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Резюме: Анализът  на устойчивостта на линейни вериги и системи при интервална 

неоределеност на параметрите може да се сведе до оценяване на собствените числа на 

интервални матрици. В настоящата статия е разгледана задачата за определяне на външни 

граници на собствени стойности на матрици с интервални елементи – комплексен случай. 

Предложен е метод за решаването и. Той се състои в решаване на нелинейна система от 2n 

уравнения с 2n неизвестни. Последната е слабо нелинейна и численото и решение не създава 

трудности. Разгледан е числов пример за илюстиране приложимостта на метода.  

 
Outer bounds on the eingenvalues of interval matrices - the complex 

eingenvalues case 
 

Lubomir Kolev, Simona Filipova-Petrakieva  
 

Abstract: Stability analysis of linear circuits and systems under interval parameters 

uncertainties can be equated to estimating the eigenvalues of interval matrices. In this paper, the 

problem of determining outer bounds on the ranges of the eigenvalues of interval matrices with 

complex eigenvalues, is considered. A method for computing such bounds is suggested. It consist of 

setting up and solving a system of 2n nonlinear equations with 2n unknowns. The latter system  is 

only mildly nonlinear and its solution presents no numerical difficulties. An example illustrating the 

applicability of the method suggested is provided. 

 

1. Introduction 

The problem of estimating the range of the eigenvalues of matrices is the main 

problem in stability analysis of linear circuits and systems under interval uncertainties. 

There are a lot of methods for its solving for the real case (see [2] – [5]). Recently, a 

method was proposed for computing the outer bounds on the real eigenvalues of 

matrices with interval components which estimations are relatively smaller 

conservative than other methods [1]. 

In this paper, as a generalization of the approach from [1] a method for obtaining 

bounds on the eigenvalues in the complex case is suggested. Its results are compared to 

the results of the stochastic method “Monte Carlo” which gives inner bounds on the 

eigenvalues. Also, the method guaranties that the bounds are outer bounds, i.e. they 

contain the actual eigenvalue ranges. Furthermore, the method yields bounds that seem 

to be rather tight, i.e. with relatively small conservatism. From computational point of 

view, the method suggested reduces to solving a corresponding non-linear algebraic 

system than consists of 2n equations in 2n unknowns. 

 



2. Problem statement 

Let A be a real (n x n) matrix, A - an interval matrix containing A, and A
-
, A

+
, A0 

and RA – the left end, the right end, the center and the radius of A, respectively. We 

define the following “perturbed” eigenvalue problem: 

A.x = λ.x, A∈A    = [ A-
, A

+
] = A0 + [ -RA, RA] (1) 

In this paper, we are interested in the complex eingenvalues of (1). Let λλλλ*
(A) 

denote such a complex eigenvalue while x
(k)

(A) = (x1
(k)

(A), x2
(k)

(A), … , xn
(k)

(A)) be the 

corresponding (complex) eigenvector, k = 1, ... , n’, n’ ≤ n. We need the following 

assumption: 

Assumption A1: For all possible variations of A∈ΑΑΑΑ,     the eigenvalue problem 

remains structurally stable i.e. for any k∈K = 1, ... , n’, all λ(k)
(A) and x

(k)
(A), 

corresponding to all A∈ΑΑΑΑ, remain complex, while the remaining (n – n’) eigenvalues 

remain real.  

The real eigenvalues which are the last (n – n’) eigenvalues can be determined by  

the algorithm proposed in [1]. 

We proceed to considering the complex eigenvalue case. For simplicity, we shall 

henceforth drop the index k indicating the number of the eigenvalue. On account of 

Assumption A1, the ranges 

λλλλ*
Re = { λRe(A): A∈ΑΑΑΑ} (2a) 

λλλλ*
Im = { λIm(A): A∈ΑΑΑΑ} (2b) 

are real intervals. In checking the dynamic stability of linear systems, the ideal would 

be to determine λλλλ*
Re and λλλλ*

Im. Since presently this seems to be an intractable problem, 

we usually settle for an outer approximations λRe and λIm of    λλλλ*
Re and λλλλ*

Im, i.e. λRe 

and λIm must include λλλλ*
Re and λλλλ*

Im: 

λλλλ
*

Re ⊂ λ λ λ λ (3a) 

λλλλ
*

Im ⊂ λ λ λ λ (3b) 

Thus, the problem at hand is the following: 

Problem P1: Find an outer bound λRe and λIm on     λλλλ*
Re and λλλλ*

Im, i.e. an estimation 

of     λλλλ*
Re and λλλλ*

Im having the inclusion property (3a) and (3b). 

In this paper, we suggest a method for finding a “good” outer bound λRe and λIm 

on     λλλλ*
Re and λλλλ*

Im, that is a bound with a small overestimation. 

