

# Външни оценки на собствените стойности на интервални матрици – комплексен случай

**Любомир Колев, Симона Филипова-Петракиева**

*Резюме: Анализът на устойчивостта на линейни вериги и системи при интервална неопределеност на параметрите може да се сведе до оценяване на собствените числа на интервални матрици. В настоящата статия е разгледана задачата за определяне на външни граници на собствени стойности на матрици с интервални елементи – комплексен случай. Предложен е метод за решаването и. Той се състои в решаване на нелинейна система от  $2n$  уравнения с  $2n$  неизвестни. Последната е слабо нелинейна и численото и решение не създава трудности. Разгледан е числовой пример за илюстриране приложимостта на метода.*

## Outer bounds on the eigenvalues of interval matrices - the complex eigenvalues case

**Lubomir Kolev, Simona Filipova-Petrakieva**

*Abstract: Stability analysis of linear circuits and systems under interval parameters uncertainties can be equated to estimating the eigenvalues of interval matrices. In this paper, the problem of determining outer bounds on the ranges of the eigenvalues of interval matrices with complex eigenvalues, is considered. A method for computing such bounds is suggested. It consists of setting up and solving a system of  $2n$  nonlinear equations with  $2n$  unknowns. The latter system is only mildly nonlinear and its solution presents no numerical difficulties. An example illustrating the applicability of the method suggested is provided.*

### 1. Introduction

The problem of estimating the range of the eigenvalues of matrices is the main problem in stability analysis of linear circuits and systems under interval uncertainties. There are a lot of methods for its solving for the real case (see [2] – [5]). Recently, a method was proposed for computing the outer bounds on the real eigenvalues of matrices with interval components which estimations are relatively smaller conservative than other methods [1].

In this paper, as a generalization of the approach from [1] a method for obtaining bounds on the eigenvalues in the complex case is suggested. Its results are compared to the results of the stochastic method “Monte Carlo” which gives inner bounds on the eigenvalues. Also, the method guarantees that the bounds are outer bounds, i.e. they contain the actual eigenvalue ranges. Furthermore, the method yields bounds that seem to be rather tight, i.e. with relatively small conservatism. From computational point of view, the method suggested reduces to solving a corresponding non-linear algebraic system that consists of  $2n$  equations in  $2n$  unknowns.

## 2. Problem statement

Let  $A$  be a real  $(n \times n)$  matrix,  $\mathbf{A}$  - an interval matrix containing  $A$ , and  $A^-$ ,  $A^+$ ,  $A_0$  and  $R_A$  - the left end, the right end, the center and the radius of  $\mathbf{A}$ , respectively. We define the following “perturbed” eigenvalue problem:

$$A \cdot x = \lambda \cdot x, A \in \mathbf{A} = [A^-, A^+] = A_0 + [-R_A, R_A] \quad (1)$$

In this paper, we are interested in the complex eigenvalues of (1). Let  $\lambda^*(A)$  denote such a complex eigenvalue while  $x^{(k)}(A) = (x_1^{(k)}(A), x_2^{(k)}(A), \dots, x_n^{(k)}(A))$  be the corresponding (complex) eigenvector,  $k = 1, \dots, n'$ ,  $n' \leq n$ . We need the following assumption:

*Assumption A<sub>1</sub>:* For all possible variations of  $A \in \mathbf{A}$ , the eigenvalue problem remains structurally stable i.e. for any  $k \in K = 1, \dots, n'$ , all  $\lambda^{(k)}(A)$  and  $x^{(k)}(A)$ , corresponding to all  $A \in \mathbf{A}$ , remain complex, while the remaining  $(n - n')$  eigenvalues remain real.

The real eigenvalues which are the last  $(n - n')$  eigenvalues can be determined by the algorithm proposed in [1].

