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unmepeanHu mampuyu. B nacmoswama cmamus e pasenedana 3adavama 3a onpeoeisiHe Ha GbHUIHU
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IIpeonooicen e memoo 3a pewasarnemo u. Toil ce cbcmou 6 pewlasane Ha HeIUHEUHA cucmema om 2n
ypasuenusi ¢ 2n neuzeecmuu. Ilocneonama e cnabo HenuHeluHa U YUCIeHOMO U peuleHue He Cb30asda
mpyonocmu. Pasenedan e uucnoe npumep 3a UNOCMupane NPUIOHCUMOCIma Ha Memood.
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Abstract: Stability analysis of linear circuits and systems under interval parameters
uncertainties can be equated to estimating the eigenvalues of interval matrices. In this paper, the
problem of determining outer bounds on the ranges of the eigenvalues of interval matrices with
complex eigenvalues, is considered. A method for computing such bounds is suggested. It consist of
setting up and solving a system of 2n nonlinear equations with 2n unknowns. The latter system is
only mildly nonlinear and its solution presents no numerical difficulties. An example illustrating the
applicability of the method suggested is provided.

1. Introduction

The problem of estimating the range of the eigenvalues of matrices is the main
problem in stability analysis of linear circuits and systems under interval uncertainties.
There are a lot of methods for its solving for the real case (see [2] — [5]). Recently, a
method was proposed for computing the outer bounds on the real eigenvalues of
matrices with interval components which estimations are relatively smaller
conservative than other methods [1].

In this paper, as a generalization of the approach from [1] a method for obtaining
bounds on the eigenvalues in the complex case is suggested. Its results are compared to
the results of the stochastic method “Monte Carlo” which gives inner bounds on the
eigenvalues. Also, the method guaranties that the bounds are outer bounds, i.e. they
contain the actual eigenvalue ranges. Furthermore, the method yields bounds that seem
to be rather tight, i.e. with relatively small conservatism. From computational point of
view, the method suggested reduces to solving a corresponding non-linear algebraic
system than consists of 2n equations in 2n unknowns.



2. Problem statement

Let A be a real (n x n) matrix, A - an interval matrix containing A, and A", A¥, A
and R, — the left end, the right end, the center and the radius of A, respectively. We
define the following “perturbed” eigenvalue problem:

Ax=Ax, AcA =[A, A"] = Ay + [ -Ra, R4] (1)

In this paper, we are interested in the complex eingenvalues of (1). Let AA)
denote such a complex eigenvalue while x(k)(A ) = (x/k)(A ), Xg(k)(A )y e xn(k)(A )) be the

corresponding (complex) eigenvector, k = I, ... , n’, n” <n. We need the following
assumption:

Assumption A;: For all possible variations of A€ A, the eigenvalue problem
remains structurally stable i.e. for any keK = [, ... , n’, all l(k)(A) and x(k)(A),

corresponding to all A€ A, remain complex, while the remaining (n — n’) eigenvalues
remain real.

The real eigenvalues which are the last (n — n’) eigenvalues can be determined by
the algorithm proposed in [1].

We proceed to considering the complex eigenvalue case. For simplicity, we shall
henceforth drop the index k indicating the number of the eigenvalue. On account of
Assumption A;, the ranges

A're={ ArfA): Ac A (2a)

Aim={ Anf(A): A€ A (2b)
are real intervals. In checking the dynamic stability of linear systems, the ideal would
be to determine A, and A ,,. Since presently this seems to be an intractable problem,
we usually settle for an outer approximations Age and A, of Az, and A, i.e. Age

and A, must include Az, and A4 },,:
AreCA (3a)
A A (3b)
Thus, the problem at hand is the following:
Problem P,: Find an outer bound Age and 4;,, on A'x, and A, i.e. an estimation

of A’z and A, having the inclusion property (3a) and (3b).

In this paper, we suggest a method for finding a “good” outer bound Age and A,
on A and A, that is a bound with a small overestimation.

