of yi in (38b) ( iv vi ∈ ). From 

(41)  

 '
'

brCr = . (42) 

Using exactly the same techniques as in Method M1, on 

substitution of (40) into (42) we get the nonlinear system 

 )(
'''

rgCrDdr ++=  (43) 

which has a structure similar to system (24). If (43) has a 

positive solution r which can be attained by the simple 

iteration Method, starting from r
0
 = 0, then this solution 

solves Problem P4. Indeed, we can introduce the intervals 

 nirry iiii 2...,,1],,[
0

=−+=
'

y . (44) 

Once again, similarly to Theorem 3, we have 

 ni 2,...,1, =⊂
'
i

*
i yy . (45) 

Hence, the intervals  

 ],[0
nnnn rry −+='y  (46a) 

 ],[ 22
0
22 nnnn rry −+=

'
y  (46b) 

provide the solution to the original Problem P3. More 

precisely, we have the following theorem: 

Theorem 4: If the nonlinear system (43) has a positive 

solution r that can be attained by the simple iteration 

Method with initial vector r
0=0, then the intervals (46a) 

and (46b) determine the outer bounds IRe and IIm  on the 

ranges *
ReI  and *

ImI , respectively. 

The proof of Theorem 4 is similar to that of Theorem 3. 

On account of Theorem 4, the outer bound Ia  can be 

computed as 

 2
Im

2
Re III +=a . (47) 

Conclusion: If all the outer bounds A∈< AA
A
i ,1)(λ , 

ni ,...,1=   then interval matrix A  is stable. 

 

3.2. OUTER BOUNDS ON THE RANGES FOR THE 

EIGENVALUES OF INTERVAL MATRIX Q 

Based on (7) we form the interval matrix Q with 

independent elements: 

 [ ]QQ RRQ ,0 −+=Q , (48) 

where ( ) 0T00
AHAHQ −= , (48a) 

 ( ) AAQ RHRR
T

= . (48b) 

The application of the new Method for obtaining the outer 

bounds of the ranges of Q, described in the previous 

subsection lead to the following conclusion.  

Conclusion: If all the outer bounds A∈> AA
Q
i 0)(λ , 

ni ,...,1, =  then interval matrix Q is positive definite. 

Final conclusion: If  the interval matrix A is stable and 

interval matrix Q is positive definite, then the discrete-

time neural network considered is asymptotically stable. 

 

4. NUMERICAL EXAMPLE 

To demonstrate the applicability of the present method, 

we will solve the following problem. Let the interval 

matrix A of the discrete-time neural network studied is 

[ ]
AA

A RRA ,0 −+=  with 

 



























−

−

−−

−−

−−

=

8.03.005.01.00

1.08.01.001.0

4.03.02.03.00

002.05.05.0

5.02.002.04.0

0

M

M

M

LLLLLL

M

M

A
, (49a) 

 0*01.0 AR =A  (49b) 

where  21 =n , 32 =n . 

Hence  521 =+= nnn . 

  

4.1. STABILITY OF THE CENTRAL PROBLEM 

Stability analysis of system (1) when 0
AA =  is described 

in details in [1]. The main points of the investigation will 

be briefly presented here again. First, we check condition 

(2), i.e. if ∞=< ,2,1somefor,10 pA
p

. The results 

show that (2) fails for ∞= ,2,1p  as a global 

asymptotical stability test. Then we apply Theorem 1 and 

choose the matrices 

 







=

3.16.0

6.05.0
IH ,

















−

−−

−

=

1.26.06.0

6.06.19.0

6.09.06.1

IIH
, (50) 

where matrix HII satisfies (4). We compute matrices H 

(according to (5)) and  ( ) 0T00
AHAHQ −= . Since Q

0
 is 

positive definite, the equilibrium xe=0 of system (1) is 

globally asymptotically stable for A = A
0
. 

