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Worst-Case Tolerance Analysis of Linear
DC and AC Electric Circuits

Lubomir Kolev, Senior Member, IEEE

Abstract--This paper addresses the problem of worst-case
tolerance analysis of steady states in lincar dec and ac electric
circuits. The statement of the problem considered is in the form
of lincar algebraic equations whose elements are, in the general
case, nonlincar functions of a given set of independent interval
parameters. Three kinds of solutions arc considered: 1) outer
solution; 2} inner solution and 3) exact solution. A direct method
for computing an outer solution and an iterative method for
finding an inner solution are suggested. The inner and outer
solutions thus found provide a tight two-sided bound on the
exact solution of the tolerance problem investigated. The exact
solution can be determined if certain monotonicity conditions
are fulfilled. The verification of the conditions involves solving
several associated outer solution problems. The computational
efficiency of the methods suggested is demonstrated by a numerical
example.

Index Terms—Interval analysis, interval methods, linear equa-
tions with dependent elements, worsi-case tolerance analysis.

I. INTRODUCTION

ORST-CASE tolerance analysis of linear circuits
(systems) is a well-established research area in circuit
theory, The traditional approach to handling this problem is to
use the Monte Carlo method. Starting with the pioneer works
{17 and [2]. an alternative approach based on the application
of interval analysis technique [3]-[5] has been in existence for
several decades. The methods utilizing the latter approach are
known as interval methods (cf. [6], [7] and the bibliography
therein cited)., Because of their high reliability the interest in
these methods has lately considerably increased.
Most warst-case tolerance analysis problems for linear cir-
cuits can be formulated in the following ways:

1} in explicit form as corresponding global optimization '

problems [2]. [6, Ch. 2}, [8], [9]:
2} inimplicit form using a system of linear interval equations
[1], {6, Ch, 3], [10])-[13].

This paper falls into the latter group of investigations. All
known methods pertaining to this group are based, in one way
or another, on the exact or approximate solution of a system
of linear algebraic equations whose elements are either inde-
pendent intervals (in the case of dc circuits [6], [10]) or are
assumed 1o be independent intervals (in the case of ac circuits
[11]-[13]). The requirement for independence of the elements
imposes stringent restrictions on the form of the system used:

Manuscript received June 22, 2001: revised June 26, 2002. This paper was
recominended by Associate Editor N. M. K. Rao.

The author is with the Faculty of Automatica. Technical University of Sofia,
1756 Sofiz. Bulgana {e-mail: lkolev @ vmei.acad bgh.

Digitat Object Tdentifier 10.1109/TCS1. 2002 805700

tableau forms (6] or the so-called hybrid form [11]-[13]. The
system must have independent interval elements since the in-
terval methods for solving linear systems applied so far to the
solution of tolerance problems are only capable of treating such
systems.

A more general and more flexible approach is adopted
in this paper. According to this approach, the worst-case
tolerance problem considered is solved using a corresponding
system of linear algebraic equations whose elements are now
interdependent. More precisely, each element can be a linear
or even nonlinear function of a given set of independent
paramneters. These take on their values within certain prescribed
tntervals. The interval solution of the linear system is then
transformed in a nonlinear fashion to provide the solution of
the tolerance problem on hand. The new approach covers all
possible worst-case tolerance problems related to dc and ac
linear circuits. For brevity, these problems will be referred to
as tolerance analysis (TA) problems. The following three kinds
of interval solutions 1o such problems will be considered:

1) outer solution;
2} inner solution;
3} exact solution.

The exact solution is the narrowest possible interval solution
of the TA problem considered (the rigorous definition of the
unique exact sclution will be given in the next section). An
outer solution is any interval solution that contains the exact
solution. Similarly, an inner solution is any interval solution
that is contained in the exact solution. Since the determination
of the exact solution is not always possible with acceptable
computational cost, cheap and tight inrer and outer solutions
will provide a good two-sided bound on the exact solution. Such
outer and inner solutions are obtained in the present paper. After
presenting the formulation of the TA problems in Section II,
a simple direct method for computing an outer sclution is
suggested in Section III It reduces essentially to inverting a
real n x n matrix and solving a system of n real linear algebraic
equations, n being the size of the original real linear interval
system describing the TA problem considered. In Section IV, a
simple iterative method for computing a tight inner solution is
proposed. Finally, a more invelved method for determining the
exact solution is presented in Section V. The latter method is.
however, applicable only if certain monatonicity conditions are
satisfied. It requires solving several associated outer solution
problems to computationally check the above monotonicity
conditions. The efficiency of the methods presented is illustrated
by way of a numerical example in Section VI. The paper ends
up with several concluding remarks.
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11. FORMULATION OF THE AT PROBLEMS