To simplify presentation of the method (without any loss of generality), we need a 

second assumption. Let the pair (x
0
, λ0

) be the solution of the (center, nominal) 

problem 

A0.x = λ.x (4) 

Assumption A2: We assume that the absolute value of the n-th component 0

nx  of x
0
 

is the largest component of the other components, i.e. 



ni,xx 0

i

0

n ≠≥  (5) 

If p-th component is the largest component, we need to interchange the places of 

the p-th and n-th row in A matrix as well as the position of the components xp and xn. 

Now x
0
 is “normalized” by letting 

1x0

nRe =  (6a) 

2n0

nRe

0

nIm0

nIm α
x

x
x ==  (6b) 

Further, we require that (6a) and (6b) be also valid for 

A∈∀= A1,(A)xnRe  (6c) 

A∈∀= A,α(A)x
2nnIm

 (6d) 

Conditions (6c) and (6d) simplify the method which will be presented in the next 

section. 

 

3. Problem solution 

We introduce the 2n-dimensional real vector 

Y = (y1, y2, … , y2n) (7) 

with 

yi = xiRe(A), i = 1, ... , (n-1) (7a) 

yn = λRe(A), (7b) 

yi = xiIm(A), i = (n+1), ... , (2n – 1) (7c) 

y2n = λIm(A), (7d) 

Using (7) and (6), (1) is rewritten as 
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 (8a) 

where 

Aij = [Aij
-
, Aij

+
] (8b) 

YRe = [y1, y2, …, yn]
T
 (8c) 

YIm = [y(n+1), y(n+2), …, y2n]
T
 (8c) 

Y’ = diag {yn, yn, … , yn, 1} (8d) 

Y’’ = diag { y2n, y2n, … , y2n, α2n} (8e) 

System (8a) is a non-linear (more precisely, a quadratic) interval system because 

of the products yn.yi (i = 1, 2, …, (n-1)) in the first (n-1) equations in (8a) and products 

y2n.y(n+i) (i = 1, 2, …, (n-1)) in next (n+1) - (2n-1) equations in (8a).  



Let yi
*
 denote the range of the i-th component yi (A), A∈A, of the solution to (8a). 

Let Y
*
 be the vector made up of yi

*
. Consider the following problem: 

Problem P2: Find an outer solution Y to (8), i.e. a solution enclosing the range 

vector Y
 *
: 

Y
 *
 ⊂ Y (9) 

Obviously, the n-th and 2n-th components of the solution Y to Problem P2 is a 

solution to the original Problem P1.  

We now proceed to solving Problem P2. The approach adopted is based on an idea 

suggested recently in [6]. If z = z0 + u ∈ Z and t = t0 + v ∈ T, with Z and T being 

intervals whose centers are z0 and t0, respectively, then  

u.v ∈ t0.u + z0.v + [ -Ru.Rv, Ru.Rv] (10)   

where Ru and Rv are the respective radiuses. We apply (10) to express the products 

in (8a) after letting 

aij = aij
0
 + uij, yi = yi

0
 + vi (11) 

Having in mind that the centers aij
0 

and yi
0
 satisfy system (8a) and following the 

techniques of [6] we get the system: 
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It can be easily checked that the radius of  Bi is 

 (12b) 
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1n

1j

jnnjnj

0

jnn2 ++=∑ ∑
=

−

=

++  (12e) 

where R(Aij) is the radius if uij (equivalently of aij) and R(Ai) is the radius of vj 

(equivalently of yj). Now system (12) can be written in a compact form 

B.vA0 =
~

  (13) 

where 0A
~

 is the real coefficient matrix in (12a). Let 1

0AC
−=

~
 and R(Y) = (R(Y1), 

R(Y2), … , R(Y2n)) = r = (r1, r2, …, r2n). From (13)  

r = C.R(B) (14) 

Now we introduce the following matrices:  

1. R
~

 is a (2n x 2n) block matrix in the form: 

where Rij = [R(Aij)], i = 1..n, j = 1..n; Z = [zij] in (n x n) matrix with zero 

elements; 

2. R
(

 is (2n x 2n) block matrix as: 









=

'

'

RZ

ZR
R
(

  

where R’ is the same as Rij expect for the last column whose elements are now zero; 

3. Y
0
 is 2n-th vector column: 

 4. nR
(

 and  n2R
(

 are diagonal (n x n) matrixes with R(Yn) and R(Y2n) in the main 

diagonal respectively. 

5.  r Re’ and r Im’ are the same as vectors r Re and r Im expect for the n-th element of 

rRe’ which is 1 and  n-th element of rIm’ which is α2n. 

 6.  R
is
”  and  R

ss
” are n-th vector column in the form: 

[ ]T0)R(A...)R(A)R(A"R 1)n(n2n1n
in

−=  

[ ]Tnn
nn )R(A0...00"R =  

 

Using (12b), (12c), (12d), (12e) and the new notations, (14) can be written in the 

form: 
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with (16a)  

RC.D,
"

"

"

"
Y.R

~
C.d 0
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
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The matrix equation (16) is a non-linear real value (non-interval) system of 2n 

equations of 2n unknowns ri. The solution of (16a) for positive ri solves Problem P2. 