We proceed to considering the complex eigenvalue case. For simplicity, we shall henceforth drop the index  $k$  indicating the number of the eigenvalue. On account of Assumption A<sub>1</sub>, the ranges

$$\lambda_{Re}^* = \{ \lambda_{Re}(A) : A \in \mathbf{A} \} \quad (2a)$$

$$\lambda_{Im}^* = \{ \lambda_{Im}(A) : A \in \mathbf{A} \} \quad (2b)$$

are real intervals. In checking the dynamic stability of linear systems, the ideal would be to determine  $\lambda_{Re}^*$  and  $\lambda_{Im}^*$ . Since presently this seems to be an intractable problem, we usually settle for an outer approximations  $\lambda_{Re}$  and  $\lambda_{Im}$  of  $\lambda_{Re}^*$  and  $\lambda_{Im}^*$ , i.e.  $\lambda_{Re}$  and  $\lambda_{Im}$  must include  $\lambda_{Re}^*$  and  $\lambda_{Im}^*$ :

$$\lambda_{Re}^* \subset \lambda \quad (3a)$$

$$\lambda_{Im}^* \subset \lambda \quad (3b)$$

Thus, the problem at hand is the following:

*Problem P<sub>1</sub>:* Find an outer bound  $\lambda_{Re}$  and  $\lambda_{Im}$  on  $\lambda_{Re}^*$  and  $\lambda_{Im}^*$ , i.e. an estimation of  $\lambda_{Re}^*$  and  $\lambda_{Im}^*$  having the inclusion property (3a) and (3b).

In this paper, we suggest a method for finding a “good” outer bound  $\lambda_{Re}$  and  $\lambda_{Im}$  on  $\lambda_{Re}^*$  and  $\lambda_{Im}^*$ , that is a bound with a small overestimation.

To simplify presentation of the method (without any loss of generality), we need a second assumption. Let the pair  $(x^0, \lambda^0)$  be the solution of the (center, nominal) problem

$$A_0 \cdot x = \lambda \cdot x \quad (4)$$

*Assumption A<sub>2</sub>:* We assume that the absolute value of the  $n$ -th component  $|x_n^0|$  of  $x^0$  is the largest component of the other components, i.e.

$$|x_n^0| \geq |x_i^0|, \quad i \neq n \quad (5)$$

If p-th component is the largest component, we need to interchange the places of the p-th and n-th row in A matrix as well as the position of the components  $x_p$  and  $x_n$ .

Now  $x^0$  is “normalized” by letting

$$|x_{nRe}^0| = 1 \quad (6a)$$

$$x_{nlm}^0 = \frac{x_{nlm}^0}{|x_{nRe}^0|} = \alpha_{2n} \quad (6b)$$

Further, we require that (6a) and (6b) be also valid for

$$|x_{nRe}(A)| = 1, \quad \forall A \in A \quad (6c)$$

$$|x_{nlm}(A)| = \alpha_{2n}, \quad \forall A \in A \quad (6d)$$

Conditions (6c) and (6d) simplify the method which will be presented in the next section.