In this paper, an arbitrary TA problem can be formulated in
the following manner. First, a real linear algebraic system of
equations i3 set up

Alp)z = b(p) (1a)

where p is an m-dimensional parameter vector, A(p) and b(p)
are’an n X n matrix and an n-dimensional vector, respectively.
The elements of A(p) and b(p) are, in general, nonlinear func-
tions of m parameters

aii(p) =aij (P11-- - Pm) (1b)
bi(p) =bi (p1, .- -Pm) (1¢)

and the parameters take on their values within some prescribed
intervals, i.e.,
P €EPp, k=1,...,m (1d)
Here and henceforth, ordinary font letters will denote real
quantities while beld face letters will stand for their interval
counterparts. Thus, p = {(p1,..,pw) and p = (py... ., P,)
will denote a real and an interval vector of m components,
respectively.
The next step to formulating the TA problem is to define the
relationship

u = glz) (2)

which specifies the vector of output variables u and where g :
R — R, 1 < q < n. The pair (12)~(1d) and (2) formulates
the TA problem to be solved.

At this peint, the following assumption is needed.

Assumption 1. Bach matrix A(p}, p € p, is nonsingular.

Later, it will be shown that Assumption 1 can be easily veri-
fied numerically by a certain sufficient condition (Theorem 1).

The solution set of the pair {1a)-(1d) and (2} is the set

S(p) = {u:u=g(z),z=A"" PP, pep}. O
The interval hull of S(p) will be denoted w* and «" will be
called exact (interval hull} solution to problem {la}-(1d), (2).
Any other interval o' such that * C o’ will be referred to as
an outer solution to (la)—(1d), (2). Similarly, an interval vector
u' with the property u” C wu* will be referred to as an inner
solution to {1a)—(1d}, (2).

The description (12)—(1d), (2) is rather general and covers
all possible dc and ac TA problems formulated in {6, Sec. 3,
problems 3.1-3.10] . Typically, functions (1b) and (1¢) invalved
in most TA problems are affine (linear} functions of the elements
of p

Lid]

a{p) =eu; + Z 0Pk (da)
ﬂ. 1
bi(p) =B, + Z Bikpr (4b)

It is, however, knowti®[6] that in the general case, some of
the elements «@;; will be nonlinear functions if the circuit
investigated involves dependent current sources with interval
coefficients. Alse, some of the elements b; will be nonlinear
functions if the magnitudes of some voltage or current sources
are not known exactly (and are therefore given as intervals) and
loop analysis is used to set up the TA system of equations. The
nonlinear functions encountered in practice are continuously
differentiable with respect to the parameters considered.

The specific TA problem considered is finally defined by
choosing the function g{x) in (2). In some cases, g{x) is 2 linear
function. Thus, if we are interested in the determination of the
tolerances on all the components of x (as in {6, prob. 3.7,3.8],
then

n=1 {5a)
50
g=FK (5b)

(where E denotes the identity matrix). In the overwhelming ma-
jority of applications, the problem is to estimate only the range
of n’ components u} and n’ < n {typically n’ = 1inthe case of
direct current electrical circuits or »° = 2 in the case of alterna-
tive current electrical circuits). If we want to find the tolerance
on one single component ¥y of @, then {2) become

Uy = e{ -7 (6)

where e] is the transpose of the kth column of £. If the problem
is to estimate the tolerance on n’ culput variables (with n' > 1),
then the pair (la)-(id) and (6} is solved n' times. )

In the genéral case [6, prob. 3.9, 3.10), g(x) is a nonlinear
function. For example, if we want to find the tolerance on the
magnitude of a nodal voltage Vy [6, problem 3.9]), then

w= i+ Thy 7

where 75 and x4, are the real and imaginary parts of the com-
plex nodal voltage Vi,

Once the TA problem is defined by fixing (la)-(1d) and {2),
we have finally to specify which of the solutions outer, inner, or
exact is to be found.

1II. QUTER SOLUTION

In this section, first a method for determining an outer so-
lution £’ to problem (1a)-(1d) and (5a)—(5b) is suggested. The
solution =’ is then used to find an outer solution #’ to problem
(la)-(1d) and (2).

The derivation of the method is based on the general approach
employed in [16), {17}, on the one hand, and the result for the
case of affine functions a,;(p1, ..., Pm) [19], on the other.