Indeed 

yi = yi
0
 + [- ri, ri], i = 1, 2, … , 2n. (17) 

Following [7] it can be shown that 

yi
*
 ⊂  yi, i = 1, 2, … , 2n, (18) 

i.e. the intervals (17) are really outer bounds on the ranges yi
* 

for all i. Hence, the 

interval 

yn = yn
0
 + [- rn, rn] (19a) 

y2n = y2n
0
 + [- r2n, r2n] (19b) 

is the solution to the original problem P1 and is, in fact, a bound λλλλ on λ* 
satisfying 

the inclusion (3a) and (3b). 

Thus, it has been shown that the original problem P1 reduces to solving the non-

linear (incomplete quadratic) system (16a). Since Rij are, most often, percents of aij
0
 

and (16a) is only mildly non-linear, it’s solution does not present any problem. 

 

4. Numerical example 

The applicability of the method will be illustrated by the example with n = 2: 

0λ.x.xa.xa

0λ.x.xa.xa

2222121

1212111

=−+

=−+
 (20)  

Here 

1.8a4a

2a3.2a
0

22

0

21

0

12

0

11

=−=

=−=
 (20a) 

and Rij (A)= 0.052, i = 1, 2; j = 1, 2.   

First, we determine the centre of the eigenvalues  

 

Λo
 = [- 0.7 - j1.322876, – 0.7 + j1.322876]

T
  (21) 

and    

i

0.7)}(Amax{λλ 0Re
(i)

maxRe −==
 (22) 

For this example, the index k corresponding to λmax is k=1 and the corresponding 

normalized vector of the centres of  the variables from (5) and (6) is: 

X
0
 = [x1Re

0’
, 1, x1Im

0’
, x2Im

0’
 ]

T
 = [x1Re

0
/ x2Re

0
,  1,  x1Im

0
/ x2Re

0
,  x2Im

0
/ x2Re

0
]

T
 (24) 

According to (7) vector Y is: 

Y = [y1, y2, y3, y4]
T
 = [x1Re

’
, ΛRe, x1Im

0’
, ΛIm]

T
 (25) 



so 

Y
0
 = [y1

0
, y2

0
, y3

0
, y4

0
]

T
 = [0.625, - 0.7, 0.3307, 1.3307]

T
 (26) 

So the system (8a) is: 

01yyaya

0yyyyaya

0y1yaya

0yyyyaya

44222321

143212311

44222121

341212111

=−−+

=−−+

=+−+

=+−+

...

...

...

...

α

α
 α4 = x2Im

0’
 = 0 (27) 

Applying (10) and simplify the system get the following non-linear system: 

03571rr0243rr0243rr8353630

039590rr755970rr755970r95750r20880

011151rr0243rr0243r8353630r

034690rr755970rr755970r20880r95750

432141

432131

413232

413231

=+++−

=++++

=++++−

=++++

....

.....

....

.....

 (28) 

The solution of (28) is: 

R(Y) = [R(y1), R(y2), R(y3), R(y4)]
T
 = [0.1053, 0.268341, 0.0556, 0.92343]

T 
(29) 

Finally, from (21) and (29): 

ΛRe = [- 0.7 – 0.2685445, - 0.7 + 0.26885445] = [- 0.9685445, - 0.4314555]  (30) 

Thus,  in view of (30), we conclude that the estimations of the real part of the 

complex eigenvalues of interval matrix A at R(A) = 0.17 with our approach are outer 

bounds.  We can demonstrate that with compare to results of “Monte Carlo” method, 

which gives inter bounds of the estimation of the real part of the eigenvalues: λλλλ`Re = [- 

0.868759, - 0.532679]. 

 

5. Conclusion 

The problem of bounding the complex eigenvalues of interval matrices has been 

considered. It is related to the problem of assessing the robust stability of linear circuits 

or systems having interval parameters. A method for determining outer bounds on the 

eigenvalue ranges has been suggested. It requires the evaluation of  the complex 

eigenvalues and the corresponding complex eigenvectors from (4) for the center 

(nominal parameters) matrix A0. The method essentially consists of setting up and 

solving the system of 2n non-linear equations (16a) for the positive solutions ri, i = 1, 

2, … , 2n. The solution of the original problem is then found by the n-th and 2n-th radii 

rn and r2n according to formulae (19a) and (19b). 

The approach herein suggested is a generalization of the case of real eigenvalues 

(see [1]). The form of the non-linear systems (16) for determining the complex 

eigenvalues is the same except that the number of components in (16a) is twice as 

much as it in the real case because there is a real and imaginary part of the eigenvalues 

and eigenvectors and the size of the system (16a) increases to 2n. 



 A further possible generalization is to encompass matrices whose elements are 

non-linear functions of a certain number of interval parameters. 
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