### 3. Problem solution

We introduce the 2n-dimensional real vector

$$Y = (y_1, y_2, \dots, y_{2n}) \quad (7)$$

with

$$y_i = x_{iRe}(A), \quad i = 1, \dots, (n-1) \quad (7a)$$

$$y_n = \lambda_{Re}(A), \quad (7b)$$

$$y_i = x_{ilm}(A), \quad i = (n+1), \dots, (2n-1) \quad (7c)$$

$$y_{2n} = \lambda_{Im}(A), \quad (7d)$$

Using (7) and (6), (1) is rewritten as

$$\begin{aligned} a_{11} \cdot y_1 + a_{12} \cdot y_2 + \dots + a_{1,(n-1)} \cdot y_{n-1} - y_n \cdot y_1 + a_{1n} + y_{2n} \cdot y_{n+1} &= 0 \\ a_{21} \cdot y_1 + a_{22} \cdot y_2 + \dots + a_{2,(n-1)} \cdot y_{n-1} - y_n \cdot y_2 + a_{2n} + y_{2n} \cdot y_{n+2} &= 0 \\ \dots & \\ a_{n1} \cdot y_1 + a_{n2} \cdot y_2 + \dots + a_{n,(n-1)} \cdot y_{n-1} - y_n \cdot y_1 + a_{nn} + y_{2n} \cdot \alpha_{2n} &= 0 \\ a_{11} \cdot y_{n+1} + a_{12} \cdot y_{n+2} + \dots + a_{1,(n-1)} \cdot y_{2n-1} - y_n \cdot y_{n+1} + a_{1n} - y_{2n} \cdot y_1 &= 0 \\ a_{21} \cdot y_{n+1} + a_{22} \cdot y_{n+2} + \dots + a_{2,(n-1)} \cdot y_{2n-1} - y_n \cdot y_{n+2} + a_{2n} - y_{2n} \cdot y_2 &= 0 \\ \dots & \\ a_{n1} \cdot y_{n+1} + a_{n2} \cdot y_{n+2} + \dots + a_{n,(n-1)} \cdot y_{2n-1} - y_n \cdot \alpha_{2n} + a_{nn} - y_{2n} \cdot I &= 0 \end{aligned} \quad (8a)$$

where

$$A_{ij} = [A_{ij}, A_{ij}^+] \quad (8b)$$

$$Y_{Re} = [y_1, y_2, \dots, y_n]^T \quad (8c)$$

$$Y_{Im} = [y_{(n+1)}, y_{(n+2)}, \dots, y_{2n}]^T \quad (8c)$$

$$Y' = \text{diag} \{y_n, y_n, \dots, y_n, 1\} \quad (8d)$$

$$Y'' = \text{diag} \{y_{2n}, y_{2n}, \dots, y_{2n}, \alpha_{2n}\} \quad (8e)$$

System (8a) is a non-linear (more precisely, a quadratic) interval system because of the products  $y_n \cdot y_i$  ( $i = 1, 2, \dots, (n-1)$ ) in the first  $(n-1)$  equations in (8a) and products  $y_{2n} \cdot y_{(n+i)}$  ( $i = 1, 2, \dots, (n-1)$ ) in next  $(n+1) - (2n-1)$  equations in (8a).

Let  $y_i^*$  denote the range of the  $i$ -th component  $y_i(A)$ ,  $A \in \mathbf{A}$ , of the solution to (8a). Let  $\mathbf{Y}^*$  be the vector made up of  $y_i^*$ . Consider the following problem:

*Problem P<sub>2</sub>:* Find an outer solution  $\mathbf{Y}$  to (8), i.e. a solution enclosing the range vector  $\mathbf{Y}^*$ :

$$\mathbf{Y}^* \subset \mathbf{Y} \quad (9)$$

Obviously, the  $n$ -th and  $2n$ -th components of the solution  $\mathbf{Y}$  to Problem P<sub>2</sub> is a solution to the original Problem P<sub>1</sub>.

We now proceed to solving Problem P<sub>2</sub>. The approach adopted is based on an idea suggested recently in [6]. If  $z = z_0 + u \in Z$  and  $t = t_0 + v \in T$ , with  $Z$  and  $T$  being intervals whose centers are  $z_0$  and  $t_0$ , respectively, then

$$u.v \in t_0.u + z_0.v + [-R_u.R_v, R_u.R_v] \quad (10)$$

where  $R_u$  and  $R_v$  are the respective radii. We apply (10) to express the products in (8a) after letting

$$a_{ij} = a_{ij}^0 + u_{ij}, \quad y_i = y_i^0 + v_i \quad (11)$$

Having in mind that the centers  $a_{ij}^0$  and  $y_i^0$  satisfy system (8a) and following the techniques of [6] we get the system:

$$\begin{aligned} & (a_{11}^0 - y_n^0).v_1 + a_{12}^0.v_2 + \dots + a_{1,(n-1)}^0.v_{n-1} - y_1^0.v_n + y_{(n+1)}^0.v_{2n} = B_1 \\ & a_{21}^0.v_1 + (a_{22}^0 - y_n^0).v_2 + \dots + a_{2,(n-1)}^0.v_{n-1} - y_2^0.v_n + y_{(n+2)}^0.v_{2n} = B_2 \\ & \dots \\ & a_{(n-1),1}^0.v_1 + a_{(n-1),2}^0.v_2 + \dots + (a_{(n-1),(n-1)}^0 - y_n^0).v_{n-1} - y_{(n-1)}^0.v_n + y_{(2n-1)}^0.v_{2n} = B_{n-1} \\ & a_{n1}^0.v_1 + a_{n2}^0.v_2 + \dots + a_{n,(n-1)}^0.v_{n-1} - I.v_n + \alpha_{2n}.v_{2n} = B_n \\ & (a_{11}^0 - y_{(n+1)}^0).v_{(n+1)} + a_{12}^0.v_{(n+2)} + \dots + a_{1,(n-1)}^0.v_{2n-1} - y_{(n+1)}^0.v_n - y_1^0.v_{2n} = B_{(n+1)} \\ & a_{21}^0.v_{(n+1)} + (a_{22}^0 - y_{(n+1)}^0).v_{(n+2)} + \dots + a_{2,(n-1)}^0.v_{(2n-1)} - y_{(n+2)}^0.v_n - y_2^0.v_{2n} = B_{(n+2)} \\ & \dots \\ & a_{(n-1),1}^0.v_{(n+1)} + a_{(n-1),2}^0.v_{(n+2)} + \dots + (a_{(n-1),(n-1)}^0 - y_n^0).v_{(2n-1)} - y_{(2n-1)}^0.v_n - y_{(2n-1)}^0.v_{2n} = B_{(2n-1)} \\ & a_{n1}^0.v_1 + a_{n2}^0.v_2 + \dots + a_{n,(n-1)}^0.v_{n-1} - \alpha_{2n}.v_n - I.v_{2n} = B_{2n} \end{aligned} \quad (12a)$$

It can be easily checked that the radius of  $B_i$  is

$$R(B_i) = \sum_{j=1}^{n-1} R(A_{ij}).|y_j^0| + \sum_{j=1}^{n-1} R(A_{ij}).R(Y_j) + R(A_{in}) + [R(Y_n).R(Y_i)] + [R(Y_{2n}).R(Y_{n+i})], \quad i = 1..(n-1) \quad (12b)$$

$$R(B_n) = \sum_{j=1}^n |y_j^0|.R(A_{nj}) + \sum_{j=1}^{n-1} R(A_{nj}).R(Y_j) + R(A_{nn}) \quad (12c)$$

$$R(B_{n+i}) = \sum_{j=1}^{n-1} R(A_{ij}).|y_{n+j}^0| + \sum_{j=1}^{n-1} R(A_{ij}).R(Y_{n+j}) + R(A_{in}) + [R(Y_n).R(Y_{n+i})] + [R(Y_{2n}).R(Y_i)], \quad i = 1..(n-1) \quad (12d)$$

$$R(B_{2n}) = \sum_{j=1}^n |y_{n+j}^0| \cdot R(A_{nj}) + \sum_{j=1}^{n-1} R(A_{nj}) \cdot R(Y_{n+j}) + R(A_{nn}) \quad (12e)$$

where  $R(A_{ij})$  is the radius if  $u_{ij}$  (equivalently of  $a_{ij}$ ) and  $R(A_i)$  is the radius of  $v_j$  (equivalently of  $y_j$ ). Now system (12) can be written in a compact form

$$\tilde{A}_0 \cdot v = B \quad (13)$$

where  $\tilde{A}_0$  is the real coefficient matrix in (12a). Let  $C = |\tilde{A}_0^{-1}|$  and  $R(Y) = (R(Y_1), R(Y_2), \dots, R(Y_{2n})) = r = (r_1, r_2, \dots, r_{2n})$ . From (13)

$$r = C \cdot R(B) \quad (14)$$

Now we introduce the following matrices:

1.  $\tilde{R}$  is a  $(2n \times 2n)$  block matrix in the form:

$$\tilde{R} = \begin{bmatrix} \{R_{ij}\} & Z \\ Z & \{R_{ij}\} \end{bmatrix}$$

where  $R_{ij} = [R(A_{ij})]$ ,  $i = 1..n$ ,  $j = 1..n$ ;  $Z = [Z_{ij}]$  in  $(n \times n)$  matrix with zero elements;

2.  $\check{R}$  is  $(2n \times 2n)$  block matrix as:

$$\check{R} = \begin{bmatrix} R' & Z \\ Z & R' \end{bmatrix}$$

where  $R'$  is the same as  $R_{ij}$  except for the last column whose elements are now zero;

$$|Y^0| = \begin{bmatrix} |Y_{Re}^0| \\ |Y_{Im}^0| \end{bmatrix} = \begin{bmatrix} [ |y_1^0| \ |y_2^0| \ \dots \ |y_n^0 | ]^T \\ [ |y_{n+1}^0| \ |y_{n+2}^0| \ \dots \ |y_{2n}^0 | ]^T \end{bmatrix}$$

3.  $Y^0$  is  $2n$ -th vector column:

4.  $\check{R}^n$  and  $\check{R}^{2n}$  are diagonal  $(n \times n)$  matrixes with  $R(Y_n)$  and  $R(Y_{2n})$  in the main diagonal respectively.

5.  $r_{Re}'$  and  $r_{Im}'$  are the same as vectors  $r_{Re}$  and  $r_{Im}$  except for the  $n$ -th element of  $r_{Re}'$  which is 1 and  $n$ -th element of  $r_{Im}'$  which is  $\alpha_{2n}$ .

6.  $R^{is''}$  and  $R^{ss''}$  are  $n$ -th vector column in the form:

$$R^{in''} = [R(A_{1n}) \ R(A_{2n}) \ \dots \ R(A_{(n-1)n}) \ 0]^T$$

$$R^{nn''} = [0 \ 0 \ \dots \ 0 \ R(A_{nn})]^T$$

$$r = R(Y) = \begin{bmatrix} r_{Re} \\ r_{Im} \end{bmatrix} = C \cdot \tilde{R} \cdot \begin{bmatrix} |Y_{Re}^0| \\ |Y_{Im}^0| \end{bmatrix} + C \cdot \check{R} \cdot \begin{bmatrix} r_{Re} \\ r_{Im} \end{bmatrix} + C \cdot \begin{bmatrix} \check{R}^n \cdot r_{Re}' \\ \check{R}^{2n} \cdot r_{Im}' \end{bmatrix} + C \cdot \begin{bmatrix} \check{R}^{2n} \cdot r_{Re}' \\ \check{R}^n \cdot r_{Im}' \end{bmatrix} + C \begin{bmatrix} R^{in''} \\ R^{nn''} \end{bmatrix} + C \begin{bmatrix} R^{nn''} \\ R^{in''} \end{bmatrix}$$

Using (12b), (12c), (12d), (12e) and the new notations, (14) can be written in the form:

$$r = d + D \cdot r + C \cdot \begin{bmatrix} \check{R}^n \cdot r_{Re}' \\ \check{R}^{2n} \cdot r_{Im}' \end{bmatrix} + C \cdot \begin{bmatrix} \check{R}^{2n} \cdot r_{Im}' \\ \check{R}^n \cdot r_{Re}' \end{bmatrix} \quad (15)$$

with (16a)

$$d = C \cdot \tilde{R} \cdot |Y^0| + C \begin{bmatrix} R_{in}^0 \\ R_{in}^0 \end{bmatrix} + C \begin{bmatrix} R_{nn}^0 \\ R_{nn}^0 \end{bmatrix}, \quad D = C \cdot \check{R} \quad (16b)$$