To apply this approach, we need the following preliminary
facts {14]-{16]. First, let f : x € I — R7 be a continuously
differentiable function. The function f(x) can be enclosed in
the interval vector & by the following linear interval form:

Li(r)=Ar+e, r€Z (8)
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where A is a ¢ x n real {noninterval) matrix while @ is an interval
vector, The form (8) can be determined in an automatic way
using the algorithm of [16]. It has the inclusion property

flzye Lg(z). ze€x (9)
Secondly, consider the product
TY, EEL, YEY (10)

where € and 4 are intervals. If .y, 5o and r, 7y are the respective
centers and radii, then [14)

Yy € ~royo + Yor + soy + [—reryror,]. (1)

In accordance with (8), the corresponding linear interval forms
of (4a) and (4b} are

fIL

Lij(p) = Z Gkt @5, pEP (122}
k=1

Li(p) = Zﬁfu?k +b. pep (12b)
k=1

and have the inclusion property

ai{pyely(p), pep (13a)
bi(p) €li(p). pep (13b)

The approach herein adopted to determining an outer solution
to {la)—{1d} is based on the use of (8)~(13) and the method for
solving perturbed systems of equations in [17]. For this purpose,
{la)—(1d) is written in the form

flr,p) = Alp)r - b(p) =0, pep. (14)

We temporarily assume £ is a known interval vector. Then,
f{x, p) canbe enclosed in 2 = (z, p) by the linear interval form

Li(z.p)=A"z2+ APp+v, z€z, pep (15)

where A* and AP are n x n and n X m real matrices. On account

of the inclusion property

fle.p) € Lg(a,p), z€z, pEp (16)

Now, we shall obtain explicit expressions for A% and A? and v.
With this in mind, we first introduce the shorter notation L;; for
the intervals L;;(p) and {; for the intervals I;(p). Let I, denote
the interval matrix whose elements are L;; while L? denotes its
center. Also, let ¥ be the center of vector z. Then, on account
of (11)

Aplr e L'+ L2 +¢, rex. Lel {17a)
where
c=—L%" 4 [—° 1. (17b)
In {17b), the radius +7 of ¢ is given by

re o= REpT (17¢)

where % is the radius of L and »* is the radius of z. It is sezn
from (12a) that the elements Rfj of RT are computed as

m

RL = Z lexije| v} + R (17d)
k=1

where 7} is kth component of the radius r? of p and I s the

radius of a;;. On account of (12a), the elements L?J- of L. are

n

LY =al + > aijend. (17¢)
k=1
On the other hand, using (12a)

(La®), =S Lyad =D oupe+ac  (183)
=1 k=1

where
¥k :Z:.':?(.tuk (18b)
j=1
a; =Zx?au‘ (18¢)
j=1
In a similar way
1§ =t7+ Bunl (192)
k=1 :
I =b; + Z By, (19b)
k=1

[et I be the interval vector whose components are defined
through {19b). Combining

bp)el (20)

(17a), and (18a), we finally get the explicit expressions for 4™,
A? and v in (15)

A* =I° (2la)

Al :Zﬂukl’? - Bax (21b)
3=1

v=at+b+e (2le)

Now consider the linear interval system related to {(15)
V2 + APp+v=0, pep (22)

Let B = (L% ~! and C = BAP. From (22}, the solution for =
denoted k is

h=—-Cp- Bla+b) - Bc. (23)

So far, we have assumed that £ is a known interval vector.
Now, we proceed to determining z as an outer solution ',
First, we determine the center 2° of ' as the solution of

0= (24)

where L? and I" are defined by (17e) and (194}, respectively.
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We have next to determine the radius  of 2. On account of
23, {17a)-(17¢), and (21}

Crt = |C* + |B| (v + P) + | BIR. (25)
Let for simplicity of notation

c=|[Cr? + |B] {(v* + ) (26a)
D =\B|R. (26b)

Taking into account (25), a reasonable choice for rh is 1o deter-
mine it as the solution 3™ of the equation

y=¢+ Dy 27
or equivalently
(1= Ii)y =c. (28)

The main result of this section is the following theorem,
Theorem 1: Assume the solution »* to system {28) is posi-
tive, Then

1) the interval vector
z=a"+ K (292)
where
B o=y (29b)

is an outer solution to (la)—(1d);

2) matrix A{p) is nonsingular for each p € p.

The proof of the above theorem is similar to that of Theorem
2 in [19] and will therefore be omitted. The method used
to salve (28) should however guarantee the nonsingularity of
matrix [ - I

Based on Theorem 1, the present method for determining an
outer solution to system { 1a)-{id) comprises the following com-
putations. First, we evaluate matrix L® as well as matrix R using
(17e) and (17d). Next, L is inverted to get matrix B. Using
(26), we set up system (28). If the solution of (28} is positive,
then the outer solution is obtained from (29). If, on the other
hand, system (28} does not have a positive solution, the method
is not applicable.