 

4.2. STABILITY OF THE INTERVAL PROBLEM 

4.2.1. STABILITY OF INTERVAL MATRIX A 

The corresponding eigenvalue problem is  

 
5,...,1,,

,05544332211

=∈

=−++++

jia

λxxaxaxaxaxa

ijij

iiiiii

a
. (51) 

First, we solve (51) where 0
ijij aa =  to find the pair 

( )00 , xλ . In this case 

[ ]T0
0605.03385.00605.03385.08780.05052.07497.0 jjλ −−+−−= (52a) 

and we will confine ourselves to finding an outer bound I 

on the range I
*
 for the third (k=3) real eigenvalue 

8780.00
1

0 −== λλ  (since its absolutely value is closer to 

1). Therefore the bound I is computed using the method 

M1. Supporting that Assumption A1 holds, we normalize 

the eigenvector [ ]T
5,...,1

00
=

=
iixx .Since ( )00

5 max ixx = , 

5,...,1=i , Assumption A2 does not hold. In accordance 

with Remark 1, we have to change index n with the index 

corresponding to the maximum value component (in this 

instance, with 1). So  

 [ ]T0 10728.06601.02312.04388.0 −−−−=x . (52b) 

Thus, the vector y
0
 is 

 [ ]T0 8780.00728.06601.02312.04388.0 −−−−=y  (53a) 

and [ ] [ ]T4321

T

54321 λxxxxyyyyyy == . (53b) 

Thus for the example considered system (16a) becomes 

 
0

4,...,1,0

555454353252151

5544332211

=−++++

==−++++

yayayayaya

iyyayayayaya iiiiii
.(54) 



 

The solution of (25) for the example considered, obtained 

by the simple iteration method, has the components 

 [ ]T
0456.01093.00589.00248.00442.0=r . (55) 

As all radii are positive, by Theorem 3 and (52a), the 

outer bound I is  

 ]9235.08324.0[],[ 55
0
55 =−+== rryyI . (56) 

From (56), it follows that the interval matrix A, is stable.  
 

4.2.2. POSITIVE DEFINITENESS OF INTERVAL 

MATRIX Q 

We substitute the interval matrix A, defined by (49), in (7) 

and get the matrix Q in interval form Q, where 

 



























−−−−

−

−

−

=

7190.03450.06570.03710.00220.0

3450.08350.08215.01310.01030.0

6570.08215.05048.10895.00830.0

3710.01310.00895.07060.03540.0

0220.01030.00830.03540.03190.0

0

M

M

M

LLLLLL

M

M

Q

, (57a) 

 



























= −

2293.01807.00501.00761.00350.0

1807.002205.00537.00623.00273.0

0501.00538.00191.00315.00215.0

0716.00623.00315.00666.00578.0

0350.00273.00215.00578.00661.0

*10 3

M

M

M

LLLLLL

M

M

QR
.(57b) 

The eigenvalues of central matrix Q
0
 are: 

 [ ]T0
2379.04399.00098.09481.04480.2=λ . (58) 

It is seen that all the eigenvalues from (58) are real. 

Hence, we apply the Method M1 fifth times for all of 

them to obtain the outer bounds of their ranges, when 

A∈A . The results of computations are following: 

 

[ ]
[ ]
[ ]
[ ]
[ ]




















=

2382.02376.0

4403.04395.0

0100.00095.0

9483.09479.0

4483.24408.2

I
. (59) 

It is seen from (59) that the left bounds of all the 

components of interval vector I are positive. Therefore the 

ranges of all eigenvalues of interval matrix Q are positive 

and finally it follows that matrix Q, when A∈A , is 

positive semidefine. 

Since interval matrix A is stable and interval matrix Q is 

positive semidefine, the neural network studied (1), with 

A∈A  consider (49), is asymptotically stable. 

5. CONCLUSIONS 

The problem of stability analysis of discrete-time neural 

network considered reduces to two tasks for assessing the 

intervals of  the eigenvalues of interval matrices when 

A∈A . First, the interval matrix A has to be stable, i.e. 

ni,AAA
i ,...,1,1)( =∈< Aλ . Second, the interval matrix 

Q has to be positive semidefine, i.e. 

ni,AAQ
i ,...,1,0)( =∈≥ Aλ . Both tasks use the same 

technique. It consists of obtaining the outer bounds on the 

ranges for  the eigenvalues of matrices A and Q(A), when 

A∈A . A recently proposed method for determining these 

outer bounds has been applied. It requires the evaluation 

of  the eigenvalues and the corresponding eigenvectors 

from (11) for the center matrix A
0
. Two versions of the 

Method ( for real and for complex eigenvalues, which are 

named M1 and M2) are discussed. The Method M1 

essentially consists of setting up and solving the system of 

n non-linear equations (25) for the positive solutions 

niri ,...,1, = . The solution of the original problem P1 is 

then found by the radius rn according to formula (28). The 

Method M2 essentially consists of setting up and solving 

the system of 2n non-linear equations (43) for the positive 

solutions niri 2,...,1, = . The solution (47) of the original 

problem P3 uses the radii rn and r2n according to (46). The 

conclusions about both Q and A are similar. 
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