To simplify presentation of the method (without any loss of generality), we need a
second assumption. Let the pair (x, 2°) be the solution of the (center, nominal)
problem

Apx = Ax 4)

Assumption A;: We assume that the absolute value of the n-th component ‘xfj‘ of x’

1s the largest component of the other components, i.e.



‘xfj‘ = ‘xio‘, i#n 5)
If p-th component is the largest component, we need to interchange the places of

the p-th and n-th row in A matrix as well as the position of the components x;, and X,
Now 1’ is “normalized” by letting

xZRe = ] (6a)
0
xslm = x’;lm = aZn (6b)
'ane
Further, we require that (6a) and (6b) be also valid for
X (A) =1, VAe A (6¢)
Xm(A)=0a,, VAeA (6d)

Conditions (6¢) and (6d) simplify the method which will be presented in the next
section.

3. Problem solution
We introduce the 2n-dimensional real vector

Y=(y,y2 ..., y2u) (7)
with

Vi=XiglA),i=1, ..., (n-1) (7a)
Yn = Are(A), (7b)
Vi = Xim(A), 1 = (n+1), ..., (2n—1) (7¢)
Yan = Aim(A), (7d)

Using (7) and (6), (1) is rewritten as
app-yr+ap2.y2 .+ apm—1)Yn—1 = Yn-Y1 +ain + Y2n-Yn+1 =0
azpyp+a.y2+..+a2;m—1)Yn—1 = Yn-¥2 +a2q + Y25 Yp+2 =0

ap-y] +ap2-y2 + ot apn1)Yn—1 = Yn- 1+ app + y2,002, =0 (83)
ar]-Yn+1 +a12-Yn+2 -+ a1 (n—1)Y2n—1 = Yn-Yn+1 + 4in = Y2n-y1 =0
a21-Yp+1 422 Y42t T2 (n—1)-Y2n—1 = Yn-Yn+2 + a2 = Y2,.y2 =0

Anl-Yn+1tap2-Ypy2 ot ayn—1)Y2n—1 =~ Yn-%2n +anp — yop1=0

where

Ay = [Al]_, Al]+] (8b)
Yee = [V1, Y2r cvor Yul (8¢)
Yin = [Yone1p Yine2p --o yzn]T (8¢)
Y’ =diag {y,, Yo, .o, Yo 1} (8d)
Y’ = dlag {y2n: Yo «oo s Yow aZnII (86)

System (8a) is a non-linear (more precisely, a quadratic) interval system because
of the products y,.y; i1=1, 2, ..., (n-1)) in the first (n-1) equations in (8a) and products
VoY) @=1,2, ..., (n-1)) in next (n+1) - (2n-1) equations in (8a).



Let y,-* denote the range of the i-th component y; (A), A€A, of the solution to (8a).
Let Y be the vector made up of y; . Consider the following problem:

Problem P,: Find an outer solution Y to (8), i.e. a solution enclosing the range
vector Y

Y cY 9)

Obviously, the n-th and 2n-th components of the solution Y to Problem P, is a
solution to the original Problem P;.

We now proceed to solving Problem P,. The approach adopted is based on an idea
suggested recently in [6]. [f z = zp+ u e Zand t = t) + v € T, with Z and T being
intervals whose centers are z,and t,, respectively, then

uyv e tou+ z0.v+ [ -R,.R,, R,.R,] (10)

where R, and R, are the respective radiuses. We apply (10) to express the products
in (8a) after letting

a,-jzal-jo+u,-j, y,-:yl-0+v,- (11)

Having in mind that the centers aijo and y/!” satisfy system (8a) and following the
techniques of [6] we get the system:

(a), =y’ )v, +a),.v, +...+a?m_“.vn_1 —ylv, + y(0n+1)-V2n =B,

aj,.v, +(as, =y’ )v, +...+ag’(n_“.vn_1 —yiv, + y£l+2).v2n =B,

a((;_m.vj +a:ﬁl_“,2.v2 +...+(a(0n_“,(n_“ -y ), , — y(ﬁ_“.vn + y(OZn_“.VZn =B,

a%.vl +0a32.v2 +...-;—a3’(n_“.vn_1 —]O.vn +a,,.v,, 0=Bn 0 (12a)
(@11 = Y I Viurr) T Q12 Vi) T oot @ 1) Vo = Yoty Vi = Y1 Vaw = By

agrvmm +(6132 - yg ) Vi) + ot ag,(n—I)'v(Zn—I) - y((zH—Z)'vn - yg'VZn =B,

0 0 0 _
AV, +ap v, + ot ay, )V, — Y, -1v, =B,

It can be easily checked that the radius of B; is

R(B,)= ’iR(A,, )|+ "ZR(A,, )-R(Y, )+ R(A, )+ [R(Y, ).R(Y,)] + [R(Y,, )R(Y,,)], i=I.(n—1)
| | (12b)

R(B,)= Y|y RiA, )+ 3 R(A, LR(Y, )+ R(A, ) (12¢)

RB. )= X ROA IV, | + 3 ROA LAY, )+ RO+ [R(Y, )RV, T+ (RO, LROV)L i =1.(n=1)

(12d)



0
yn+j

RB,,)= 3|50 [RA, )+ S RA LR(Y,., )+ KA, ) (12¢)

where R(Aij) is the radius if u; (equivalently of a;) and R(A;) is the radius of v;
(equivalently of y;). Now system (12) can be written in a compact form

A,.v=B (13)

where A, is the real coefficient matrix in (12a). Let C = ‘Ao‘ ! ‘ and R(Y) = (R(Y;),
R(Yz), ceey R(an)) =r= (}"1, ra ..., 7'2,1). From (13)

r=C.R(B) (14)

Now we introduce the following matrices:

1. R is a(2n x 2n) block matrix in the form:

~ R VA
e[
where R; = [R(Ay)], 1 = 1.n, j = 1.n; Z = [z;] in (n X n) matrix with zero
elements;
2. R is (2n x 2n) block matrix as:

2

where R’ is the same as R;; expect for the last column whose elements are now zero;

\Yé’e} L lye| vel -l
Vel UL yea] vl - vl
3. Y" is 2n-th vector column:

4. R" and R 2" are diagonal (n x n) matrixes with R(Y,) and R(Y,) in the main

diagonal respectively.
5. rge’ and ry,’ are the same as vectors r g, and r 1, expect for the n-th element of

rr.’ Which is 1 and n-th element of ry,,” which is 0,
6. R® and R*” are n-th vector column in the form:

v°l=

R™"=[0 0 .. 0 RA,)I"

~ YO - o n ! D 2n ' in" nn"
r=AR(Y) = U"’ } -C. R.Hy”j‘]Jr . R.“"e } + c_{g n-;Re'} C{g T } N CE } . C[g }
o ' Re

Im Im Im m

Using (12b), (12¢), (12d), (12e) and the new notations, (14) can be written in the
form:

(15)

r=d+ Dr +C. Fi”'rﬂe + C. ’?2" im
R ' R

n'rlm



with (16a)

- R " R n
d=CRJY’|+ C{R’" } + C{R”" } D=CR (16b)

The matrix equation (16) is a non-linear real value (non-interval) system of 2n

equations of 2n unknowns r;. The solution of (16a) for positive r; solves Problem P,.
Indeed

yi=yl+[-ryrl,i=12, .., 2n (17)
Following [7] it can be shown that
yi Cysi=12 .., 2n, (18)

i.e. the intervals (17) are really outer bounds on the ranges y; for all i. Hence, the
interval

Yu =Y+ [~ T 1l (19a)

Yon =y2n0+[' V2p, an] (19b)

is the solution to the original problem P, and is, in fact, a bound 4 on A satisfying
the inclusion (3a) and (3Db).