The matrix equation (16) is a non-linear real value (non-interval) system of  $2n$  equations of  $2n$  unknowns  $r_i$ . The solution of (16a) for positive  $r_i$  solves Problem  $P_2$ . Indeed

$$y_i = y_i^0 + [-r_i, r_i], \quad i = 1, 2, \dots, 2n. \quad (17)$$

Following [7] it can be shown that

$$y_i^* \subset y_i, \quad i = 1, 2, \dots, 2n, \quad (18)$$

i.e. the intervals (17) are really outer bounds on the ranges  $y_i^*$  for all  $i$ . Hence, the interval

$$y_n = y_n^0 + [-r_n, r_n] \quad (19a)$$

$$y_{2n} = y_{2n}^0 + [-r_{2n}, r_{2n}] \quad (19b)$$

is the solution to the original problem  $P_1$  and is, in fact, a bound  $\lambda$  on  $\lambda^*$  satisfying the inclusion (3a) and (3b).

Thus, it has been shown that the original problem  $P_1$  reduces to solving the non-linear (incomplete quadratic) system (16a). Since  $R_{ij}$  are, most often, percents of  $a_{ij}^0$  and (16a) is only mildly non-linear, its solution does not present any problem.

#### 4. Numerical example

The applicability of the method will be illustrated by the example with  $n = 2$ :

$$\begin{cases} a_{11} \cdot x_1 + a_{12} \cdot x_2 - \lambda \cdot x_1 = 0 \\ a_{21} \cdot x_1 + a_{22} \cdot x_2 - \lambda \cdot x_2 = 0 \end{cases} \quad (20)$$

Here

$$\begin{cases} a_{11}^0 = -3.2 & a_{12}^0 = 2 \\ a_{21}^0 = -4 & a_{22}^0 = 1.8 \end{cases} \quad (20a)$$

and  $R_{ij}(A) = 0.052$ ,  $i = 1, 2$ ;  $j = 1, 2$ .

First, we determine the centre of the eigenvalues

$$A^0 = [-0.7 - j1.322876, -0.7 + j1.322876]^T \quad (21)$$

and

$$\lambda_{\max Re} = \max_i \{\lambda^{(i)}_{Re}(A_0)\} = -0.7 \quad (22)$$

For this example, the index  $k$  corresponding to  $\lambda_{\max}$  is  $k=1$  and the corresponding normalized vector of the centres of the variables from (5) and (6) is:

$$X^0 = [x_{1Re}^0, 1, x_{1Im}^0, x_{2Im}^0]^T = [x_{1Re}^0 / x_{2Re}^0, 1, x_{1Im}^0 / x_{2Re}^0, x_{2Im}^0 / x_{2Re}^0]^T \quad (24)$$

According to (7) vector  $Y$  is:

$$Y = [y_1, y_2, y_3, y_4]^T = [x_{1Re}^0, \Lambda_{Re}, x_{1Im}^0, \Lambda_{Im}]^T \quad (25)$$

so

$$Y^0 = [y_1^0, y_2^0, y_3^0, y_4^0]^T = [0.625, -0.7, 0.3307, 1.3307]^T \quad (26)$$

So the system (8a) is:

$$\begin{cases} a_{11} \cdot y_1 + a_{12} - y_2 \cdot y_1 + y_4 \cdot y_3 = 0 \\ a_{21} \cdot y_1 + a_{22} - y_2 \cdot 1 + y_4 \cdot \alpha_4 = 0 \\ a_{11} \cdot y_3 + a_{12} - y_2 \cdot y_3 - y_4 \cdot y_1 = 0 \\ a_{21} \cdot y_3 + a_{22} - y_2 \cdot \alpha_4 - y_4 \cdot 1 = 0 \end{cases} \quad \alpha_4 = x_{2\text{Im}}^0 = 0 \quad (27)$$