If the TA problem is to find an outer solution u' to (la)-(1d)
and {2), o’ can be computed as follows:

u = g{x) (30)

where u is the range of g In z.

The above method for computing an outer approximation to
the exact solution of the TA problem considered will be referred
to as method M1

IV. INNER SOLUTION

In this section, first a simple iterative method for determining
an inner solutien z” to system (1a)-(1d} will be presented. In
fact, we compute individually each component 3, of 2. As in
the previous sectien, the method will then be extended to deter-
mining the component 1} of the inner solutian u” of problem
(ta)—(1d) and (2).

The method is biSéd on a local oplimization technique and
appeals to two procedures which determine separately the lower
endpoint 2/, and the upper endpoint Ty of z}. Each proce-
dure makes use of the derivatives of & with respect to py, I =
1,...,m. These derivatives are computed in the following way.

System (la) is written in detailed form as

"

Zaij(pl,...m)xj =bi(p,..m)=0, i=1,....n

i=l1

(31
We are interested in expressing the derivative of 2:; with respect
to pi, L = 1,...m. With this in mind, we differentiate Ghyinp,
and on account of (1b) and {1¢) we get

T

é)-.rj X ) .
Z “U‘(P)E{'}I = yalp) — Zl mples, i=1....n
J;

=1

{32a)
where
ab(p
Ta(p) = () (32b)
I
_. aaij (p) b
Bijlp) = o (32¢)
Systems {32a) and (32b)-{32¢) will be rewritten as
o
A(p)a = p(p) — mp)e(p) (32d)

where 7,(p) is a column vector and 7 (p) is a matrix. Hence, if
B(p) = A7 (p)

dr

Ep';(?’) = B(p) (nlp} —m{p)x(»)), pEP (33)

If we are interested in the kth component of di/dpy, then (33)
becomes

dry

d—(P) = Bi(p) (n{p) —mp)a(p)), pEP (34)
'

where By (p} is the kth row of B(p). Now, as can be easily seen,
By(p) can be computed in a most efficient manner as follows.
For a fixed p we solve the real system

AT(p)y=er, PEP (35)

where AT denotes the transpose of A and ¥ is the kth column
of the identity matrix. Finally, By is obtained as yT.

We have the following procedure for finding the lower end-
point zi of z.

Procedure 1: For a fixed k we start by evaluating the deriva-
tive di(p) = dax/dpip) for p = P Let df), = dit (P9,
AY = AR, BY = Bi(p®). 4? = m(p®). o) = n(»") and
x° = z(p®). On account of (34}

4, = B} (’}P ~ 7a") (36)
where

B =(")" (372)

< ar T



»

and 4" is the solution of the real system
(A% y = e (370)

Now, we determine new values p}, I = 1,...,mn, using the
following formula :

v _ Jpp de20
B {;?]h ifd;u{(] ’l-"]-'.---,ﬂl (38)

and form the vector ' = (pf,...,pl.). We then solve the

systent
Alp )z =b(p") (3%)
to find the vector z'. If

ah < xh (40)
a1 is renamed z{, p} are renamed pf, and the procedure is re-
sumed from the start; otherwise, the procedure is terminated and

the inner bound on g7, is given by the corresponding component
0
i
A similar procedure is valid for determining the upper end-
point Ty of .
Procedure 2: For a fixed k, we let p = p" and repeat the
computations (36) and (37a)-(37b) of Procedure 1. Now, we de-

termine a new vector y* with components x! using the formula

v [P fduz0
?JI_{E;'- ifdM(lD_.I—l,...,m. (41)
Then, the corresponding system {39) is solved and a new vector
2! is thus found. If

zh > ¥ (42)
2} is renamed z2, and p} are renamed p{ and the procedure is
resumed from the start; otherwise the procedure is stopped and
the inner bound on T}, is given by the corresponding component
9.

It is seen that Procedures 1 and 2 implement a strategy which
is based on a local optimization scheme. If the actual dependen-
cies of dry /dp; on dp; in p are monotone functions, these proce-
dures will produce, in fact, the exact solution =7, In the general
case, Procedures 1 and 2 will only provide inner bounds on x3..

Combined with the outer bounds &' the pair (", «') provides a
two-sided estimate of the exact solution z* of system {(1a}{1d).
The width of the interval vector w = z’ — '’ can serve as a
measure of the accuracy of the approximations =’ and z”.