Thus, it has been shown that the original problem P; reduces to solving the non-
linear (incomplete quadratic) system (16a). Since R;; are, most often, percents of aijO
and (16a) is only mildly non-linear, it’s solution does not present any problem.

4. Numerical example
The applicability of the method will be illustrated by the example with n = 2:

a,;.x;,+a,x,—irx, =0 (20)
a, . X, +a,.x,—Ax, =0

Here

al,=-32 aj, =2

al, =-4 a5 =18

and R; (A)=0.052,i=1,2;j=1, 2.

First, we determine the centre of the eigenvalues

(20a)

A°=[-0.7 -j1.322876, — 0.7 +j].322876]T (21)
and
A = max{1"re (A, )} =—0.7

/

‘maxRe (22)
For this example, the index k corresponding to A, is k=1 and the corresponding
normalized vector of the centres of the variables from (5) and (6) is:
XO = [XlReO” I, X1Im()” XZImO’ ]T = [XlReO/ XZReOa I, XlImO/ XZReO’ XZImO/ XZReO]T (24)
According to (7) vector Y is:
Y =[y1, ¥2, ¥3 3/4]T = [XlRe” Age, Xumo’, AIm]T (25)



SO
Y =1y.% v, v, yva 1" = [0.625, - 0.7, 0.3307, 1.3307]" (26)
So the system (8a) is:

a,y +a,-y,y,+y,y,=0
a,.y,+ta,, -y, I+y,.a =0
a,y,+a,—y,y,—y,y,=0
a,.y,ta,—y,o,—y, =0

oy = XZImO’ =0 (27)

Applying (10) and simplify the system get the following non-linear system:
0.9575 r, +0.2088 r, +0.75597 r,r, +0.75597 r,r, +0.3469 =0
—r,+0.835363 r, +3.024 r,r,+3.024 rr,+1.1115=0
0.2088 r, +0.9575 r, + 0.75597 r,r, +0.75597 r,r ,+0.3959 =0
0.835363 r,—r, +3.024 r,r, +3.024 r,r, + 1.357 =0

The solution of (28) is:

R(Y) = [R(y1), R(¥2), R(y3), R(y4)]" = [0.1053, 0.268341, 0.0556, 0.92343]" (29)

Finally, from (21) and (29):

Age =[- 0.7 - 0.2685445, - 0.7 + 0.26885445] = [- 0.9685445, - 0.4314555] (30)

Thus, in view of (30), we conclude that the estimations of the real part of the
complex eigenvalues of interval matrix A at R(A) = 0.17 with our approach are outer
bounds. We can demonstrate that with compare to results of “Monte Carlo” method,

which gives inter bounds of the estimation of the real part of the eigenvalues: Age = [-
0.868759, - 0.532679].

(28)

5. Conclusion

The problem of bounding the complex eigenvalues of interval matrices has been
considered. It is related to the problem of assessing the robust stability of linear circuits
or systems having interval parameters. A method for determining outer bounds on the
eigenvalue ranges has been suggested. It requires the evaluation of the complex
eigenvalues and the corresponding complex eigenvectors from (4) for the center
(nominal parameters) matrix Ay. The method essentially consists of setting up and
solving the system of 2n non-linear equations (16a) for the positive solutions r;, 1 =1,
2, ..., 2n. The solution of the original problem is then found by the n-th and 2n-th radii
r, and r,, according to formulae (19a) and (19b).

The approach herein suggested is a generalization of the case of real eigenvalues
(see [1]). The form of the non-linear systems (16) for determining the complex
eigenvalues is the same except that the number of components in (16a) is twice as
much as it in the real case because there is a real and imaginary part of the eigenvalues
and eigenvectors and the size of the system (16a) increases to 2n.



A further possible generalization is to encompass matrices whose elements are
non-linear functions of a certain number of interval parameters.
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