Applying (10) and simplify the system get the following non-linear system:

$$\begin{cases} 0.9575 r_1 + 0.2088 r_3 + 0.75597 r_2 r_3 + 0.75597 r_1 r_4 + 0.3469 = 0 \\ -r_2 + 0.835363 r_3 + 3.024 r_2 r_3 + 3.024 r_1 r_4 + 1.1115 = 0 \\ 0.2088 r_1 + 0.9575 r_3 + 0.75597 r_1 r_2 + 0.75597 r_3 r_4 + 0.3959 = 0 \\ 0.835363 r_1 - r_4 + 3.024 r_1 r_2 + 3.024 r_3 r_4 + 1.357 = 0 \end{cases} \quad (28)$$

The solution of (28) is:

$$R(Y) = [R(y_1), R(y_2), R(y_3), R(y_4)]^T = [0.1053, 0.268341, 0.0556, 0.92343]^T \quad (29)$$

Finally, from (21) and (29):

$$\Lambda_{\text{Re}} = [-0.7 - 0.2685445, -0.7 + 0.26885445] = [-0.9685445, -0.4314555] \quad (30)$$

Thus, in view of (30), we conclude that the estimations of the real part of the complex eigenvalues of interval matrix A at  $R(A) = 0.17$  with our approach are outer bounds. We can demonstrate that with compare to results of “Monte Carlo” method, which gives inter bounds of the estimation of the real part of the eigenvalues:  $\lambda_{\text{Re}} = [-0.868759, -0.532679]$ .

## 5. Conclusion

The problem of bounding the complex eigenvalues of interval matrices has been considered. It is related to the problem of assessing the robust stability of linear circuits or systems having interval parameters. A method for determining outer bounds on the eigenvalue ranges has been suggested. It requires the evaluation of the complex eigenvalues and the corresponding complex eigenvectors from (4) for the center (nominal parameters) matrix  $A_0$ . The method essentially consists of setting up and solving the system of  $2n$  non-linear equations (16a) for the positive solutions  $r_i$ ,  $i = 1, 2, \dots, 2n$ . The solution of the original problem is then found by the  $n$ -th and  $2n$ -th radii  $r_n$  and  $r_{2n}$  according to formulae (19a) and (19b).

The approach herein suggested is a generalization of the case of real eigenvalues (see [1]). The form of the non-linear systems (16) for determining the complex eigenvalues is the same except that the number of components in (16a) is twice as much as it in the real case because there is a real and imaginary part of the eigenvalues and eigenvectors and the size of the system (16a) increases to  $2n$ .

A further possible generalization is to encompass matrices whose elements are non-linear functions of a certain number of interval parameters.

## References

1. Kolev, L. V., S. K. Filipova-Petrakieva, Outer bounds on the real eigenvalues of interval matrices, ISET – 2001, pp. 383-386.
2. Rachid, A., 1989, Robustness of discrete systems under structured uncertainties, Int. J. Control, vol. 5, No. 4, pp. 1563-1566.
3. Wang, S. S., W. G. Lin, June 1991, A new approach to the stability analysis of interval systems, Control-Theory and Advanced Technology, vol. 7, No. 2, pp. 271-284.
4. Rohn, J., October 1992, IEEE Transactions on Automatic Control, vol. 37, No. 10, pp. 1604-1605.
5. Juang, Y., Ch. Shao, Stability analysis of dynamic interval systems, 1989, Int. J. Control, vol. 49, No. 4, pp. 1401-1408.
6. Kolev, L., 1993, Interval methods for circuit analysis, Advanced Series on Circuits and Systems, vol. 1, World Scientific.

Любомир Колев (проф. Д.т.н.), Симона Филипова-Петракиева (инж. Ас.)  
Факултет “Автоматика”, Катедра “Теоретична електротехника”  
Технически Университет – София, София, България  
e-mail адреси: lkolev@vmei.acad.bg, petrakievas-te@tu-sofia.acad.bg

Lubomir Kolev (Professor, D. Sc.), Simona Filipova-Perakieva (eng. Assistant)  
Faculty of Automatica, Technical University of Sofia, 1756 Sofia, Bulgaria  
e-mails: lkolev@vmei.acad.bg, petrakievas-te@tu-sofia.acad.bg