The above approach can also be applied in the case of han-
dling the TA problem (1a)<{1d) and (2). The only difference is
that now we compute the derivatives of « with respect 1o .
Thus, for u defined by (7)

du
dny

diey s

(p), PEP

(43)
The inner sclution u” is then found using Procedures 1 and 2
that have been modified accordingly.

N oy 8T i,
(p) = 2e4(p) I (P) + 2xx4+1(p) dp

Ed
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V. EXACT SOLUTION

In this section, the exact solution to the TA problem (12)—(1d)
and (2), or problem (1a)—(1d) and (5b) will be sought. For sim-
plicity of the presentation, first a method for computing the
exact solution z}, of the simpler TA problem (1a)~(1d) and (5b)
will be suggested. The method is applicable only if the deriva-
tives dirs, /dp; are guaranteed to be monotone in p. These mono-
tonicity conditions can be checked in the following way.

Let &' be the outer solution of (1a)-(1d) computed by the
method presented in Section I Similarly, let B« and  de-
note the enclosure of the respective quantities for p € p. Then,
we can define Dy, as follows:

Dy = By (7, — .2’} (44)
and obviously
dxy,
d—k(P) eD.y pep (45)
P

Hence, the derivative considered is guaranteed to be monotone
inpifd ¢ Dy

For the special case of linear functions a;;{p) and b;(p) the
matrices -y and 7 are constant.

As in the previous section, By can be computed as an outer
solution y of the following system:

AT(ply=ex, pEP (46)

To get a narrow interval vector g, system (46) will be solved by
the method M1 from Section I11. Finally, By is obtained as yT.
Using (45), we determine the estimates Dy, Now we make
the following assumption.
Assumption 2: We assume that each estimate D,
! =1,...,m, satisfies either the condition

Dy 20 (474)
or the condition

Dy <0 (47b}

On account of inclusion (45) the fulfillment of Assumption 2
guarantees that xy is monotone with respect to each parameter

" p;. Now, we define two vectors Q("‘) and 7'*) as follows:

fk):{&- D20,y (48a)

BOF\F, ifDu <0
[P fDw20
PUO= g, Du<0)

The exact solution z}, of system (12)-(1d) can be found using
the following theorem.
Theorem 2: 1f Assumption 2 holds, then the kth component

* —h

z} = (z}.T}) of the exact solution z* is determined as follows.
1) z} is equal to the kth component of the solution of

1=1,....:m.  (48b)

A(p®)z =5 (™). (492)
2) 7} is equal to the kth component of the solution of
A (p(*‘}) c=b (;—J“) (49b)

where the vector E(“ and p*) are determined according
to (48a)-(48h).
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The theorem follows directly from the above considerations
about the monotonicity of du/dpt!).

On the basis of the aforegoing we have the following proce-
dure for determining one component z; of the exact solution
x*. Before initiating the procedure, however, we solve system
(28) to gel an outer solution =" of (1a)-(1d).

Procedure 3: For a given k, solve system (46) using method
M1 to find the interval vector By, By (d44) compute Dy, | =
1,...,m. Check conditions (47}. If all of them are satisfied,
determine the two real vectors %) and 7*) using (48a)-(48b).
Finally, solve systems {49a)—(4§b) to get the lower end-point
and the upper end-point T}, of the kth component x}, of the exact
solution 1o system (ka)}-(1d).

In some cases, it is possible to determine z, even ifynot all
conditions {47a)-(47b) are satisfied, that is if Procedurd 3 is
not applicable, Indeed, let (for a fixed &) I; denote the set of
those indices { for which either (47a) or {47b) holds while /5
denotes the set of indices { for which (47a)~(47b) is violated.
‘Using (482)-(48b) in which now [ € I}, we can determine those
components of the vectors p and 7 which are guaranteed to take
on end-point values. Thus, each vector can be partitioned into
two parts as follows:

p= (z(”'pm) (50a)

or

r=(5".p?) (05)
where only the components pgz), l € I of pfz) are allowed
to take on their values within the corresponding intervals p;
forming the interval vector p‘®. Let the index set [; have
m; members and [z have mp members. Since according to
{502)—(50b) the first m; components of p are fixed to end-point
values it is seen that the original interval vector p has been
reduced to a new mo-dimensional interval vector p(¥ whose
components are p; with{ € Tz,

We first consider partition (50a). We shall present a procedure
for determining the lower end-peint g3 of z3.

Procedure 4: For a fixed &, find the cuter solution x of the
following modified system of type (la)—(1d)

A (B(l):Pu}) r=b (2(1)';](21) . PP ep®.  (iw

Also, find the outer solution ¥ of the modified system
A(@”m@0y=ck

to get the corresponding interval vector Bj. Thus, we can
compute by (43) the elements Dy, { € I and check the mono-
tenicity conditions (47a)-(47b). Now we assume that these
conditions are fulfilled. Using (48a) we find the reduced-sized
vector p@ whose components are pi”, 1 € . Finally, Zhy, 15
computed as the kth component of the solution of

4 (Bm‘g(z)) r=bh (2(1),2(2)) )

We next present a procedure for determining the upper end-
point Ty, of x.

Procedure 5; It has, essentially, the some structure as Pro-
cedure 4. Now we solve systems (51a)~(51b} in which P s

(51b)

(32)
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replaced with 3‘7“). Thus, we compute the elements Dy corre-
sponding to (5, p®)). Once again we assume that the mono-
tonicity conditions (47a)-(47b) are fulfilled. Using (48a)-(48b)
we find the real vector 5(2) whose components are ;‘6t2 A€ I,
Finally, T}, is computed as the kth component of the solution of

A (}-3(1),5(2}) v =b (},—)(1),1—,(2}) _

The above approach to computing zj will be referred to as
method M3,

Method 3 can be used only if both Procedures 4 and 5 are ap-
plicable. If, however, the monotonicity conditions (472)-{47b}
are not fulfilled for all components of p'®, a new attempt can
be made to determine z}. With this in mind, we treat p'*) as a
new reduced-size parameter vector. We then partition the new
p'2} into two parts and apply once again method M3, This new
computational scheme will also be referred to as method M3.

Method M3 is also applicable in the general case of nonlinear
relation (2). Thus, for function (7) we have once again to appeal
to formula (43) where, however, all real variables are to be re-
placed with their interval counterparts. Afterwards, we employ
Procedures 4 and 5 that have been modified accordingly.

(53)

VI. NUMERICAL EXAMPLE

The new methods will be illustrated with the following ex-
ample. The linear AC circuit considered [11] is shown in Fig. 1.
The nominal (center) values of the interval element parameters
are

RE=10Q, i=1,...,5 (54a)
Cce=2- 1071F, Ci=C(Ct= 1074F (54b)

while the fixed quantities are
w=10%s"% J=10"*A. (54c)

The TA problem to be solved consists in finding the outer,
inner, and exact solutions related to the real part V' of the output
voltage V5 for several values of the tolerances on R; and €.
Thus, the TA problem considered here is of the type (1a)—-(1d)
and (6).

The numerical experiments are done in a MATLAB environ-
ment on a 400-MHz Pentium II PC. The interval arithmetic op-
erations are implemented using the toolbox INTLAB. For space
limitation, the numerical resulis obtained will be reported to
only four decimal places.
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A. Outer Solutions

Unlike the algorithms using real (complex) calculations, the
results obtained by interval algorithms depend on the system
describing the problem on hand. Thus, the nominal value of VV
will be the same notwithstanding whether the system of equa-
tions used is set up by nodal analysis, joop analysis or in tableau
form. Tt will be shown that the result for the outer solution, how-
ever, is different depending on what type of analysis equations is
employed. For the purpose of comparison three types of system
of equations will be considered.

System S1: This is a system of equations of the type used in

"[10] or [6, Ch. 3]. It consists of 2n = 2(n’ + m') equations

where n' and m’ is the number of unknown nodal voltages and
branch currents, respectively

Ar=b (552}

and the interval entries lie only in the first 16 positions along the
main diagonal of the coefficient matrix A. The interval coeffi-
cients are dependent since

@ = Tipm. &+ 70 = P P € P i=1....,m. (55b)
For the circuit analyzed n’ = 4, m’ = 8 son = 24 and
p, = R = R + t [~ RS, RS (56a)

where t is the tolerance chosen and [— RS, Rf] is a symmetric
interval

p, =X, i=6738 (56b)

Bi=wCi, Bi=Df+!¢ [-B{,Bf]. (56¢)
The real part V of the output voltage is represented by the com-
ponent z 9 of the real vector z.

System S2: This is the so-called hybrid system of equations
[11]-[13]. Tt has the same structure as system 31, i.e., the in-
terval dependencies are again given by (55b}, but now system
(55a) has reduced size involving n = 2m’ equations. For the
circuit studied n = 16,

p1 =G1, p2 = Bs, p3 = Ga, ps = G2
P3 ZR-I-. }J4=R5..., p?:XT, ptg:Xs (57)
and G; = 1/R;. Now V is given by 3.

System §3: In this case, system (55a) is set up using nodal
analysis and involves n = 2n’ equations. Now

a;;=zaukm, Lj=1l...,n (38a)

where a;jx can be 0, +1 or —1. For the circuit investigated
n = 8 and

pr =G, k=1,...,8 (58b)
pyx =B, k=6,7.8. {58¢)

The output variable V' is given by x3.

We first compare the outer solutions for system S1 obtained
by the present method M1 and Hansen’s method for two values
of the tolerance ¢. Although a better version [17} of Hansen’s
method has here been used than that employed in [12] and [13).

TABLE I
COMBARISON OF THE OUTER SOLUTIONS V' OBTAINED BY THE
PRESENT METHOD M1 AND HANSEN'S METHOD

Present method M1 1 Hansen's method

TR V) T (s) BT V) (5]

005 =] 14 {01760, 0.4567] 006 | [O.0115. 05310] | 006

0 51

[0.2157, 0£783] | 006
i _

2 L [-0.0530, 0.6837) 006

TABLE 1
DaTa 0% V' QBTAINED BY M1 FOR SYSTEMS S1, 52, 83
) System n P iv) s
0.65 sl 24 [0.1760, 0.4567] ;  0.06
0.05 82 16 [0.1787, 0.4477} 0.03
0.0 S3 8 (61421, 0.4891] 0.06
ol Y T [-0.0338. 0.6837) 0.06
o 52 16 [-0.0316, 0.6350] 0.06
ol 53 8 [0.4050, 10273] | 006

the comparison of the results obtained by the two methods and
listed in Table 1 shows that the present method outperforms
Hansen's method. Indeed, the widths of the intervals V' ob-
tained by M1 are smaller as compared to these corresponding
to Hansen’s method. These results confirm the theoretical pre-
diction since, unlike Hansen's method, the present method ac-
counts for the dependencies between the elements of the system
of equations employed. At the same time, both methods require
the same computing time ¢,

In Table [, we present data on the outer solutions V' for two
values of ¢, obtained by the present method M1 using systems
S$1, 82 and 83. It is seen that for both values of ¢ the outer solu-
tion is the narrowest if system S2 is used while the computation
time is practically the same.

. B. Inner Sclutions

The inner solutions V* for V" are obtained by Procedures |
and 2 (method M2). Table I1I presents data on the width of V",
the total number of iterations /N needed by both Procedure 1 and
Procedure 2, and the execution time ¢ corresponding to the case
where the system of equations used is S1.

The same intervals V” are obtained when systems 82 and 53
are used.

To assess the effectiveness of the present method, we also
found the inner solutions for V using the Monte-Carlo method.
Table TV lists results corresponding to two values ¢ and two
values of the number of trials V.

The comparison of the results for V* and ¢ in Tables Iil and
IV clearly shows that the present method M2 is supetior to the
Monte-Carlo method. Indeed, method M2 provides wider inter-
vals V" and hence tighter approximations to the exact solutions
V*. At the same time, it requires less computation time although
M2 was applied to system S (n = 24) while the Monte-Carlo
method was implemented using the smaller system 83 {n = 8).

| §
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TABLE Tl
DATA ON THE INNER SOLUTIONS V' OBTAINED BY THE PRESENT METHOD M2
t System n ¥ y) N T(s)
0.05 S1 24 [0.2122, 0.4340] 5 012
0.1 st 24 [0.1196, 0.5630] | 35 012
TABLE IV
DATA ON V7' OBTAINED BY THE MOTE-CARLO METHOD
! System n N, ¥ {V) 7{s)
0.05 $3 B 1000 10.2457, 0.3931) 1.43
005 T777s3 8 10600 (02354, 04002 | 1433
ol 3 | 8 00 | [0.1736. 0.4591] 1.43
ol 53 3 10000 [0.1651, 0.4900] | 14.39
TABLE ¥
Tw0-SIDED BOUNDS ON THE ENDPOINTS OF THE EXACT SOLUTION V'~
" Methods Bounds on e Bounds on ¥ * s)
M1+ M2 [0.1787, 0.2122] [0-3340, 0.4477| 017
TMCTH [01t15, 0.2457) [0.3931, 0.5310] 149

The inner and outer solutions obtained by methods M2 and
MI, respectively, provide tight two-sided bounds on each end-
point V* and V" of the exact solution ¥*. Table V lists data on
these bounds (corresponding to ¢t = 0.03, §2 and N, = 1000)
obtained by methods M1 and M2, on the one hand, and method
Monte-Carle (MC) and Hansen's method (H), on the other.

C. Exact Solution

Using method M3 (Procedure 4 and 5), the exact solution Ve
has been obtained for all systems of equations when { = 0.05,
Table VI lists results for the endpoints of V*, the total number
of itetations NV {corresponding to the determination of both 17
and V') and the required computing time &.

If, however, { = 0.1 the exact solution has been reached only
for S1 and §2-—Table VII

Method M3 is inapplicable with system 83 since for ¢ = (0.1
none of the monactonicity conditions (47a)—(47b) is satisfied.
However, if t is reduced to ¢t = 0.07, the following result has
been obtained (Table VIII).

In this case, method M3 reaches for five iterations only the
exact lower endpoint ¥*, It cannot converge to the upper end-
point ¥ since after 5 iterations conditions (47a)—(47b) remain
unsatisfied for! = 4 and ! = 5, However, as is seen in the table,
the method provides a good two-sided bound on v

D. Analysis of the Numerical Results

The comparative analysis of the numerical results obtained
can be summarized as follows. The conservatism of the outer
solutions depends on the type of system of equations used. Ac-
cording to this criterion, the best results {narrowest solution
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=% TABLE VI
DATA ON THE EXACT SOLUTION V™ QOBTAINED BY THE PRESENT
METIIOD M3 FOR ¢ = 11.01)

f Systern " p* N s}
5l 24 7 (02123, 04340 ‘- 0.22
0.05 52 16 [02i22. 0.4340] 4 022
$3 8 [0.2122. 0.4340) 6 032
. TABLE ¥1I
DaTa ON V'* OBTAINED BY M3 FOR ¢+ = (.1
r Systern n [ a4 N Ts)
s 24 [0.1196, 6.5630] 7 | 044
0.1 52 16 (01196, 0.5630] 5 | 027
TABLE VI
Data o8 V* OBTAINED RY MIFOR 1 = 0.07
f System " pe Bounds on F * N s}
w07 | s 8 ll 01736 | 04709 F0.0241 | 10 0.5%
|

intervals) are obtained when system S2 is employed. This is
seemingly a valid conclusion for low- and medium-size circuits.
However, for large-size TA problems, it is hoped that system 53
will be preferable. Further numerical experiments are needed to
make a decision on this peint. The exact solution is obtained
with least computational eftort if, again, system S2 is used. It
should, however, be verified if this conclusion remains valid for
lurge-scale circuits,

Tt should be also stressed that at least for medium-size circuits
the numerical efficiency of the present approach seems (o be
superior to that of the Monte Carlo method. It is expected that
this conclusion remains valid also for large-scale circuits.

A final important remark is to be made. It should be noted
that in all experiments the inner solution is in fact equal to the
exact solution, 1.e.,

=z (39)

(cf. Table T11, Tables V1 and VII). 1t is belicved that the equality
(59) is a generic characteristic for a large class of linear elec-
tric circuits. The derivation of a simple criterion establishing
the validity of (59) and circumventing the verification of the
costly monotonicity conditions {47a)-(47b} would substantially
improve the overal! efficiency of the new approach to solving
the TA problems.

VII. CONCL.USION

A general framework (la}~{(1d) and (2) for treating
worst-case TA problems has been considered. The linear
algebraic system (la)-(1d) has elements that arc nonlinear
functions of a set of parameters belonging to given intervals.

A simple method M1 for determining an outer solution to the
TA problem considered has been suggested in Section I11. Tt is
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based on Theorem 1 and reduces essentially to setting up and
inverting an n x n real matrix and solving a system of n real
linear equations (28), n being the size of the original system
(1a)—~(1d). The method is self-validating: it is applicable only if
the solution 1o system (28) is positive.

In Section IV, an iterative method M2 (Procedures 1 and 2} 1s
suggested which permits to determine an inner TA solution.

A more involved method M3 (Procedure 3 or Procedures
4 and 5) for computing the exact interval solution of the TA
problem considered has been presented in Section V. It is based
on the use of Theorem 2 and method M1. The latter is applied
to compute tight enclosures Dy of the derivatives diy/dpy
according to formula (44). If all derivative monotonicity condi-
tions (47a)—~(47b) hold, method M3 is guaranteed to determine
the exact solution. In some cases, the method can provide
the exact solution even if not all monotonicity conditions
(47a)—(47b) are satisfied.

A numerical example has been solved in Section VI. It il-
lustrates the applicability of the above methods to determining
an outer, an inner and the exact solution to TA problems. The
experimental results seem to show that at least for low- and
medium-size circuits the present approach is superior to the
Monte Carlo method as regards both accuracy and computing
time. Further investigations are needed to decide whether the
same conclusion is valid in the case of large-size circuits.

The three methods suggested can be extended (o encompass
TA problems related to transients in linear circuits. This gener-
alization will be presented in a subsequent publication.
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